A Distributed Bi-Behaviors Crow Search Algorithm for Dynamic Multi-Objective Optimization and Many-Objective Optimization Problems

Dynamic Multi-Objective Optimization Problems (DMOPs) and Many-Objective Optimization Problems (MaOPs) are two classes of the optimization field that have potential applications in engineering. Modified Multi-Objective Evolutionary Algorithms hybrid approaches seem to be suitable to effectively deal...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied sciences Ročník 12; číslo 19; s. 9627
Hlavní autoři: Aboud, Ahlem, Rokbani, Nizar, Neji, Bilel, Al Barakeh, Zaher Al, Mirjalili, Seyedali, Alimi, Adel M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Multidisciplinary digital publishing institute (MDPI) 01.10.2022
MDPI AG
Témata:
ISSN:2076-3417, 2076-3417
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Dynamic Multi-Objective Optimization Problems (DMOPs) and Many-Objective Optimization Problems (MaOPs) are two classes of the optimization field that have potential applications in engineering. Modified Multi-Objective Evolutionary Algorithms hybrid approaches seem to be suitable to effectively deal with such problems. However, the standard Crow Search Algorithm has not been considered for either DMOPs or MaOPs to date. This paper proposes a Distributed Bi-behaviors Crow Search Algorithm (DB-CSA) with two different mechanisms, one corresponding to the search behavior and another to the exploitative behavior with a dynamic switch mechanism. The bi-behaviors CSA chasing profile is defined based on a large Gaussian-like Beta-1 function, which ensures diversity enhancement, while the narrow Gaussian Beta-2 function is used to improve the solution tuning and convergence behavior. Two variants of the proposed DB-CSA approach are developed: the first variant is used to solve a set of MaOPs with 2, 3, 5, 7, 8, 10,15 objectives, and the second aims to solve several types of DMOPs with different time-varying Pareto optimal sets and a Pareto optimal front. The second variant of DB-CSA algorithm (DB-CSA-II) is proposed to solve DMOPs, including a dynamic optimization process to effectively detect and react to the dynamic change. The Inverted General Distance, the Mean Inverted General Distance and the Hypervolume Difference are the main measurement metrics used to compare the DB-CSA approach to the state-of-the-art MOEAs. The Taguchi method has been used to manage the meta-parameters of the DB-CSA algorithm. All quantitative results are analyzed using the non-parametric Wilcoxon signed rank test with 0.05 significance level, which validated the efficiency of the proposed method for solving 44 test beds (21 DMOPs and 23 MaOPS).
AbstractList Dynamic Multi-Objective Optimization Problems (DMOPs) and Many-Objective Optimization Problems (MaOPs) are two classes of the optimization field that have potential applications in engineering. Modified Multi-Objective Evolutionary Algorithms hybrid approaches seem to be suitable to effectively deal with such problems. However, the standard Crow Search Algorithm has not been considered for either DMOPs or MaOPs to date. This paper proposes a Distributed Bi-behaviors Crow Search Algorithm (DB-CSA) with two different mechanisms, one corresponding to the search behavior and another to the exploitative behavior with a dynamic switch mechanism. The bi-behaviors CSA chasing profile is defined based on a large Gaussian-like Beta-1 function, which ensures diversity enhancement, while the narrow Gaussian Beta-2 function is used to improve the solution tuning and convergence behavior. Two variants of the proposed DB-CSA approach are developed: the first variant is used to solve a set of MaOPs with 2, 3, 5, 7, 8, 10,15 objectives, and the second aims to solve several types of DMOPs with different time-varying Pareto optimal sets and a Pareto optimal front. The second variant of DB-CSA algorithm (DB-CSA-II) is proposed to solve DMOPs, including a dynamic optimization process to effectively detect and react to the dynamic change. The Inverted General Distance, the Mean Inverted General Distance and the Hypervolume Difference are the main measurement metrics used to compare the DB-CSA approach to the state-of-the-art MOEAs. The Taguchi method has been used to manage the meta-parameters of the DB-CSA algorithm. All quantitative results are analyzed using the non-parametric Wilcoxon signed rank test with 0.05 significance level, which validated the efficiency of the proposed method for solving 44 test beds (21 DMOPs and 23 MaOPS).
Author Neji, Bilel
Aboud, Ahlem
Al Barakeh, Zaher Al
Rokbani, Nizar
Mirjalili, Seyedali
Alimi, Adel M.
Author_xml – sequence: 1
  givenname: Ahlem
  orcidid: 0000-0003-3915-7104
  surname: Aboud
  fullname: Aboud, Ahlem
– sequence: 2
  givenname: Nizar
  orcidid: 0000-0003-4848-5855
  surname: Rokbani
  fullname: Rokbani, Nizar
– sequence: 3
  givenname: Bilel
  orcidid: 0000-0003-1147-4896
  surname: Neji
  fullname: Neji, Bilel
– sequence: 4
  givenname: Zaher Al
  orcidid: 0000-0002-1739-5593
  surname: Al Barakeh
  fullname: Al Barakeh, Zaher Al
– sequence: 5
  givenname: Seyedali
  orcidid: 0000-0002-1443-9458
  surname: Mirjalili
  fullname: Mirjalili, Seyedali
– sequence: 6
  givenname: Adel M.
  orcidid: 0000-0002-0642-3384
  surname: Alimi
  fullname: Alimi, Adel M.
BackLink https://u-picardie.hal.science/hal-05387223$$DView record in HAL
BookMark eNp1UctOwzAQtFCRgNITP-ArQgE7jhP7WMpTalUk4BxtHLt1lcSV4xaVI19OoAgVBHvZ1ezMrLRzhHqNazRCJ5ScMybJBSyXNKZSpnG2hw5jkqURS2jW25kP0KBtF6QrSZmg5BC9DfGVbYO3xSroEl_a6FLPYW2db_HIuxf8qMGrOR5WM-dtmNfYOI-vNg3UVuHJqgo2mhYLrYJdazxdBlvbVwjWNRiaEk-g2fy3f_CuqHTdHqN9A1WrB1-9j55vrp9Gd9F4ens_Go4jxTISIpkYBSIBkEbEmRTAVZrSBCgz0hScx6akWcEo54QJDSxRglFjCMQFLRXPWB_db31LB4t86W0NfpM7sPkn4PwsBx-sqnSuRWoMN7IkUiapKSRXSnfnJWel4UR0XqdbrzlUP6zuhuP8AyOciSyO2Zp23LMtV3nXtl6bbwEl-Udy-U5yHZv-YisbPh8WPNjqT807vCCfQA
CitedBy_id crossref_primary_10_1111_exsy_13458
crossref_primary_10_3390_app13085078
Cites_doi 10.1016/j.compstruc.2016.03.001
10.1109/ACCESS.2019.2897325
10.1109/TEVC.2016.2519378
10.1109/CEC.2014.6900487
10.1007/s11036-019-01271-1
10.1109/TCYB.2018.2884083
10.1109/CSIEC.2017.7940171
10.1016/j.asoc.2019.105673
10.1007/s00500-019-04640-w
10.1109/CEC.2016.7744255
10.1109/TSMC.2019.2930737
10.1109/TEVC.2006.876362
10.1109/TCYB.2016.2548239
10.1109/TEVC.2008.920671
10.1109/TEVC.2017.2771451
10.1109/SIS.2014.7011803
10.3390/en11030571
10.1109/TEVC.2019.2925722
10.1109/TCYB.2015.2490738
10.1162/EVCO_a_00075
10.1109/TEVC.2016.2587808
10.1109/ACCESS.2020.3031002
10.1109/TEVC.2018.2791283
10.1109/TCYB.2020.3041212
10.1109/TEVC.2010.2058117
10.1109/TEVC.2014.2350987
10.1109/ICIT.2019.8755092
10.1016/j.advengsoft.2011.05.014
10.1109/TEVC.2004.831456
10.1109/TEVC.2014.2373386
10.1109/TEVC.2012.2204264
10.1109/CIS.2019.00051
10.1016/j.asoc.2022.109622
10.1109/TEVC.2018.2866854
10.1109/TEVC.2015.2420112
10.1016/j.neucom.2011.03.053
10.1007/s10462-020-09911-9
10.1109/TEVC.2012.2227145
10.1109/ACCESS.2018.2832181
10.1007/s00500-020-05406-5
10.1109/TEVC.2016.2592479
10.1016/j.asoc.2017.08.004
10.1109/TCYB.2013.2245892
10.1016/j.ejor.2006.08.008
10.1109/TEVC.2013.2281535
10.1109/TEVC.2013.2262178
10.1109/SMC.2016.7844846
10.1007/s40095-019-00319-y
10.1162/EVCO_a_00009
10.1109/TCYB.2020.2988896
10.1109/CEC.2007.4424985
10.3390/app9071353
10.1016/j.procs.2020.03.420
10.1109/ACCESS.2020.2999417
10.1109/TSMCB.2008.926329
10.1109/TEVC.2007.892759
10.1109/TEVC.2014.2378512
10.1007/978-3-540-70928-2_60
10.3390/en11123321
10.2991/ijcis.2018.125905658
10.1109/ICCIAS.2006.294139
10.1007/s40313-020-00564-1
10.1109/TEVC.2007.910138
10.1109/NCCC49330.2021.9428811
10.1109/TEVC.2013.2281533
10.1016/j.asoc.2018.06.040
10.1177/003754970107600201
10.1109/TCYB.2020.2989465
10.1109/TEVC.2016.2574621
10.1007/s00500-015-1637-1
10.1016/B978-0-12-372529-5.00005-6
10.1109/4235.996017
10.1007/s00521-018-3688-6
10.1016/j.asoc.2019.01.026
ContentType Journal Article
Copyright licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: licence_http://creativecommons.org/publicdomain/zero
DBID AAYXX
CITATION
1XC
DOA
DOI 10.3390/app12199627
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
Computer Science
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_e86ff5f9d09946fb95ccefca953df508
oai:HAL:hal-05387223v1
10_3390_app12199627
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
1XC
ID FETCH-LOGICAL-c370t-94fca84aa9f82798a5c6614a13f9fb552fd17b3155038ea34c831ff0a2b1dc573
IEDL.DBID DOA
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000866565400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Tue Oct 14 19:06:52 EDT 2025
Sun Nov 30 06:10:28 EST 2025
Sat Nov 29 07:07:57 EST 2025
Tue Nov 18 22:17:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-94fca84aa9f82798a5c6614a13f9fb552fd17b3155038ea34c831ff0a2b1dc573
ORCID 0000-0003-1147-4896
0000-0003-3915-7104
0000-0002-1739-5593
0000-0002-1443-9458
0000-0003-4848-5855
0000-0002-0642-3384
OpenAccessLink https://doaj.org/article/e86ff5f9d09946fb95ccefca953df508
ParticipantIDs doaj_primary_oai_doaj_org_article_e86ff5f9d09946fb95ccefca953df508
hal_primary_oai_HAL_hal_05387223v1
crossref_primary_10_3390_app12199627
crossref_citationtrail_10_3390_app12199627
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied sciences
PublicationYear 2022
Publisher Multidisciplinary digital publishing institute (MDPI)
MDPI AG
Publisher_xml – name: Multidisciplinary digital publishing institute (MDPI)
– name: MDPI AG
References Farina (ref_6) 2004; 8
Deb (ref_80) 2002; 6
Lu (ref_26) 2020; 8
Meraihi (ref_58) 2021; 54
Liu (ref_54) 2020; 51
Deb (ref_24) 2014; 18
Sun (ref_31) 2019; 23
Tian (ref_53) 2019; 23
Jiang (ref_15) 2020; 51
Zhang (ref_40) 2015; 19
Zhang (ref_13) 2007; 11
Li (ref_39) 2014; 18
ref_51
Liu (ref_23) 2014; 18
Carvalho (ref_44) 2012; 75
Sun (ref_46) 2016; 20
ref_59
Jiang (ref_17) 2018; 22
Aboud (ref_2) 2017; Volume 10637
Goh (ref_12) 2009; 13
Purshouse (ref_19) 2007; 11
ref_61
Arora (ref_74) 2019; 7
Laabadi (ref_62) 2020; 167
Cheng (ref_22) 2016; 20
Leung (ref_50) 2020; 8
Cao (ref_16) 2020; 24
ref_69
ref_68
ref_67
Mohammadi (ref_65) 2018; 71
Muruganantham (ref_18) 2016; 46
ref_21
ref_20
ref_63
Zhou (ref_14) 2014; 44
Cuevas (ref_72) 2020; Volume 854
Gaddala (ref_76) 2020; 31
Yuan (ref_36) 2016; 20
Bhullar (ref_71) 2020; 24
Bader (ref_27) 2011; 19
Cuevas (ref_66) 2019; Volume 822
Adra (ref_38) 2011; 15
Yang (ref_35) 2013; 17
ref_79
ref_34
ref_78
ref_75
ref_30
Moghaddam (ref_73) 2019; 10
Rokbani (ref_84) 2021; 25
Askarzadeh (ref_9) 2016; 169
Xiang (ref_49) 2020; 50
Wang (ref_41) 2013; 17
Gupta (ref_64) 2020; 32
Chen (ref_57) 2019; 51
Li (ref_55) 2018; 6
Zitzler (ref_29) 2004; Volume 3242
Xiang (ref_52) 2017; 21
Javidi (ref_70) 2019; 77
Geem (ref_10) 2001; 76
Hadka (ref_33) 2013; 21
Zou (ref_32) 2008; 38
ref_83
ref_81
Pierro (ref_37) 2007; 11
Beume (ref_28) 2007; 181
Li (ref_25) 2015; 19
Jiang (ref_11) 2017; 21
ref_45
ref_42
Jiang (ref_56) 2017; 21
ref_85
Ou (ref_7) 2019; 85
ref_1
Alimi (ref_77) 2003; 7
Durillo (ref_82) 2011; 42
ref_3
Zou (ref_8) 2017; 61
Wang (ref_43) 2015; 19
ref_48
John (ref_60) 2019; 24
Hu (ref_47) 2017; 47
ref_5
ref_4
References_xml – volume: 169
  start-page: 1
  year: 2016
  ident: ref_9
  article-title: A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2016.03.001
– ident: ref_5
– volume: Volume 3242
  start-page: 832
  year: 2004
  ident: ref_29
  article-title: Indicator-based selection in multiobjective search
  publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics
– volume: 7
  start-page: 26343
  year: 2019
  ident: ref_74
  article-title: A New Hybrid Algorithm Based on Grey Wolf Optimization and Crow Search Algorithm for Unconstrained Function Optimization and Feature Selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2897325
– volume: 20
  start-page: 773
  year: 2016
  ident: ref_22
  article-title: A Reference Vector Guided Evolutionary Algorithm for Many-Objective Optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2519378
– ident: ref_81
  doi: 10.1109/CEC.2014.6900487
– volume: 24
  start-page: 1509
  year: 2019
  ident: ref_60
  article-title: MOTCO: Multi-objective Taylor Crow Optimization Algorithm for Cluster Head Selection in Energy Aware Wireless Sensor Network
  publication-title: Mob. Netw. Appl.
  doi: 10.1007/s11036-019-01271-1
– volume: 50
  start-page: 2209
  year: 2020
  ident: ref_49
  article-title: A Many-Objective Particle Swarm Optimizer with Leaders Selected from Historical Solutions by Using Scalar Projections
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2884083
– ident: ref_59
  doi: 10.1109/CSIEC.2017.7940171
– volume: 85
  start-page: 105673
  year: 2019
  ident: ref_7
  article-title: A pareto-based evolutionary algorithm using decomposition and truncation for dynamic multi-objective optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105673
– volume: 24
  start-page: 11957
  year: 2020
  ident: ref_71
  article-title: Enhanced crow search algorithm for AVR optimization
  publication-title: Soft Comput.
  doi: 10.1007/s00500-019-04640-w
– ident: ref_48
  doi: 10.1109/CEC.2016.7744255
– volume: 51
  start-page: 3552
  year: 2019
  ident: ref_57
  article-title: Solving Many-Objective Optimization Problems via Multistage Evolutionary Search
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2019.2930737
– ident: ref_61
– volume: 11
  start-page: 17
  year: 2007
  ident: ref_37
  article-title: An investigation on preference order ranking scheme for multiobjective evolutionary optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2006.876362
– volume: 47
  start-page: 1446
  year: 2017
  ident: ref_47
  article-title: Many-Objective Particle Swarm Optimization Using Two-Stage Strategy and Parallel Cell Coordinate System
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2548239
– volume: 13
  start-page: 103
  year: 2009
  ident: ref_12
  article-title: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.920671
– volume: 22
  start-page: 501
  year: 2018
  ident: ref_17
  article-title: Transfer Learning-Based Dynamic Multiobjective Optimization Algorithms
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2771451
– ident: ref_45
  doi: 10.1109/SIS.2014.7011803
– ident: ref_68
  doi: 10.3390/en11030571
– volume: 24
  start-page: 305
  year: 2020
  ident: ref_16
  article-title: Evolutionary Dynamic Multiobjective Optimization Assisted by a Support Vector Regression Predictor
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2019.2925722
– volume: Volume 822
  start-page: 137
  year: 2019
  ident: ref_66
  article-title: A modified crow search algorithm with applications to power system problems
  publication-title: Studies in Computational Intelligence
– volume: 46
  start-page: 2862
  year: 2016
  ident: ref_18
  article-title: Evolutionary Dynamic Multiobjective Optimization Via Kalman Filter Prediction
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2490738
– volume: 21
  start-page: 231
  year: 2013
  ident: ref_33
  article-title: Borg: An auto-adaptive many-objective evolutionary computing framework
  publication-title: Evol. Comput.
  doi: 10.1162/EVCO_a_00075
– volume: 21
  start-page: 131
  year: 2017
  ident: ref_52
  article-title: A Vector Angle-Based Evolutionary Algorithm for Unconstrained Many-Objective Optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2587808
– volume: 8
  start-page: 189527
  year: 2020
  ident: ref_50
  article-title: A hybrid leader selection strategy for many-objective particle swarm optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3031002
– volume: 23
  start-page: 173
  year: 2019
  ident: ref_31
  article-title: IGD Indicator-Based Evolutionary Algorithm for Many-Objective Optimization Problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2791283
– ident: ref_83
– ident: ref_51
  doi: 10.1109/TCYB.2020.3041212
– volume: 15
  start-page: 183
  year: 2011
  ident: ref_38
  article-title: Diversity management in evolutionary many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2010.2058117
– volume: 19
  start-page: 524
  year: 2015
  ident: ref_43
  article-title: Two Arch2: An Improved Two-Archive Algorithm for Many-Objective Optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2350987
– volume: Volume 854
  start-page: 27
  year: 2020
  ident: ref_72
  article-title: An Enhanced Crow Search Algorithm Applied to Energy Approaches
  publication-title: Studies in Computational Intelligence
– ident: ref_85
  doi: 10.1109/ICIT.2019.8755092
– volume: 42
  start-page: 760
  year: 2011
  ident: ref_82
  article-title: JMetal: A Java framework for multi-objective optimization
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2011.05.014
– volume: 8
  start-page: 425
  year: 2004
  ident: ref_6
  article-title: Dynamic multiobjective optimization problems: Test cases, approximations, and applications
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.831456
– ident: ref_20
– volume: 19
  start-page: 694
  year: 2015
  ident: ref_25
  article-title: An evolutionary many-objective optimization algorithm based on dominance and decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2373386
– volume: 17
  start-page: 474
  year: 2013
  ident: ref_41
  article-title: Preference-inspired coevolutionary algorithms for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2012.2204264
– ident: ref_30
  doi: 10.1109/CIS.2019.00051
– ident: ref_4
  doi: 10.1016/j.asoc.2022.109622
– volume: 23
  start-page: 331
  year: 2019
  ident: ref_53
  article-title: A Strengthened Dominance Relation Considering Convergence and Diversity for Evolutionary Many-Objective Optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2866854
– ident: ref_34
– volume: 20
  start-page: 16
  year: 2016
  ident: ref_36
  article-title: A New Dominance Relation-Based Evolutionary Algorithm for Many-Objective Optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2015.2420112
– volume: 75
  start-page: 43
  year: 2012
  ident: ref_44
  article-title: Measuring the convergence and diversity of CDAS Multi-Objective Particle Swarm Optimization Algorithms: A study of many-objective problems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.03.053
– volume: 54
  start-page: 2669
  year: 2021
  ident: ref_58
  article-title: A comprehensive survey of Crow Search Algorithm and its applications
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09911-9
– volume: 17
  start-page: 721
  year: 2013
  ident: ref_35
  article-title: A grid-based evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2012.2227145
– volume: 6
  start-page: 26194
  year: 2018
  ident: ref_55
  article-title: Evolutionary Many-Objective Optimization: A Comparative Study of the State-of-The-Art
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2832181
– volume: 25
  start-page: 3775
  year: 2021
  ident: ref_84
  article-title: Bi-heuristic ant colony optimization-based approaches for traveling salesman problem
  publication-title: Soft Comput.
  doi: 10.1007/s00500-020-05406-5
– volume: 21
  start-page: 329
  year: 2017
  ident: ref_56
  article-title: A strength pareto evolutionary algorithm based on reference direction for multiobjective and many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2592479
– volume: 61
  start-page: 806
  year: 2017
  ident: ref_8
  article-title: A prediction strategy based on center points and knee points for evolutionary dynamic multi-objective optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.08.004
– volume: 44
  start-page: 40
  year: 2014
  ident: ref_14
  article-title: A Population prediction strategy for evolutionary dynamic multiobjective optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2013.2245892
– volume: 181
  start-page: 1653
  year: 2007
  ident: ref_28
  article-title: SMS-EMOA: Multiobjective selection based on dominated hypervolume
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2006.08.008
– volume: 18
  start-page: 577
  year: 2014
  ident: ref_24
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: Solving problems with box constraints
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281535
– volume: 18
  start-page: 348
  year: 2014
  ident: ref_39
  article-title: Shift-based density estimation for pareto-based algorithms in many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2262178
– ident: ref_63
– ident: ref_3
  doi: 10.1109/SMC.2016.7844846
– volume: 10
  start-page: 429
  year: 2019
  ident: ref_73
  article-title: Designing of stand-alone hybrid PV/wind/battery system using improved crow search algorithm considering reliability index
  publication-title: Int. J. Energy Environ. Eng.
  doi: 10.1007/s40095-019-00319-y
– volume: Volume 10637
  start-page: 258
  year: 2017
  ident: ref_2
  article-title: Dynamic Multi Objective Particle Swarm Optimization Based on a New Environment Change Detection Strategy
  publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– volume: 19
  start-page: 45
  year: 2011
  ident: ref_27
  article-title: HypE: An algorithm for fast hypervolume-based many-objective optimization
  publication-title: Evol. Comput.
  doi: 10.1162/EVCO_a_00009
– volume: 51
  start-page: 5585
  year: 2020
  ident: ref_54
  article-title: Solving Many-Objective Optimization Problems by a Pareto-Based Evolutionary Algorithm with Preprocessing and a Penalty Mechanism
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.2988896
– ident: ref_21
  doi: 10.1109/CEC.2007.4424985
– ident: ref_67
  doi: 10.3390/app9071353
– volume: 167
  start-page: 809
  year: 2020
  ident: ref_62
  article-title: A Binary Crow Search Algorithm for Solving Two-dimensional Bin Packing Problem with Fixed Orientation
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.03.420
– volume: 8
  start-page: 103550
  year: 2020
  ident: ref_26
  article-title: A Decomposition Method Based on Random Objective Division for MOEA/D in Many-Objective Optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2999417
– volume: 38
  start-page: 1402
  year: 2008
  ident: ref_32
  article-title: A new evolutionary algorithm for solving many-objective optimization problems
  publication-title: IEEE Trans. Syst. Man, Cybern. Part B Cybern.
  doi: 10.1109/TSMCB.2008.926329
– volume: 11
  start-page: 712
  year: 2007
  ident: ref_13
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.892759
– volume: 19
  start-page: 761
  year: 2015
  ident: ref_40
  article-title: A knee point-driven evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2378512
– ident: ref_1
  doi: 10.1007/978-3-540-70928-2_60
– ident: ref_69
  doi: 10.3390/en11123321
– ident: ref_75
  doi: 10.2991/ijcis.2018.125905658
– ident: ref_42
  doi: 10.1109/ICCIAS.2006.294139
– volume: 31
  start-page: 377
  year: 2020
  ident: ref_76
  article-title: Merging Lion with Crow Search Algorithm for Optimal Location and Sizing of UPQC in Distribution Network
  publication-title: J. Control. Autom. Electr. Syst.
  doi: 10.1007/s40313-020-00564-1
– volume: 11
  start-page: 770
  year: 2007
  ident: ref_19
  article-title: On the evolutionary optimization of many conflicting objectives
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.910138
– ident: ref_78
  doi: 10.1109/NCCC49330.2021.9428811
– volume: 18
  start-page: 450
  year: 2014
  ident: ref_23
  article-title: Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281533
– volume: 71
  start-page: 51
  year: 2018
  ident: ref_65
  article-title: A modified crow search algorithm (MCSA) for solving economic load dispatch problem
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2018.06.040
– volume: 7
  start-page: 23
  year: 2003
  ident: ref_77
  article-title: Beta Neuro-Fuzzy Systems
  publication-title: Task Q.
– volume: 76
  start-page: 60
  year: 2001
  ident: ref_10
  article-title: A New Heuristic Optimization Algorithm: Harmony Search
  publication-title: Simulation
  doi: 10.1177/003754970107600201
– volume: 51
  start-page: 3417
  year: 2020
  ident: ref_15
  article-title: A Fast Dynamic Evolutionary Multiobjective Algorithm via Manifold Transfer Learning
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.2989465
– volume: 21
  start-page: 65
  year: 2017
  ident: ref_11
  article-title: A Steady-State and Generational Evolutionary Algorithm for Dynamic Multiobjective Optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2574621
– volume: 20
  start-page: 2219
  year: 2016
  ident: ref_46
  article-title: Indicator-based set evolution particle swarm optimization for many-objective problems
  publication-title: Soft Comput.
  doi: 10.1007/s00500-015-1637-1
– ident: ref_79
  doi: 10.1016/B978-0-12-372529-5.00005-6
– volume: 6
  start-page: 182
  year: 2002
  ident: ref_80
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 32
  start-page: 10915
  year: 2020
  ident: ref_64
  article-title: Usability feature extraction using modified crow search algorithm: A novel approach
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-018-3688-6
– volume: 77
  start-page: 274
  year: 2019
  ident: ref_70
  article-title: Enhanced crow search algorithm for optimum design of structures
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2019.01.026
SSID ssj0000913810
Score 2.2602952
Snippet Dynamic Multi-Objective Optimization Problems (DMOPs) and Many-Objective Optimization Problems (MaOPs) are two classes of the optimization field that have...
SourceID doaj
hal
crossref
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
StartPage 9627
SubjectTerms beta function
Computer Science
crow search algorithm
dynamic multi-objective optimization problems
evolutionary algorithm
many-objective optimization problems
Title A Distributed Bi-Behaviors Crow Search Algorithm for Dynamic Multi-Objective Optimization and Many-Objective Optimization Problems
URI https://u-picardie.hal.science/hal-05387223
https://doaj.org/article/e86ff5f9d09946fb95ccefca953df508
Volume 12
WOSCitedRecordID wos000866565400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB5EPehBtCrWR1mkBxUWm2y22T22VlHw0YOCnsJmH1rRKm3tD_CXu5ONEkHx4nWzbMLMZB7JzPcBNIVKVG6VoN45OpqwnFFpkpgaXwLZGJkI8lZBNpFeXorbW9mvUH1hT1iABw6CO7Si7Rx30vhUJmm7XHKtrdNKcmYcD2O-rVRWiqnCB8sIoavCQB7zdT3-D45ibLlF_phKCCqQ-n1gefj8kFoElpNlWCozQtIJT7ICM3ZYg8UKTmANVso3cEz2Spjo_VV475Aeot4iYZU1pDugJdbhaEyOfHFNQicx6Tzdv4wGk4dn4vNT0gsM9KQYvKVX-WNweOTKu47nciaTqKEhF95L_Ha9H1hoxmtwc3J8fXRKS0YFqlnamlCZeMmJRCnpRJxKobjG-Kwi5qTLOY-didKcYdnChFUs0YJFzrVUnEdG85Stw-zwZWg3gEgjpGGqzU1sfJElFR4ijIsMQgKqdh0OPoWc6RJuHFkvnjJfdqBGsopG6tD82vwaUDZ-3tZFbX1tQWjsYsEbTFYaTPaXwdRh1-v62xmnnfMM17xDEqnPl6bR5n_caQsWYhyWKFr_tmF2MnqzOzCvp5PBeNQoDLYBc_2zi_7dB9h-9Fo
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Distributed+Bi-Behaviors+Crow+Search+Algorithm+for+Dynamic+Multi-Objective+Optimization+and+Many-Objective+Optimization+Problems&rft.jtitle=Applied+sciences&rft.au=Aboud%2C+Ahlem&rft.date=2022-10-01&rft.pub=Multidisciplinary+digital+publishing+institute+%28MDPI%29&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=12&rft.issue=19&rft_id=info:doi/10.3390%2Fapp12199627&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-05387223v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon