Energy-Efficient Cooperative Routing in Wireless Sensor Networks: A Mixed-Integer Optimization Framework and Explicit Solution

This paper presents an optimization framework for a wireless sensor network whereby, in a given route, the optimal relay selection and power allocation are performed subject to signal-to-noise ratio constraints. The proposed approach determines whether a direct transmission is preferred for a given...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on communications Ročník 61; číslo 8; s. 3424 - 3437
Hlavní autori: Habibi, J., Ghrayeb, A., Aghdam, A. G.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York, NY IEEE 01.08.2013
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0090-6778, 1558-0857
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper presents an optimization framework for a wireless sensor network whereby, in a given route, the optimal relay selection and power allocation are performed subject to signal-to-noise ratio constraints. The proposed approach determines whether a direct transmission is preferred for a given configuration of nodes, or a cooperative transmission. In the latter case, for each node, data transmission to the destination node is performed in two consecutive phases: broadcasting and relaying. The proposed strategy provides the best set of relays, the optimal broadcasting power and the optimal power values for the cooperative transmission phase. Once the minimum-energy transmission policy is obtained, the optimal routes from every node to a sink node are built-up using cooperative transmission blocks. We also present a low-complexity implementation approach of the proposed framework and provide an explicit solution to the optimization problem at hand by invoking the theory of multi-parametric programming. This technique provides the optimal solution as a function of measurable parameters in an off-line manner, and hence the on-line computational tasks are reduced to finding the parameters and evaluating simple functions. The proposed efficient approach has many potential applications in real-world problems and, to the best of the authors' knowledge, it has not been applied to communication problems before. Simulations are presented to demonstrate the efficacy of the approach.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0090-6778
1558-0857
DOI:10.1109/TCOMM.2013.070213.120570