Aggregation effects on the magnetic properties of iron oxide colloids
Magnetic nanoparticles, and in particular iron oxide nanoparticles (mainly magnetite and maghemite), are being widely used in the form of aqueous colloids for biomedical applications. In such colloids, nanoparticles tend to form assemblies, either aggregates, if the union is permanent, or agglomerat...
Uloženo v:
| Vydáno v: | Nanotechnology Ročník 30; číslo 11; s. 112001 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
15.03.2019
|
| Témata: | |
| ISSN: | 1361-6528, 1361-6528 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Magnetic nanoparticles, and in particular iron oxide nanoparticles (mainly magnetite and maghemite), are being widely used in the form of aqueous colloids for biomedical applications. In such colloids, nanoparticles tend to form assemblies, either aggregates, if the union is permanent, or agglomerates, if it is reversible. These clustering processes have a strong impact on the magnetic nanoparticles properties that are often not well understood. In this review, the causes and consequences of magnetic nanoparticles aggregation/agglomeration are reviewed and discussed. Special attention has been paid to the impact of the magnetic nanoparticles aggregation/agglomeration on their magnetic properties and heating properties, when exposed to an alternating magnetic field in the frame of magnetic hyperthermia. In addition, a model system with magnetic nanoparticles of two different sizes coated with three different molecules (oleic acid, meso-2,3-dimercaptosuccinic acid and poly(maleic anhydride-alt-1-octadecene) has been characterised and the results used to support the ideas reviewed.
. |
|---|---|
| AbstractList | Magnetic nanoparticles, and in particular iron oxide nanoparticles (mainly magnetite and maghemite), are being widely used in the form of aqueous colloids for biomedical applications. In such colloids, nanoparticles tend to form assemblies, either aggregates, if the union is permanent, or agglomerates, if it is reversible. These clustering processes have a strong impact on the magnetic nanoparticles properties that are often not well understood. In this review, the causes and consequences of magnetic nanoparticles aggregation/agglomeration are reviewed and discussed. Special attention has been paid to the impact of the magnetic nanoparticles aggregation/agglomeration on their magnetic properties and heating properties, when exposed to an alternating magnetic field in the frame of magnetic hyperthermia. In addition, a model system with magnetic nanoparticles of two different sizes coated with three different molecules (oleic acid, meso-2,3-dimercaptosuccinic acid and poly(maleic anhydride-alt-1-octadecene) has been characterised and the results used to support the ideas reviewed.
. Magnetic nanoparticles (MNPs), and in particular iron oxide nanoparticles (mainly magnetite and maghemite), are being widely used in the form of aqueous colloids for biomedical applications. In such colloids, nanoparticles tend to form assemblies, either aggregates, if the union is permanent, or agglomerates, if it is reversible. These clustering processes have a strong impact on the MNPs' properties that are often not well understood. In this review, the causes and consequences of MNPs aggregation/agglomeration are reviewed and discussed. Special attention has been paid to the impact of the MNPs aggregation/agglomeration on their magnetic properties and heating properties, when exposed to an alternating magnetic field in the frame of magnetic hyperthermia. In addition, a model system with MNPs of two different sizes coated with three different molecules oleic acid, meso-2, 3-dimercaptosuccinic acid and poly(maleic anhydride-alt-1-octadecene) has been characterized and the results used to support the ideas reviewed.Magnetic nanoparticles (MNPs), and in particular iron oxide nanoparticles (mainly magnetite and maghemite), are being widely used in the form of aqueous colloids for biomedical applications. In such colloids, nanoparticles tend to form assemblies, either aggregates, if the union is permanent, or agglomerates, if it is reversible. These clustering processes have a strong impact on the MNPs' properties that are often not well understood. In this review, the causes and consequences of MNPs aggregation/agglomeration are reviewed and discussed. Special attention has been paid to the impact of the MNPs aggregation/agglomeration on their magnetic properties and heating properties, when exposed to an alternating magnetic field in the frame of magnetic hyperthermia. In addition, a model system with MNPs of two different sizes coated with three different molecules oleic acid, meso-2, 3-dimercaptosuccinic acid and poly(maleic anhydride-alt-1-octadecene) has been characterized and the results used to support the ideas reviewed. |
| Author | Mazario, Eva de Bernardo, Sara Moros, Maria Salas, Gorka de la Fuente, Jesus M Gutierrez, Lucia de la Cueva, Leonor Morales, Maria Del Puerto |
| Author_xml | – sequence: 1 givenname: Lucia orcidid: 0000-0003-2366-3598 surname: Gutierrez fullname: Gutierrez, Lucia organization: Química Analítica, Universidad de Zaragoza - Campus Rio Ebro, Zaragoza, Aragón, SPAIN – sequence: 2 givenname: Leonor surname: de la Cueva fullname: de la Cueva, Leonor organization: Nanomedicina, IMDEA NANOCIENCIA, Madrid, SPAIN – sequence: 3 givenname: Maria surname: Moros fullname: Moros, Maria organization: instituto de nanociencia de aragon, C/Mariano Esquillor s/n, zaragoza, SPAIN – sequence: 4 givenname: Eva surname: Mazario fullname: Mazario, Eva organization: Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, Madrid, SPAIN – sequence: 5 givenname: Sara surname: de Bernardo fullname: de Bernardo, Sara organization: Instituto Universitario de Nanociencia de Aragon, Universidad de Zaragoza, Zaragoza, SPAIN – sequence: 6 givenname: Jesus M surname: de la Fuente fullname: de la Fuente, Jesus M organization: Instituto Universitario de Nanociencia de Aragon, Universidad de Zaragoza, Zaragoza, SPAIN – sequence: 7 givenname: Maria Del Puerto surname: Morales fullname: Morales, Maria Del Puerto organization: Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, Advanced Colloidal Materials Group, Calle Sor Juana les de la Cruz 3, Cantoblanco, Madrid 28049, Madrid, SPAIN – sequence: 8 givenname: Gorka surname: Salas fullname: Salas, Gorka organization: Nanomedicina, IMDEA NANOCIENCIA, Madrid, Saint Barthélemy |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30609414$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNT0tLxDAYDLLiPvTuSXr0UjdfkqbNcVnWByx40XNJky810jZrkwX99xZcxdMMM8MwsySzIQxIyDXQO6BVtQYuIZcFq9Zau8a5M7L4k2b_-JwsY3ynFKBicEHmnEqqBIgF2W3adsRWJx-GDJ1Dk2I20fSGWa_bAZM32WEMBxyTx8lymR8nP3x6i5kJXRe8jZfk3Oku4tUJV-T1fveyfcz3zw9P280-N7ykKVeMCcEsgDJCNEpYWdmGYaEKaBQaLJmWldG2NJozYzkvTQNKSeNMpcFytiK3P73Too8jxlT3PhrsOj1gOMaagRRABS_kFL05RY9Nj7Y-jL7X41f9e519A-RkXco |
| CitedBy_id | crossref_primary_10_1080_20477724_2021_2014235 crossref_primary_10_1016_j_aca_2019_05_022 crossref_primary_10_1039_D1NR03484G crossref_primary_10_1016_j_jcis_2024_05_046 crossref_primary_10_3390_toxics13040284 crossref_primary_10_1016_j_talanta_2024_127439 crossref_primary_10_1039_D2BM00692H crossref_primary_10_1016_j_aca_2025_344371 crossref_primary_10_1016_j_ceramint_2020_11_049 crossref_primary_10_1039_D0NR09121A crossref_primary_10_1016_j_desal_2022_115903 crossref_primary_10_1016_j_ijbiomac_2022_07_175 crossref_primary_10_1002_adfm_202418409 crossref_primary_10_3390_bios12020123 crossref_primary_10_3390_cancers13164095 crossref_primary_10_1016_j_biteb_2024_101977 crossref_primary_10_1016_j_ijpharm_2024_124755 crossref_primary_10_1007_s11771_025_5936_0 crossref_primary_10_3389_fnhum_2024_1411849 crossref_primary_10_3762_bjnano_10_133 crossref_primary_10_1002_adfm_202204732 crossref_primary_10_1016_j_jcis_2024_03_043 crossref_primary_10_1088_1361_6463_acff06 crossref_primary_10_1088_1361_665X_ad1e8a crossref_primary_10_2166_wst_2022_123 crossref_primary_10_1016_j_matchemphys_2024_129910 crossref_primary_10_1021_acsanm_5c02325 crossref_primary_10_3390_antibiotics13020111 crossref_primary_10_3390_pharmaceutics14081526 crossref_primary_10_1016_j_actbio_2022_08_033 crossref_primary_10_3390_nano13182585 crossref_primary_10_1002_pssa_201900506 crossref_primary_10_1016_j_envres_2020_110139 crossref_primary_10_3390_pharmaceutics14010163 crossref_primary_10_4028_p_5bb090 crossref_primary_10_1088_1361_6560_abcd19 crossref_primary_10_1055_a_2625_5344 crossref_primary_10_3390_nano11112888 crossref_primary_10_1016_j_cis_2023_103056 crossref_primary_10_1016_j_colsurfa_2024_135018 crossref_primary_10_1007_s10439_025_03712_3 crossref_primary_10_1016_j_trac_2021_116500 crossref_primary_10_3390_pharmaceutics16121578 crossref_primary_10_1039_D5SM00209E crossref_primary_10_1016_j_jiec_2020_07_040 crossref_primary_10_1007_s00216_024_05223_x crossref_primary_10_1016_j_apsusc_2021_151171 crossref_primary_10_3390_jfb15060169 crossref_primary_10_1002_aisy_202400638 crossref_primary_10_3390_nano11092179 crossref_primary_10_1016_j_exppara_2023_108474 crossref_primary_10_3389_fbioe_2021_679165 crossref_primary_10_1021_acsanm_5c01812 crossref_primary_10_3389_fneur_2023_1117695 crossref_primary_10_3390_nano10112178 crossref_primary_10_1038_s41598_020_76980_9 crossref_primary_10_1063_1_5121234 crossref_primary_10_1038_s41596_022_00779_3 crossref_primary_10_1007_s11106_023_00368_3 crossref_primary_10_1016_j_jece_2021_106377 crossref_primary_10_3390_magnetochemistry5030050 crossref_primary_10_1016_j_jcis_2021_11_119 crossref_primary_10_1016_j_heliyon_2024_e40519 crossref_primary_10_1016_j_mtchem_2021_100760 crossref_primary_10_1016_j_jece_2020_104477 crossref_primary_10_3390_nano11112786 crossref_primary_10_1002_adfm_202412869 crossref_primary_10_1016_j_jpcs_2023_111424 crossref_primary_10_3390_gels9080621 crossref_primary_10_1002_mame_202500249 crossref_primary_10_3389_fneur_2022_901447 crossref_primary_10_1039_D1BM01963E crossref_primary_10_1016_j_jallcom_2022_165189 crossref_primary_10_1007_s12011_024_04168_7 crossref_primary_10_1007_s10544_023_00685_9 crossref_primary_10_1007_s10934_020_00869_1 crossref_primary_10_1016_j_apcata_2024_120036 crossref_primary_10_3390_nano10122426 crossref_primary_10_1016_j_jclepro_2021_127385 crossref_primary_10_3390_ijerph182111568 crossref_primary_10_1016_j_fuel_2022_125810 crossref_primary_10_3390_magnetochemistry6010002 crossref_primary_10_1016_j_colsurfa_2025_137803 crossref_primary_10_1557_s43578_022_00665_4 crossref_primary_10_3390_nano11010062 crossref_primary_10_1016_j_jmmm_2024_172764 crossref_primary_10_1016_j_nantod_2024_102384 crossref_primary_10_1002_smll_202502552 crossref_primary_10_1016_j_apcata_2022_118575 crossref_primary_10_1002_smll_201907663 crossref_primary_10_1007_s10853_025_10792_y crossref_primary_10_1515_ijmr_2022_0037 crossref_primary_10_1007_s11696_024_03821_8 crossref_primary_10_1039_C9NR08634J crossref_primary_10_1116_6_0002110 crossref_primary_10_1016_j_apsusc_2020_146211 crossref_primary_10_3390_nano13222929 crossref_primary_10_3390_biomedicines11051477 crossref_primary_10_1007_s10854_020_04469_2 crossref_primary_10_3390_antibiotics11050696 crossref_primary_10_1016_j_jallcom_2020_156884 crossref_primary_10_1016_j_bioorg_2024_107828 crossref_primary_10_3390_pharmaceutics15102406 crossref_primary_10_1186_s13014_021_01829_y crossref_primary_10_3390_nano13152242 crossref_primary_10_1039_D5SM00180C crossref_primary_10_1002_adtp_202000061 crossref_primary_10_1039_D0NR07397K crossref_primary_10_3390_toxics10040164 crossref_primary_10_1016_j_jmmm_2019_166176 crossref_primary_10_1016_j_molstruc_2025_142336 crossref_primary_10_1007_s11144_020_01857_x crossref_primary_10_1515_polyeng_2020_0271 crossref_primary_10_1016_j_jddst_2024_105838 crossref_primary_10_1186_s12951_022_01747_5 crossref_primary_10_1111_jace_17861 crossref_primary_10_3390_pharmaceutics16030310 crossref_primary_10_1007_s11696_022_02293_y crossref_primary_10_1007_s10238_023_01262_3 crossref_primary_10_1038_s44222_024_00208_y crossref_primary_10_1016_j_ijbiomac_2020_11_205 crossref_primary_10_3390_polym13091431 crossref_primary_10_3390_toxics13030178 crossref_primary_10_1016_j_envres_2019_108574 |
| ContentType | Journal Article |
| Copyright | 2019 IOP Publishing Ltd. |
| Copyright_xml | – notice: 2019 IOP Publishing Ltd. |
| DBID | NPM 7X8 |
| DOI | 10.1088/1361-6528/aafbff |
| DatabaseName | PubMed MEDLINE - Academic |
| DatabaseTitle | PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1361-6528 |
| ExternalDocumentID | 30609414 |
| Genre | Journal Article |
| GroupedDBID | --- -~X 123 1JI 4.4 53G 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN F5P IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A NPM P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 W28 XPP ZMT 7X8 ADEQX AEINN |
| ID | FETCH-LOGICAL-c370t-922442d119c44b94d68db2e5951b9ece72a68cad7ca32cd337cb1996cfc8a1d32 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 162 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000456848900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1361-6528 |
| IngestDate | Sun Nov 09 14:03:49 EST 2025 Thu Apr 03 06:59:49 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Aggregation surface coating Magnetic hyperthermia Iron oxides colloids magnetic nanoparticles nanomagnetism |
| Language | English |
| License | 2019 IOP Publishing Ltd. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c370t-922442d119c44b94d68db2e5951b9ece72a68cad7ca32cd337cb1996cfc8a1d32 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-2366-3598 |
| PMID | 30609414 |
| PQID | 2164104356 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2164104356 pubmed_primary_30609414 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-03-15 |
| PublicationDateYYYYMMDD | 2019-03-15 |
| PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Nanotechnology |
| PublicationTitleAlternate | Nanotechnology |
| PublicationYear | 2019 |
| SSID | ssj0011821 |
| Score | 2.6319585 |
| Snippet | Magnetic nanoparticles, and in particular iron oxide nanoparticles (mainly magnetite and maghemite), are being widely used in the form of aqueous colloids for... Magnetic nanoparticles (MNPs), and in particular iron oxide nanoparticles (mainly magnetite and maghemite), are being widely used in the form of aqueous... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 112001 |
| Title | Aggregation effects on the magnetic properties of iron oxide colloids |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30609414 https://www.proquest.com/docview/2164104356 |
| Volume | 30 |
| WOSCitedRecordID | wos000456848900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5qFfTgo77qiwhelzbJPpKTiLR40NKDQm8lmSSlB3drt4o_38l2a70IgpclLATCZJJ8M_PNDCE33kkQnJlI2-CtUp5HSncgcolPGeqHjk1VXf8x6_flcKgGtcOtrGmVyzuxuqhtAcFH3uaI69F0EEl6O32LQteoEF2tW2isk4ZAKBMoXdlwFUVA7FznXbEoTbisw5R4sNrf_9pae-P97wCzemh6e_9d4j7ZrSEmvVvoxAFZc3mT7PwoPNgkWxXxE8pD0r0bo8U9rvaH1uQOikPEhfRVj_OQ40inwWM_C6VXaeFpSIyjxefEOhq0qJjY8oi89LrP9w9R3VohApF15pHClzvmljEFMe5GbFNpDXcJ4i2jHLiM61SCthlowcEKkYEJfGXwIDWzgh-TjbzI3SmhSSw8VxJC0_LY2o4yGXBpQDnnjGdpi1wvpTVC1Q3xCJ274r0creTVIicLkY-mixobI7Rk0PBk8dkfZp-TbYQxKjDDWHJBGh4Prrskm_Axn5Szq0on8NsfPH0BKJbBoQ |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aggregation+effects+on+the+magnetic+properties+of+iron+oxide+colloids&rft.jtitle=Nanotechnology&rft.au=Guti%C3%A9rrez%2C+Luc%C3%ADa&rft.au=de+la+Cueva%2C+Leonor&rft.au=Moros%2C+Mar%C3%ADa&rft.au=Mazar%C3%ADo%2C+Eva&rft.date=2019-03-15&rft.issn=1361-6528&rft.eissn=1361-6528&rft.volume=30&rft.issue=11&rft.spage=112001&rft_id=info:doi/10.1088%2F1361-6528%2Faafbff&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-6528&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-6528&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-6528&client=summon |