Sensor placement algorithm for structural health monitoring with redundancy elimination model based on sub-clustering strategy
•The significance and limitations of redundancy in sensor placement are investigated.•A novel redundancy elimination model considers global and local sensor distribution.•The strategy includes sub-clustering algorithm and smallest enclosing circle method.•The placement algorithm is with sub-clusteri...
Gespeichert in:
| Veröffentlicht in: | Mechanical systems and signal processing Jg. 124; S. 369 - 387 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin
Elsevier Ltd
01.06.2019
Elsevier BV |
| Schlagworte: | |
| ISSN: | 0888-3270, 1096-1216 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •The significance and limitations of redundancy in sensor placement are investigated.•A novel redundancy elimination model considers global and local sensor distribution.•The strategy includes sub-clustering algorithm and smallest enclosing circle method.•The placement algorithm is with sub-clustering strategy, combined objective and GA.•The obtained dispersed sensor configuration can balance performance and redundancy.
Considering the limitation of selecting several neighbor sensors in a local region similar to just single one, namely redundant information, a sensor placement algorithm for structural health monitoring is proposed based on sub-clustering strategy, in order to improve the performance of sensor configuration with less redundancy. According to the significance of redundancy, the proposed novel redundancy elimination model considers global and local effect to overcome the previous limitations in sensor distribution. Based on the sub-clustering strategy, the redundancy elimination model reflects the sensor configuration in each sub-clustering and overall structural field. The presented sub-clustering strategy for sensor placement includes three main procedures: sub-clustering algorithm, its check step and smallest enclosing circle method, thus the accuracy can be guaranteed. Combining the effective independence method with normalization and weighting factor, the proposed sensor placement algorithm can balance performance and redundancy by using genetic algorithm, which is more competitive to reduce the order difference between the two objectives. Finally, the effectiveness of the proposed redundancy elimination model is verified by a simple example, and another two engineering numerical examples including space solar power satellite and re-usable launch vehicle are applied to demonstrate the validity of the proposed sensor placement algorithm respectively. |
|---|---|
| AbstractList | Considering the limitation of selecting several neighbor sensors in a local region similar to just single one, namely redundant information, a sensor placement algorithm for structural health monitoring is proposed based on sub-clustering strategy, in order to improve the performance of sensor configuration with less redundancy. According to the significance of redundancy, the proposed novel redundancy elimination model considers global and local effect to overcome the previous limitations in sensor distribution. Based on the sub-clustering strategy, the redundancy elimination model reflects the sensor configuration in each sub-clustering and overall structural field. The presented sub-clustering strategy for sensor placement includes three main procedures: sub-clustering algorithm, its check step and smallest enclosing circle method, thus the accuracy can be guaranteed. Combining the effective independence method with normalization and weighting factor, the proposed sensor placement algorithm can balance performance and redundancy by using genetic algorithm, which is more competitive to reduce the order difference between the two objectives. Finally, the effectiveness of the proposed redundancy elimination model is verified by a simple example, and another two engineering numerical examples including space solar power satellite and re-usable launch vehicle are applied to demonstrate the validity of the proposed sensor placement algorithm respectively. •The significance and limitations of redundancy in sensor placement are investigated.•A novel redundancy elimination model considers global and local sensor distribution.•The strategy includes sub-clustering algorithm and smallest enclosing circle method.•The placement algorithm is with sub-clustering strategy, combined objective and GA.•The obtained dispersed sensor configuration can balance performance and redundancy. Considering the limitation of selecting several neighbor sensors in a local region similar to just single one, namely redundant information, a sensor placement algorithm for structural health monitoring is proposed based on sub-clustering strategy, in order to improve the performance of sensor configuration with less redundancy. According to the significance of redundancy, the proposed novel redundancy elimination model considers global and local effect to overcome the previous limitations in sensor distribution. Based on the sub-clustering strategy, the redundancy elimination model reflects the sensor configuration in each sub-clustering and overall structural field. The presented sub-clustering strategy for sensor placement includes three main procedures: sub-clustering algorithm, its check step and smallest enclosing circle method, thus the accuracy can be guaranteed. Combining the effective independence method with normalization and weighting factor, the proposed sensor placement algorithm can balance performance and redundancy by using genetic algorithm, which is more competitive to reduce the order difference between the two objectives. Finally, the effectiveness of the proposed redundancy elimination model is verified by a simple example, and another two engineering numerical examples including space solar power satellite and re-usable launch vehicle are applied to demonstrate the validity of the proposed sensor placement algorithm respectively. |
| Author | Geng, Xinyu Yang, Chen Zhang, Xuepan Liang, Ke |
| Author_xml | – sequence: 1 givenname: Chen surname: Yang fullname: Yang, Chen email: yangchen@qxslab.cn organization: Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China – sequence: 2 givenname: Ke surname: Liang fullname: Liang, Ke organization: School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China – sequence: 3 givenname: Xuepan surname: Zhang fullname: Zhang, Xuepan organization: Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China – sequence: 4 givenname: Xinyu surname: Geng fullname: Geng, Xinyu organization: Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China |
| BookMark | eNqFkL1OHDEUha2ISFlIniCNpdQzXHuYHxcpEMoPEhIFUFse-86uVx57sT1B2_DsmF0qClJZts53fc93Sk588EjIdwY1A9adb-v9nNKu5sBEDayGtv9EVgxEVzHOuhOygmEYqob38IWcprQFAHEB3Yo836FPIdKdUxpn9Jkqtw7R5s1Mp_Keclx0XqJydIPK5Q2dg7e5JPyaPpUYjWgWb5TXe4rOztarbIMvMYOOjiqhoeWalrHSbkkZD2QZqzKu91_J50m5hN_ezjPy8PvX_dXf6ub2z_XV5U2lmx5yJcbSDC96PfWqFaLng-EjN2o0A4A2ohPdgGhGrfTYq57rqWWjaBUbpoYBTM0Z-XGcu4vhccGU5TYs0ZcvJeesaGlZw0pKHFM6hpQiTlLbfKhT1rVOMpCvuuVWHnTLV90SmCy6C9u8Y3fRziru_0P9PFJYyv-zGGXSFr1GYyPqLE2wH_IvObahrg |
| CitedBy_id | crossref_primary_10_1016_j_measurement_2024_116009 crossref_primary_10_1155_2021_6675338 crossref_primary_10_1016_j_ijmecsci_2025_110228 crossref_primary_10_1016_j_istruc_2023_05_011 crossref_primary_10_1016_j_measurement_2024_115676 crossref_primary_10_1016_j_measurement_2024_115830 crossref_primary_10_3390_s24123924 crossref_primary_10_3390_s23239472 crossref_primary_10_1155_2020_6721301 crossref_primary_10_1109_JSEN_2020_2997298 crossref_primary_10_1007_s00158_021_02920_4 crossref_primary_10_1016_j_measurement_2025_117466 crossref_primary_10_1016_j_measurement_2024_115680 crossref_primary_10_1016_j_swevo_2024_101755 crossref_primary_10_1016_j_measurement_2024_116097 crossref_primary_10_1016_j_ast_2023_108155 crossref_primary_10_1016_j_future_2025_107779 crossref_primary_10_1088_1361_6501_ad1e4d crossref_primary_10_1016_j_measurement_2024_115421 crossref_primary_10_1016_j_measurement_2024_115784 crossref_primary_10_1016_j_jobe_2024_111211 crossref_primary_10_3390_s22103867 crossref_primary_10_3390_s23063293 crossref_primary_10_1016_j_ymssp_2022_109173 crossref_primary_10_1109_JSEN_2020_2978081 crossref_primary_10_1016_j_jobe_2025_113416 crossref_primary_10_1016_j_ymssp_2021_107685 crossref_primary_10_1080_0305215X_2021_2019250 crossref_primary_10_1016_j_ymssp_2021_108386 crossref_primary_10_1016_j_measurement_2025_118287 crossref_primary_10_2514_1_G004733 crossref_primary_10_1088_1361_665X_abe33b crossref_primary_10_1088_1361_6501_ad69b1 crossref_primary_10_1016_j_cam_2023_115436 crossref_primary_10_1016_j_measurement_2023_113794 crossref_primary_10_1016_j_future_2025_107727 crossref_primary_10_1016_j_measurement_2023_113671 crossref_primary_10_1016_j_mechmachtheory_2021_104416 crossref_primary_10_1016_j_measurement_2022_112102 crossref_primary_10_1016_j_ast_2023_108406 crossref_primary_10_1016_j_ymssp_2021_108788 crossref_primary_10_1088_1361_6501_ad5bf7 crossref_primary_10_1016_j_jsv_2025_118929 crossref_primary_10_3390_buildings13081975 crossref_primary_10_1109_JSEN_2023_3276318 crossref_primary_10_1016_j_swevo_2024_101739 crossref_primary_10_1088_1361_6501_abcad5 crossref_primary_10_1016_j_compstruct_2021_114441 crossref_primary_10_3390_s25020356 crossref_primary_10_1016_j_applthermaleng_2024_122353 crossref_primary_10_1016_j_cma_2020_113477 crossref_primary_10_1080_10589759_2024_2393205 crossref_primary_10_1007_s00366_023_01858_z crossref_primary_10_1007_s12206_025_0413_0 crossref_primary_10_3390_sci6030040 crossref_primary_10_1016_j_measurement_2023_113684 crossref_primary_10_1109_TR_2023_3292089 crossref_primary_10_1016_j_measurement_2023_113567 crossref_primary_10_1016_j_seta_2021_101183 crossref_primary_10_1016_j_ast_2021_106551 crossref_primary_10_1016_j_future_2025_107832 crossref_primary_10_1109_TII_2021_3084133 crossref_primary_10_1016_j_measurement_2023_113603 crossref_primary_10_1016_j_jobe_2024_110869 crossref_primary_10_1016_j_measurement_2023_113689 crossref_primary_10_1016_j_istruc_2024_108117 crossref_primary_10_1016_j_softx_2025_102216 crossref_primary_10_1016_j_cma_2023_116679 crossref_primary_10_3390_s22218432 crossref_primary_10_1109_TIM_2023_3309394 crossref_primary_10_1016_j_ymssp_2023_110673 crossref_primary_10_1016_j_ijmecsci_2024_109830 crossref_primary_10_1016_j_ymssp_2021_107914 crossref_primary_10_1016_j_measurement_2023_113698 crossref_primary_10_1016_j_conengprac_2023_105751 crossref_primary_10_1051_smdo_2024012 crossref_primary_10_1080_10589759_2024_2402549 crossref_primary_10_1016_j_apm_2020_05_021 crossref_primary_10_1016_j_future_2024_107585 crossref_primary_10_1016_j_measurement_2024_115912 crossref_primary_10_1016_j_measurement_2023_113617 crossref_primary_10_1016_j_measurement_2023_113616 crossref_primary_10_1016_j_ymssp_2020_107363 crossref_primary_10_2514_1_J059355 crossref_primary_10_1016_j_ijsolstr_2024_113003 crossref_primary_10_3390_s23187859 crossref_primary_10_1007_s00707_019_02580_y crossref_primary_10_3390_app13137498 crossref_primary_10_3390_buildings14020456 crossref_primary_10_1016_j_measurement_2024_114412 crossref_primary_10_1016_j_measurement_2023_113501 crossref_primary_10_1016_j_measurement_2024_114650 crossref_primary_10_1016_j_jobe_2025_112929 crossref_primary_10_1016_j_measurement_2023_113901 crossref_primary_10_1016_j_measurement_2024_115906 crossref_primary_10_1016_j_amc_2020_125682 crossref_primary_10_1007_s00158_021_03159_9 crossref_primary_10_1109_JSEN_2022_3217669 crossref_primary_10_1109_JSEN_2024_3443632 crossref_primary_10_1007_s00158_021_02989_x crossref_primary_10_3390_s24051636 crossref_primary_10_1007_s00158_022_03307_9 crossref_primary_10_1016_j_applthermaleng_2021_117351 crossref_primary_10_1016_j_ymssp_2020_107110 crossref_primary_10_1002_nme_6621 crossref_primary_10_1016_j_measurement_2024_116160 crossref_primary_10_1016_j_dsp_2024_104665 crossref_primary_10_1016_j_jobe_2024_110676 crossref_primary_10_1080_10589759_2024_2410390 crossref_primary_10_1016_j_measurement_2023_113473 crossref_primary_10_3390_ma14195468 crossref_primary_10_1016_j_jobe_2024_110311 crossref_primary_10_1016_j_measurement_2024_114524 crossref_primary_10_1016_j_measurement_2024_116303 crossref_primary_10_1016_j_measurement_2024_115455 crossref_primary_10_1016_j_measurement_2023_113516 crossref_primary_10_1016_j_measurement_2024_115619 crossref_primary_10_1016_j_cma_2020_113042 crossref_primary_10_1016_j_measurement_2024_114406 crossref_primary_10_1016_j_ymssp_2021_107774 crossref_primary_10_1016_j_measurement_2024_115219 crossref_primary_10_1088_1361_665X_ace8d8 crossref_primary_10_1016_j_ress_2023_109703 crossref_primary_10_1109_ACCESS_2022_3141090 crossref_primary_10_1016_j_ultras_2023_107161 crossref_primary_10_1016_j_ress_2023_109382 crossref_primary_10_1016_j_measurement_2024_114239 crossref_primary_10_3390_s22124380 crossref_primary_10_1016_j_measurement_2022_111682 crossref_primary_10_1016_j_measurement_2024_115167 crossref_primary_10_1109_JSEN_2024_3383864 crossref_primary_10_1016_j_compstruct_2021_114107 crossref_primary_10_1061_JAEEEZ_ASENG_4416 crossref_primary_10_1109_ACCESS_2019_2957307 crossref_primary_10_3390_app13031698 crossref_primary_10_1016_j_compstruct_2021_114863 crossref_primary_10_1016_j_aei_2025_103645 crossref_primary_10_1016_j_measurement_2023_113649 crossref_primary_10_1016_j_ymssp_2025_112615 crossref_primary_10_2514_1_J058775 crossref_primary_10_1016_j_jsv_2023_117966 crossref_primary_10_1007_s00158_022_03370_2 crossref_primary_10_1016_j_apm_2022_01_029 crossref_primary_10_3390_coatings15010042 |
| Cites_doi | 10.1002/stc.1707 10.1016/j.ymssp.2008.05.012 10.3390/s18082424 10.1002/stc.1958 10.1177/1475921716688372 10.1002/tal.712 10.1016/j.actaastro.2018.06.002 10.1016/j.ymssp.2018.05.039 10.1016/j.actaastro.2017.05.004 10.1016/j.enbuild.2017.10.074 10.1016/j.actaastro.2018.05.022 10.1016/j.ymssp.2016.01.005 10.1016/j.ymssp.2018.09.013 10.1016/j.jsv.2016.10.033 10.1016/j.ymssp.2018.05.050 10.1111/mice.12309 10.1109/JSEN.2018.2789523 10.1002/stc.2160 10.1016/j.ast.2018.03.014 10.2514/1.G003104 10.1016/j.ast.2017.12.012 10.1016/j.cma.2018.08.001 10.1016/j.ymssp.2011.05.019 10.1016/j.actaastro.2017.08.025 10.1016/j.ast.2016.11.030 10.12989/sem.2011.37.6.671 10.1088/0964-1726/22/9/095015 10.1016/j.jsv.2016.09.004 10.1016/j.ymssp.2017.11.023 10.1260/1369-4332.17.8.1103 10.1016/j.jsv.2008.03.026 10.1002/stc.2137 10.1016/j.finel.2014.07.014 10.1016/j.ymssp.2018.04.010 10.1016/j.jsv.2017.04.041 10.1007/s11431-016-0526-9 10.1016/j.ymssp.2013.06.022 10.1088/0964-1726/21/10/105033 10.1007/s11227-016-1900-y 10.1061/(ASCE)0733-9399(1994)120:2(368) 10.1002/stc.1654 10.1016/j.ymssp.2016.09.005 10.1016/j.jsv.2018.01.027 10.12989/sss.2013.12.3_4.235 10.2514/3.10739 10.1016/j.oceaneng.2018.07.034 10.1002/stc.1806 10.2514/3.20841 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Jun 1, 2019 |
| Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Jun 1, 2019 |
| DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.ymssp.2019.01.057 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1096-1216 |
| EndPage | 387 |
| ExternalDocumentID | 10_1016_j_ymssp_2019_01_057 S0888327019300731 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG5 LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SST SSV SSZ T5K XPP ZMT ZU3 ~G- 29M 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADFGL ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CAG CITATION COF EFKBS FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ ~HD 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c370t-9b201e47cf7a599728d2b2dabd800cd96968eedbcacb7a72cf51b95a18f3100f3 |
| ISICitedReferencesCount | 147 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000461538500020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0888-3270 |
| IngestDate | Sun Oct 05 00:18:37 EDT 2025 Sat Nov 29 02:08:18 EST 2025 Tue Nov 18 22:28:44 EST 2025 Fri Feb 23 02:29:58 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Sensor placement algorithm Sub-clustering strategy Redundancy elimination model Smallest enclosing circle Effective independence method |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c370t-9b201e47cf7a599728d2b2dabd800cd96968eedbcacb7a72cf51b95a18f3100f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2212705131 |
| PQPubID | 2045429 |
| PageCount | 19 |
| ParticipantIDs | proquest_journals_2212705131 crossref_citationtrail_10_1016_j_ymssp_2019_01_057 crossref_primary_10_1016_j_ymssp_2019_01_057 elsevier_sciencedirect_doi_10_1016_j_ymssp_2019_01_057 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-06-01 |
| PublicationDateYYYYMMDD | 2019-06-01 |
| PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin |
| PublicationPlace_xml | – name: Berlin |
| PublicationTitle | Mechanical systems and signal processing |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Yi, Zhou, Li (b0175) 2017; 24 Yang, Hou, Wang (b0285) 2018; 151C Liu, Gao, Sun (b0150) 2008; 317 Zhou, Yi, Li (b0170) 2014; 17 Li, Zhang, Liu (b0215) 2016; 385 Zhao, Du, Bao (b0035) 2018; 18 Wang, Matthies, Xu (b0060) 2018; 77 Rogers, Worden, Fuentes (b0005) 2019; 119 Garbos, Mouyos (b0290) 2013 Papadimitriou, Lombaert (b0105) 2012; 28 Vincenzi, Simonini (b0235) 2017; 389 Jia, Feng, Liu (b0205) 2015 Chen, Bruno, Salama (b0190) 1991; 29 Yin, Yuen, Lam (b0100) 2017; 32 Li, Der Kiureghian (b0120) 2016; 75 Hou, Wang, Zhang (b0260) 2015; 11 He, Lian, Ma, Wang (b0250) 2013; 16 Wang, Matthies, Xu (b0070) 2018; 342 Castro-Triguero, Murugan, Gallego (b0115) 2013; 41 Pei, Yi, Li (b0130) 2018; 21 Downey, Hu, Laflamme (b0160) 2017; 10 Castro-Triguero, Saavedra Flores, DiazDelaO (b0110) 2014; 21 Yi, Li, Wang (b0125) 2013; 12 Hernandez (b0020) 2017; 85 Yi, Li, Zhang (b0200) 2012; 21 Mu, Tan, Wu (b0265) 2018; 148 Yang, Lu, Yang (b0145) 2018; 18 Zhang, Maes, De Roeck (b0040) 2017; 401 Wang, Xiong, Wang, Li, Xu (b0050) 2018; 419 Lian, He, Ma (b0195) 2013; 22 Yang, Hou, Wang (b0280) 2017; 137 Wang, Qiu, Wang (b0065) 2014; 91 Li, Li, Fritzen (b0230) 2016; 6 Kim, Youn, Oh (b0135) 2018; 111 Yi, Li, Gu (b0025) 2011; 20 Yang (b0220) 2018 Yoganathan, Kondepudi, Kalluri (b0245) 2018; 158 Kammer (b0080) 1992; 15 Zhou, Yi, Zhang (b0165) 2015; 22 Yi, Li, Gu (b0030) 2011; 37 Souflas, Pezouvanis, Ebrahimi (b0015) 2018; 104 Yang, Zhang, Huang (b0155) 2017; 140 Rajabzadeh, Haghighat (b0185) 2017; 73 Liu, Wu, Radice (b0275) 2017; 41 Zhang, Liu, Zhao, Wu, Liu (b0255) 2016; 8 Zhao, Yan, Chen (b0010) 2019; 115 Yi, Li, Wang (b0180) 2016; 23 Friswell, Castrotriguero (b0225) 2015; 5 Yang, Lu (b0140) 2017; 60 Wang, Wang, Yang, Li, Chang (b0055) 2018; 73 Feng, Jia (b0210) 2018; 17 Carne, Dohrmann (b0085) 1994 Wang, Wang, Li (b0045) 2019; 115 Udwadia (b0075) 1994; 120 Argyris, Chowdhury, Zabel (b0095) 2018; 25 Bonisoli, Delprete, Rosso (b0240) 2009; 23 Liu, Yan, Soares (b0090) 2018; 165 Liu, Wu, Zhang (b0270) 2017; 62 Hernandez (10.1016/j.ymssp.2019.01.057_b0020) 2017; 85 Yi (10.1016/j.ymssp.2019.01.057_b0030) 2011; 37 Yi (10.1016/j.ymssp.2019.01.057_b0025) 2011; 20 Wang (10.1016/j.ymssp.2019.01.057_b0055) 2018; 73 Yang (10.1016/j.ymssp.2019.01.057_b0140) 2017; 60 Rajabzadeh (10.1016/j.ymssp.2019.01.057_b0185) 2017; 73 Wang (10.1016/j.ymssp.2019.01.057_b0060) 2018; 77 Udwadia (10.1016/j.ymssp.2019.01.057_b0075) 1994; 120 Rogers (10.1016/j.ymssp.2019.01.057_b0005) 2019; 119 Yang (10.1016/j.ymssp.2019.01.057_b0145) 2018; 18 Liu (10.1016/j.ymssp.2019.01.057_b0275) 2017; 41 Yang (10.1016/j.ymssp.2019.01.057_b0285) 2018; 151C Liu (10.1016/j.ymssp.2019.01.057_b0270) 2017; 62 Zhang (10.1016/j.ymssp.2019.01.057_b0040) 2017; 401 Carne (10.1016/j.ymssp.2019.01.057_b0085) 1994 Lian (10.1016/j.ymssp.2019.01.057_b0195) 2013; 22 Bonisoli (10.1016/j.ymssp.2019.01.057_b0240) 2009; 23 Mu (10.1016/j.ymssp.2019.01.057_b0265) 2018; 148 Argyris (10.1016/j.ymssp.2019.01.057_b0095) 2018; 25 Li (10.1016/j.ymssp.2019.01.057_b0120) 2016; 75 Jia (10.1016/j.ymssp.2019.01.057_b0205) 2015 Yin (10.1016/j.ymssp.2019.01.057_b0100) 2017; 32 Wang (10.1016/j.ymssp.2019.01.057_b0070) 2018; 342 Yang (10.1016/j.ymssp.2019.01.057_b0155) 2017; 140 He (10.1016/j.ymssp.2019.01.057_b0250) 2013; 16 Papadimitriou (10.1016/j.ymssp.2019.01.057_b0105) 2012; 28 Yi (10.1016/j.ymssp.2019.01.057_b0175) 2017; 24 Yi (10.1016/j.ymssp.2019.01.057_b0125) 2013; 12 Yang (10.1016/j.ymssp.2019.01.057_b0220) 2018 Friswell (10.1016/j.ymssp.2019.01.057_b0225) 2015; 5 Yi (10.1016/j.ymssp.2019.01.057_b0200) 2012; 21 Yoganathan (10.1016/j.ymssp.2019.01.057_b0245) 2018; 158 Feng (10.1016/j.ymssp.2019.01.057_b0210) 2018; 17 Castro-Triguero (10.1016/j.ymssp.2019.01.057_b0110) 2014; 21 Zhang (10.1016/j.ymssp.2019.01.057_b0255) 2016; 8 Hou (10.1016/j.ymssp.2019.01.057_b0260) 2015; 11 Li (10.1016/j.ymssp.2019.01.057_b0230) 2016; 6 Kim (10.1016/j.ymssp.2019.01.057_b0135) 2018; 111 Pei (10.1016/j.ymssp.2019.01.057_b0130) 2018; 21 Wang (10.1016/j.ymssp.2019.01.057_b0050) 2018; 419 Liu (10.1016/j.ymssp.2019.01.057_b0090) 2018; 165 Zhou (10.1016/j.ymssp.2019.01.057_b0165) 2015; 22 Yang (10.1016/j.ymssp.2019.01.057_b0280) 2017; 137 Souflas (10.1016/j.ymssp.2019.01.057_b0015) 2018; 104 Wang (10.1016/j.ymssp.2019.01.057_b0065) 2014; 91 Garbos (10.1016/j.ymssp.2019.01.057_b0290) 2013 Castro-Triguero (10.1016/j.ymssp.2019.01.057_b0115) 2013; 41 Li (10.1016/j.ymssp.2019.01.057_b0215) 2016; 385 Liu (10.1016/j.ymssp.2019.01.057_b0150) 2008; 317 Zhao (10.1016/j.ymssp.2019.01.057_b0035) 2018; 18 Vincenzi (10.1016/j.ymssp.2019.01.057_b0235) 2017; 389 Zhao (10.1016/j.ymssp.2019.01.057_b0010) 2019; 115 Chen (10.1016/j.ymssp.2019.01.057_b0190) 1991; 29 Downey (10.1016/j.ymssp.2019.01.057_b0160) 2017; 10 Kammer (10.1016/j.ymssp.2019.01.057_b0080) 1992; 15 Yi (10.1016/j.ymssp.2019.01.057_b0180) 2016; 23 Wang (10.1016/j.ymssp.2019.01.057_b0045) 2019; 115 Zhou (10.1016/j.ymssp.2019.01.057_b0170) 2014; 17 |
| References_xml | – volume: 5 start-page: 1 year: 2015 end-page: 3 ident: b0225 article-title: Clustering of sensor locations using the effective independence method publication-title: AIAA J. – volume: 22 year: 2013 ident: b0195 article-title: Optimal sensor placement for large structures using the nearest neighbour index and a hybrid swarm intelligence algorithm publication-title: Smart Mater. Struct. – volume: 21 year: 2012 ident: b0200 article-title: A modified monkey algorithm for optimal sensor placement in structural health monitoring publication-title: Smart Mater. Struct. – volume: 385 start-page: 69 year: 2016 end-page: 80 ident: b0215 article-title: Optimal sensor placement using FRFs-based clustering method publication-title: J. Sound Vib. – start-page: 26(6) year: 2015 ident: b0205 article-title: A triaxial accelerometer monkey algorithm for optimal sensor placement in structural health monitoring publication-title: Meas. Sci. Technol. – year: 2013 ident: b0290 article-title: X-33/RLV system health management/vehicle publication-title: health management – year: 2018 ident: b0220 article-title: Sensor placement for structural health monitoring using hybrid optimization algorithm based on sensor distribution index and FE grids publication-title: Struct. Control Health Monit. – volume: 32 start-page: 1007 year: 2017 end-page: 1024 ident: b0100 article-title: Entropy-Based Optimal Sensor Placement for Model Identification of Periodic Structures Endowed with Bolted Joints publication-title: Comput.-Aided Civ. Infrastruct. Eng. – volume: 12 start-page: 235 year: 2013 end-page: 250 ident: b0125 article-title: Multi-dimensional sensor placement optimization for Canton Tower focusing on application demands publication-title: Smart Struct. Syst. – volume: 17 start-page: 1103 year: 2014 end-page: 1115 ident: b0170 article-title: Sensor placement optimization in structural health monitoring using cluster-in-cluster firefly algorithm publication-title: Adv. Struct. Eng. – volume: 20 start-page: 881 year: 2011 end-page: 900 ident: b0025 article-title: Optimal sensor placement for structural health monitoring based on multiple optimization strategies publication-title: Struct. Des. Tall Special Build. – volume: 419 start-page: 469 year: 2018 end-page: 492 ident: b0050 article-title: Hybrid time-variant reliability estimation for active control structures under aleatory and epistemic uncertainties publication-title: J. Sound Vib. – volume: 140 start-page: 213 year: 2017 end-page: 224 ident: b0155 article-title: Optimal sensor placement for deployable antenna module health monitoring in SSPS using genetic algorithm publication-title: Acta Astronaut. – volume: 29 start-page: 1327 year: 1991 end-page: 1334 ident: b0190 article-title: Optimal placement of active/passive control of flexible structures publication-title: AIAA J – volume: 18 start-page: 2031 year: 2018 end-page: 2041 ident: b0145 article-title: Robust Optimal Sensor Placement for Uncertain Structures with Interval Parameters publication-title: IEEE Sens. J. – volume: 73 start-page: 2001 year: 2017 end-page: 2017 ident: b0185 article-title: Energy-aware framework with Markov chain-based parallel simulated annealing algorithm for dynamic management of virtual machines in cloud data centers publication-title: J. Supercomput. – volume: 8 start-page: 148 year: 2016 end-page: 153 ident: b0255 article-title: Optimal sensor placement for hydraulic structures based on effective independence-total displacement method publication-title: J. Vib. Shock – volume: 119 start-page: 100 year: 2019 end-page: 119 ident: b0005 article-title: A Bayesian non-parametric clustering approach for semi-supervised Structural Health Monitoring publication-title: Mech. Syst. Sig. Process. – volume: 22 start-page: 648 year: 2015 end-page: 666 ident: b0165 article-title: Energy-aware wireless sensor placement in structural health monitoring using hybrid discrete firefly algorithm publication-title: Struct. Control Health Monit. – volume: 389 start-page: 119 year: 2017 end-page: 133 ident: b0235 article-title: Influence of model errors in optimal sensor placement publication-title: J. Sound Vib. – volume: 148 start-page: 385 year: 2018 end-page: 395 ident: b0265 article-title: Coupling dynamics of super large space structures in the presence of environmental disturbances publication-title: Acta Astronaut. – volume: 23 start-page: 719 year: 2016 end-page: 734 ident: b0180 article-title: Multiaxial sensor placement optimization in structural health monitoring using distributed wolf algorithm publication-title: Struct. Control Health Monit. – year: 1994 ident: b0085 article-title: A modal test design strategy for model correlation[R] – volume: 28 start-page: 105 year: 2012 end-page: 127 ident: b0105 article-title: The effect of prediction error correlation on optimal sensor placement in structural dynamics publication-title: Mech. Syst. Sig. Process. – volume: 15 start-page: 334 year: 1992 end-page: 341 ident: b0080 article-title: Effect of model error on sensor placement for on-orbit modal identification of large space structures publication-title: J. Guidance Control Dyn. – volume: 21 start-page: 407 year: 2018 end-page: 420 ident: b0130 article-title: A multitype sensor placement method for the modal estimation of structure publication-title: Smart Struct. Syst. – volume: 41 start-page: 777 year: 2017 end-page: 782 ident: b0275 article-title: Gravity-gradient effects on flexible solar power satellites publication-title: J. Guidance Control Dyn. – volume: 120 start-page: 368 year: 1994 end-page: 390 ident: b0075 article-title: Methodology for optimum sensor locations for parameter identification in dynamic systems publication-title: J. Eng. Mech. – volume: 62 start-page: 46 year: 2017 end-page: 54 ident: b0270 article-title: Gravitational orbit-attitude coupling dynamics of a large solar power satellite publication-title: Aerosp. Sci. Technol. – volume: 11 start-page: 1332 year: 2015 ident: b0260 article-title: Concept Design on Multi-Rotary Joints SPS publication-title: J. Astronautics – volume: 16 start-page: 13 year: 2013 end-page: 18 ident: b0250 article-title: Optimal sensor placement for large space structures based on distance coefficient-effective independence method publication-title: J. Vib. Shock – volume: 17 start-page: 169 year: 2018 end-page: 184 ident: b0210 article-title: Acceleration sensor placement technique for vibration test in structural health monitoring using microhabitat frog-leaping algorithm publication-title: Struct. Health Monit. – volume: 317 start-page: 175 year: 2008 end-page: 189 ident: b0150 article-title: Optimal sensor placement for spatial lattice structure based on genetic algorithms publication-title: J. Sound Vib. – volume: 25 year: 2018 ident: b0095 article-title: Bayesian optimal sensor placement for crack identification in structures using strain measurements publication-title: Struct. Control Health Monit. – volume: 115 start-page: 213 year: 2019 end-page: 237 ident: b0010 article-title: Deep learning and its applications to machine health monitoring publication-title: Mech. Syst. Sig. Process. – volume: 137 start-page: 382 year: 2017 end-page: 402 ident: b0280 article-title: Thermal Design, Analysis and Comparison on Three Concepts of Space Solar Power Satellite publication-title: Acta Astronaut. – volume: 342 start-page: 161 year: 2018 end-page: 176 ident: b0070 article-title: Epistemic uncertainty-based model validation via interval propagation and parameter calibration publication-title: Comput. Methods Appl. Mech. Eng. – volume: 6 start-page: 1 year: 2016 end-page: 2 ident: b0230 article-title: Comments on “Clustering of sensor locations using the effective independence method” publication-title: AIAA J. – volume: 23 start-page: 606 year: 2009 end-page: 620 ident: b0240 article-title: Proposal of a modal-geometrical-based master nodes selection criterion in modal analysis publication-title: Mech. Syst. Signal Pr. – volume: 104 start-page: 673 year: 2018 end-page: 687 ident: b0015 article-title: Health monitoring system for transmission shafts based on adaptive parameter identification publication-title: Mech. Syst. Sig. Process. – volume: 85 start-page: 789 year: 2017 end-page: 800 ident: b0020 article-title: Efficient sensor placement for state estimation in structural dynamics publication-title: Mech. Syst. Sig. Process. – volume: 165 start-page: 209 year: 2018 end-page: 220 ident: b0090 article-title: Optimal sensor placement and assessment for modal identification publication-title: Ocean Eng. – volume: 73 start-page: 318 year: 2018 end-page: 331 ident: b0055 article-title: Active force control of structure-borne sound based on robust optimization subjected to an irregular cavity with uncertainties publication-title: Aerosp. Sci. Technol. – volume: 18 start-page: 2424 year: 2018 ident: b0035 article-title: Optimal Sensor Placement Based on Eigenvalues Analysis for Sensing Deformation of Wing Frame Using iFEM publication-title: Sensors – volume: 75 start-page: 155 year: 2016 end-page: 175 ident: b0120 article-title: Robust optimal sensor placement for operational modal analysis based on maximum expected utility publication-title: Mech. Syst. Sig. Process. – volume: 91 start-page: 108 year: 2014 end-page: 114 ident: b0065 article-title: Interval finite element analysis and reliability-based optimization of coupled structural-acoustic system with uncertain parameters publication-title: Finite Elem. Anal. Des. – volume: 115 start-page: 301 year: 2019 end-page: 322 ident: b0045 article-title: A non-probabilistic time-variant reliable control method for structural vibration suppression problems with interval uncertainties publication-title: Mech. Syst. Sig. Process. – volume: 60 start-page: 186 year: 2017 end-page: 198 ident: b0140 article-title: An interval effective independence method for optimal sensor placement based on non-probabilistic approach publication-title: Sci. China Technol. Sci. – volume: 10 year: 2017 ident: b0160 article-title: Optimal sensor placement within a hybrid dense sensor network using an adaptive genetic algorithm with learning gene pool publication-title: Struct. Health Monit. – volume: 37 start-page: 671 year: 2011 end-page: 684 ident: b0030 article-title: A new method for optimal selection of sensor location on a high-rise building using simplified finite element model publication-title: Struct. Eng. Mech. – volume: 401 start-page: 214 year: 2017 end-page: 232 ident: b0040 article-title: Optimal sensor placement for multi-setup modal analysis of structures publication-title: J. Sound Vib. – volume: 24 year: 2017 ident: b0175 article-title: Optimal placement of triaxial sensors for modal identification using hierarchic wolf algorithm publication-title: Struct. Control Health Monit. – volume: 158 start-page: 1206 year: 2018 end-page: 1225 ident: b0245 article-title: Optimal sensor placement strategy for office buildings using clustering algorithms publication-title: Energy Build. – volume: 77 start-page: 353 year: 2018 end-page: 361 ident: b0060 article-title: Hybrid reliability analysis and optimization for spacecraft structural system with random and fuzzy parameters publication-title: Aerosp. Sci. Technol. – volume: 111 start-page: 615 year: 2018 end-page: 627 ident: b0135 article-title: Development of a stochastic effective independence (SEFI) method for optimal sensor placement under uncertainty publication-title: Mech. Syst. Sig. Process. – volume: 41 start-page: 268 year: 2013 end-page: 287 ident: b0115 article-title: Robustness of optimal sensor placement under parametric uncertainty publication-title: Mech. Syst. Sig. Process. – volume: 21 start-page: 1437 year: 2014 end-page: 1452 ident: b0110 article-title: Optimal sensor placement in timber structures by means of a multi-scale approach with material uncertainty publication-title: Struct. Control Health Monit. – volume: 151C start-page: 95 year: 2018 end-page: 102 ident: b0285 article-title: Uncertain surface accuracy evaluation based on non-probabilistic approach for large spacecraft publication-title: Acta Astronaut. – volume: 22 start-page: 648 issue: 4 year: 2015 ident: 10.1016/j.ymssp.2019.01.057_b0165 article-title: Energy-aware wireless sensor placement in structural health monitoring using hybrid discrete firefly algorithm publication-title: Struct. Control Health Monit. doi: 10.1002/stc.1707 – volume: 23 start-page: 606 year: 2009 ident: 10.1016/j.ymssp.2019.01.057_b0240 article-title: Proposal of a modal-geometrical-based master nodes selection criterion in modal analysis publication-title: Mech. Syst. Signal Pr. doi: 10.1016/j.ymssp.2008.05.012 – volume: 6 start-page: 1 year: 2016 ident: 10.1016/j.ymssp.2019.01.057_b0230 article-title: Comments on “Clustering of sensor locations using the effective independence method” publication-title: AIAA J. – volume: 11 start-page: 1332 year: 2015 ident: 10.1016/j.ymssp.2019.01.057_b0260 article-title: Concept Design on Multi-Rotary Joints SPS publication-title: J. Astronautics – volume: 18 start-page: 2424 issue: 8 year: 2018 ident: 10.1016/j.ymssp.2019.01.057_b0035 article-title: Optimal Sensor Placement Based on Eigenvalues Analysis for Sensing Deformation of Wing Frame Using iFEM publication-title: Sensors doi: 10.3390/s18082424 – volume: 24 issue: 8 year: 2017 ident: 10.1016/j.ymssp.2019.01.057_b0175 article-title: Optimal placement of triaxial sensors for modal identification using hierarchic wolf algorithm publication-title: Struct. Control Health Monit. doi: 10.1002/stc.1958 – volume: 17 start-page: 169 issue: 2 year: 2018 ident: 10.1016/j.ymssp.2019.01.057_b0210 article-title: Acceleration sensor placement technique for vibration test in structural health monitoring using microhabitat frog-leaping algorithm publication-title: Struct. Health Monit. doi: 10.1177/1475921716688372 – volume: 5 start-page: 1 year: 2015 ident: 10.1016/j.ymssp.2019.01.057_b0225 article-title: Clustering of sensor locations using the effective independence method publication-title: AIAA J. – volume: 20 start-page: 881 issue: 7 year: 2011 ident: 10.1016/j.ymssp.2019.01.057_b0025 article-title: Optimal sensor placement for structural health monitoring based on multiple optimization strategies publication-title: Struct. Des. Tall Special Build. doi: 10.1002/tal.712 – volume: 151C start-page: 95 year: 2018 ident: 10.1016/j.ymssp.2019.01.057_b0285 article-title: Uncertain surface accuracy evaluation based on non-probabilistic approach for large spacecraft publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2018.06.002 – volume: 115 start-page: 301 year: 2019 ident: 10.1016/j.ymssp.2019.01.057_b0045 article-title: A non-probabilistic time-variant reliable control method for structural vibration suppression problems with interval uncertainties publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2018.05.039 – volume: 137 start-page: 382 year: 2017 ident: 10.1016/j.ymssp.2019.01.057_b0280 article-title: Thermal Design, Analysis and Comparison on Three Concepts of Space Solar Power Satellite publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2017.05.004 – volume: 158 start-page: 1206 year: 2018 ident: 10.1016/j.ymssp.2019.01.057_b0245 article-title: Optimal sensor placement strategy for office buildings using clustering algorithms publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.10.074 – volume: 148 start-page: 385 year: 2018 ident: 10.1016/j.ymssp.2019.01.057_b0265 article-title: Coupling dynamics of super large space structures in the presence of environmental disturbances publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2018.05.022 – volume: 75 start-page: 155 year: 2016 ident: 10.1016/j.ymssp.2019.01.057_b0120 article-title: Robust optimal sensor placement for operational modal analysis based on maximum expected utility publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2016.01.005 – volume: 119 start-page: 100 year: 2019 ident: 10.1016/j.ymssp.2019.01.057_b0005 article-title: A Bayesian non-parametric clustering approach for semi-supervised Structural Health Monitoring publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2018.09.013 – volume: 389 start-page: 119 year: 2017 ident: 10.1016/j.ymssp.2019.01.057_b0235 article-title: Influence of model errors in optimal sensor placement publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2016.10.033 – volume: 115 start-page: 213 year: 2019 ident: 10.1016/j.ymssp.2019.01.057_b0010 article-title: Deep learning and its applications to machine health monitoring publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2018.05.050 – volume: 32 start-page: 1007 issue: 12 year: 2017 ident: 10.1016/j.ymssp.2019.01.057_b0100 article-title: Entropy-Based Optimal Sensor Placement for Model Identification of Periodic Structures Endowed with Bolted Joints publication-title: Comput.-Aided Civ. Infrastruct. Eng. doi: 10.1111/mice.12309 – volume: 21 start-page: 407 issue: 4 year: 2018 ident: 10.1016/j.ymssp.2019.01.057_b0130 article-title: A multitype sensor placement method for the modal estimation of structure publication-title: Smart Struct. Syst. – volume: 18 start-page: 2031 issue: 5 year: 2018 ident: 10.1016/j.ymssp.2019.01.057_b0145 article-title: Robust Optimal Sensor Placement for Uncertain Structures with Interval Parameters publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2018.2789523 – year: 2018 ident: 10.1016/j.ymssp.2019.01.057_b0220 article-title: Sensor placement for structural health monitoring using hybrid optimization algorithm based on sensor distribution index and FE grids publication-title: Struct. Control Health Monit. doi: 10.1002/stc.2160 – volume: 77 start-page: 353 year: 2018 ident: 10.1016/j.ymssp.2019.01.057_b0060 article-title: Hybrid reliability analysis and optimization for spacecraft structural system with random and fuzzy parameters publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2018.03.014 – volume: 41 start-page: 777 issue: 3 year: 2017 ident: 10.1016/j.ymssp.2019.01.057_b0275 article-title: Gravity-gradient effects on flexible solar power satellites publication-title: J. Guidance Control Dyn. doi: 10.2514/1.G003104 – volume: 73 start-page: 318 year: 2018 ident: 10.1016/j.ymssp.2019.01.057_b0055 article-title: Active force control of structure-borne sound based on robust optimization subjected to an irregular cavity with uncertainties publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2017.12.012 – year: 2013 ident: 10.1016/j.ymssp.2019.01.057_b0290 article-title: X-33/RLV system health management/vehicle publication-title: health management – volume: 342 start-page: 161 year: 2018 ident: 10.1016/j.ymssp.2019.01.057_b0070 article-title: Epistemic uncertainty-based model validation via interval propagation and parameter calibration publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2018.08.001 – volume: 16 start-page: 13 year: 2013 ident: 10.1016/j.ymssp.2019.01.057_b0250 article-title: Optimal sensor placement for large space structures based on distance coefficient-effective independence method publication-title: J. Vib. Shock – volume: 28 start-page: 105 year: 2012 ident: 10.1016/j.ymssp.2019.01.057_b0105 article-title: The effect of prediction error correlation on optimal sensor placement in structural dynamics publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2011.05.019 – volume: 8 start-page: 148 year: 2016 ident: 10.1016/j.ymssp.2019.01.057_b0255 article-title: Optimal sensor placement for hydraulic structures based on effective independence-total displacement method publication-title: J. Vib. Shock – volume: 140 start-page: 213 year: 2017 ident: 10.1016/j.ymssp.2019.01.057_b0155 article-title: Optimal sensor placement for deployable antenna module health monitoring in SSPS using genetic algorithm publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2017.08.025 – year: 1994 ident: 10.1016/j.ymssp.2019.01.057_b0085 – volume: 62 start-page: 46 year: 2017 ident: 10.1016/j.ymssp.2019.01.057_b0270 article-title: Gravitational orbit-attitude coupling dynamics of a large solar power satellite publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2016.11.030 – volume: 37 start-page: 671 issue: 6 year: 2011 ident: 10.1016/j.ymssp.2019.01.057_b0030 article-title: A new method for optimal selection of sensor location on a high-rise building using simplified finite element model publication-title: Struct. Eng. Mech. doi: 10.12989/sem.2011.37.6.671 – volume: 22 issue: 9 year: 2013 ident: 10.1016/j.ymssp.2019.01.057_b0195 article-title: Optimal sensor placement for large structures using the nearest neighbour index and a hybrid swarm intelligence algorithm publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/22/9/095015 – volume: 385 start-page: 69 year: 2016 ident: 10.1016/j.ymssp.2019.01.057_b0215 article-title: Optimal sensor placement using FRFs-based clustering method publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2016.09.004 – volume: 104 start-page: 673 year: 2018 ident: 10.1016/j.ymssp.2019.01.057_b0015 article-title: Health monitoring system for transmission shafts based on adaptive parameter identification publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2017.11.023 – volume: 17 start-page: 1103 issue: 8 year: 2014 ident: 10.1016/j.ymssp.2019.01.057_b0170 article-title: Sensor placement optimization in structural health monitoring using cluster-in-cluster firefly algorithm publication-title: Adv. Struct. Eng. doi: 10.1260/1369-4332.17.8.1103 – volume: 317 start-page: 175 issue: 1–2 year: 2008 ident: 10.1016/j.ymssp.2019.01.057_b0150 article-title: Optimal sensor placement for spatial lattice structure based on genetic algorithms publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2008.03.026 – volume: 25 issue: 5 year: 2018 ident: 10.1016/j.ymssp.2019.01.057_b0095 article-title: Bayesian optimal sensor placement for crack identification in structures using strain measurements publication-title: Struct. Control Health Monit. doi: 10.1002/stc.2137 – volume: 91 start-page: 108 year: 2014 ident: 10.1016/j.ymssp.2019.01.057_b0065 article-title: Interval finite element analysis and reliability-based optimization of coupled structural-acoustic system with uncertain parameters publication-title: Finite Elem. Anal. Des. doi: 10.1016/j.finel.2014.07.014 – volume: 111 start-page: 615 year: 2018 ident: 10.1016/j.ymssp.2019.01.057_b0135 article-title: Development of a stochastic effective independence (SEFI) method for optimal sensor placement under uncertainty publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2018.04.010 – volume: 401 start-page: 214 year: 2017 ident: 10.1016/j.ymssp.2019.01.057_b0040 article-title: Optimal sensor placement for multi-setup modal analysis of structures publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2017.04.041 – volume: 60 start-page: 186 issue: 2 year: 2017 ident: 10.1016/j.ymssp.2019.01.057_b0140 article-title: An interval effective independence method for optimal sensor placement based on non-probabilistic approach publication-title: Sci. China Technol. Sci. doi: 10.1007/s11431-016-0526-9 – volume: 41 start-page: 268 issue: 1–2 year: 2013 ident: 10.1016/j.ymssp.2019.01.057_b0115 article-title: Robustness of optimal sensor placement under parametric uncertainty publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2013.06.022 – volume: 21 issue: 10 year: 2012 ident: 10.1016/j.ymssp.2019.01.057_b0200 article-title: A modified monkey algorithm for optimal sensor placement in structural health monitoring publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/21/10/105033 – volume: 73 start-page: 2001 issue: 5 year: 2017 ident: 10.1016/j.ymssp.2019.01.057_b0185 article-title: Energy-aware framework with Markov chain-based parallel simulated annealing algorithm for dynamic management of virtual machines in cloud data centers publication-title: J. Supercomput. doi: 10.1007/s11227-016-1900-y – volume: 120 start-page: 368 issue: 2 year: 1994 ident: 10.1016/j.ymssp.2019.01.057_b0075 article-title: Methodology for optimum sensor locations for parameter identification in dynamic systems publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)0733-9399(1994)120:2(368) – volume: 10 year: 2017 ident: 10.1016/j.ymssp.2019.01.057_b0160 article-title: Optimal sensor placement within a hybrid dense sensor network using an adaptive genetic algorithm with learning gene pool publication-title: Struct. Health Monit. – volume: 21 start-page: 1437 issue: 12 year: 2014 ident: 10.1016/j.ymssp.2019.01.057_b0110 article-title: Optimal sensor placement in timber structures by means of a multi-scale approach with material uncertainty publication-title: Struct. Control Health Monit. doi: 10.1002/stc.1654 – volume: 85 start-page: 789 year: 2017 ident: 10.1016/j.ymssp.2019.01.057_b0020 article-title: Efficient sensor placement for state estimation in structural dynamics publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2016.09.005 – start-page: 26(6) year: 2015 ident: 10.1016/j.ymssp.2019.01.057_b0205 article-title: A triaxial accelerometer monkey algorithm for optimal sensor placement in structural health monitoring publication-title: Meas. Sci. Technol. – volume: 419 start-page: 469 year: 2018 ident: 10.1016/j.ymssp.2019.01.057_b0050 article-title: Hybrid time-variant reliability estimation for active control structures under aleatory and epistemic uncertainties publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2018.01.027 – volume: 12 start-page: 235 issue: 3_4 year: 2013 ident: 10.1016/j.ymssp.2019.01.057_b0125 article-title: Multi-dimensional sensor placement optimization for Canton Tower focusing on application demands publication-title: Smart Struct. Syst. doi: 10.12989/sss.2013.12.3_4.235 – volume: 29 start-page: 1327 issue: 8 year: 1991 ident: 10.1016/j.ymssp.2019.01.057_b0190 article-title: Optimal placement of active/passive control of flexible structures publication-title: AIAA J doi: 10.2514/3.10739 – volume: 165 start-page: 209 year: 2018 ident: 10.1016/j.ymssp.2019.01.057_b0090 article-title: Optimal sensor placement and assessment for modal identification publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2018.07.034 – volume: 23 start-page: 719 issue: 4 year: 2016 ident: 10.1016/j.ymssp.2019.01.057_b0180 article-title: Multiaxial sensor placement optimization in structural health monitoring using distributed wolf algorithm publication-title: Struct. Control Health Monit. doi: 10.1002/stc.1806 – volume: 15 start-page: 334 issue: 2 year: 1992 ident: 10.1016/j.ymssp.2019.01.057_b0080 article-title: Effect of model error on sensor placement for on-orbit modal identification of large space structures publication-title: J. Guidance Control Dyn. doi: 10.2514/3.20841 |
| SSID | ssj0009406 |
| Score | 2.6031146 |
| Snippet | •The significance and limitations of redundancy in sensor placement are investigated.•A novel redundancy elimination model considers global and local sensor... Considering the limitation of selecting several neighbor sensors in a local region similar to just single one, namely redundant information, a sensor placement... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 369 |
| SubjectTerms | Algorithms Clustering Configuration management Configurations Effective independence method Genetic algorithms Mathematical models Performance enhancement Placement Redundancy Redundancy elimination model Sensor placement algorithm Sensors Smallest enclosing circle Solar generators Solar power satellites Strategy Structural health monitoring Sub-clustering strategy |
| Title | Sensor placement algorithm for structural health monitoring with redundancy elimination model based on sub-clustering strategy |
| URI | https://dx.doi.org/10.1016/j.ymssp.2019.01.057 https://www.proquest.com/docview/2212705131 |
| Volume | 124 |
| WOSCitedRecordID | wos000461538500020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2021 customDbUrl: eissn: 1096-1216 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009406 issn: 0888-3270 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZWWw5wQOUlCgX5wG1JlTjJJjlWVXmWCqkF7S2yHYdulc1WyW7VXvhZ_X3M2I6TtqICJC7RrpWHd-fLzHg88w0hbxJWcq4K5olChl6kGAaaROaJqCzjUCS-1M1gvh8kh4fpbJZ9HY2uulqY8yqp6_TiIjv7r6KGMRA2ls7-hbjdTWEAPoPQ4Qhih-MfCf4IFqbLZqKTrUwGefVj2cxXJwudUmgIYzXZhqmBnCz0a924qGyjsLIMte5EVbrpl8aI7pkzQatX4A5DuxaerNbIs2BCEppz4tom8ReFZcWm7tIQo-utCkwZwfovU6LQmU7UPDZ2vXfS16cdzO3gZ4dAF-OercGWujPfKzs6ry_Xw2AG1k9Nh8EMV2XTpzQZRZh6ITMNRnaUUdSw9PICZuo0nSZn0UAXh6YHjDXrobHrtyyGCV6c7lwu2hb5S4NM07ga1uwbVNxHOBOcCHi9uMUJq-4NlsRZOiYbux_3Z596uudId3V1M-_4rnRm4a1H_c4nuuEdaJfneJM8tGsVumsw9oiMVP2YPBgwWD4hPw3aqEMbdWijgDbao40atNEebRTRRnu00QHaqEYb1Wij8PU62miHtqfk27v9470Pnm3p4ckw8VdeJuBnqwi5sHiMNdtpwQQruChg4SILTdUEXpuQXIqEJ0yWMWiOmAdpiTtRZfiMjOtlrZ4TKnzp84ArxVkcqaTkJabyTCNZCL-cSrFFWPen5tLy3WPblSrvEhtPcy2JHCWR-0EOktgib91FZ4bu5e7Tp520cuuxGk80B3jdfeF2J9vc6o42Z9htAYxkGLz41_u-JPf712qbjEHI6hW5J89X87Z5bVH6C8Ij0S4 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensor+placement+algorithm+for+structural+health+monitoring+with+redundancy+elimination+model+based+on+sub-clustering+strategy&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Yang%2C+Chen&rft.au=Liang%2C+Ke&rft.au=Zhang%2C+Xuepan&rft.au=Geng%2C+Xinyu&rft.date=2019-06-01&rft.pub=Elsevier+Ltd&rft.issn=0888-3270&rft.eissn=1096-1216&rft.volume=124&rft.spage=369&rft.epage=387&rft_id=info:doi/10.1016%2Fj.ymssp.2019.01.057&rft.externalDocID=S0888327019300731 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon |