Rare earth doped metal oxide nanoparticles for photocatalysis: a perspective
Metal oxides are well-known materials that have been considered as the prominent photocatalysts. Photocatalysis is a promising way to address the environmental issues which are caused by fossil fuel the combustion and industrial pollutants. Lot of efforts such as doping of metal oxides with metals,...
Saved in:
| Published in: | Nanotechnology Vol. 33; no. 14 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
02.04.2022
|
| Subjects: | |
| ISSN: | 1361-6528, 1361-6528 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Metal oxides are well-known materials that have been considered as the prominent photocatalysts. Photocatalysis is a promising way to address the environmental issues which are caused by fossil fuel the combustion and industrial pollutants. Lot of efforts such as doping of metal oxides with metals, non-metals have been made to enhance their photocatalytic activity. More specifically, in this review we have discussed detailed synthesis procedures of rare earth doped metal oxides performed in the past decades. The advantage of doping metal oxides with rare earth metals is that they readily combine with functional groups due to the 4f vacant orbitals. Moreover, doping rare earth metals causes absorbance shift to the visible region of the electromagnetic spectrum which results to show prominent photocatalysis in this region. The effect of rare earth doping on different parameters of metal oxides such as band gap and charge carrier recombination rate has been made in great details. In perspective section, we have given a brief description about how researchers can improve the photocatalytic efficiencies of different metal oxides in coming future. The strategies and outcomes outlined in this review are expected to stimulate the search for a whole new set of rare earth doped metal oxides for efficient photocatalytic applications. |
|---|---|
| AbstractList | Metal oxides are well-known materials that have been considered as the prominent photocatalysts. Photocatalysis is a promising way to address the environmental issues which are caused by fossil fuel the combustion and industrial pollutants. Lot of efforts such as doping of metal oxides with metals, non-metals have been made to enhance their photocatalytic activity. More specifically, in this review we have discussed detailed synthesis procedures of rare earth doped metal oxides performed in the past decades. The advantage of doping metal oxides with rare earth metals is that they readily combine with functional groups due to the 4f vacant orbitals. Moreover, doping rare earth metals causes absorbance shift to the visible region of the electromagnetic spectrum which results to show prominent photocatalysis in this region. The effect of rare earth doping on different parameters of metal oxides such as band gap and charge carrier recombination rate has been made in great details. In perspective section, we have given a brief description about how researchers can improve the photocatalytic efficiencies of different metal oxides in coming future. The strategies and outcomes outlined in this review are expected to stimulate the search for a whole new set of rare earth doped metal oxides for efficient photocatalytic applications. Metal oxides are well-known materials that have been considered as the prominent photocatalysts. Photocatalysis is a promising way to address the environmental issues which are caused by fossil fuel the combustion and industrial pollutants. Lot of efforts such as doping of metal oxides with metals, non-metals have been made to enhance their photocatalytic activity. More specifically, in this review we have discussed detailed synthesis procedures of rare earth doped metal oxides performed in the past decades. The advantage of doping metal oxides with rare earth metals is that they readily combine with functional groups due to the 4f vacant orbitals. Moreover, doping rare earth metals causes absorbance shift to the visible region of the electromagnetic spectrum which results to show prominent photocatalysis in this region. The effect of rare earth doping on different parameters of metal oxides such as band gap and charge carrier recombination rate has been made in great details. In perspective section, we have given a brief description about how researchers can improve the photocatalytic efficiencies of different metal oxides in coming future. The strategies and outcomes outlined in this review are expected to stimulate the search for a whole new set of rare earth doped metal oxides for efficient photocatalytic applications.Metal oxides are well-known materials that have been considered as the prominent photocatalysts. Photocatalysis is a promising way to address the environmental issues which are caused by fossil fuel the combustion and industrial pollutants. Lot of efforts such as doping of metal oxides with metals, non-metals have been made to enhance their photocatalytic activity. More specifically, in this review we have discussed detailed synthesis procedures of rare earth doped metal oxides performed in the past decades. The advantage of doping metal oxides with rare earth metals is that they readily combine with functional groups due to the 4f vacant orbitals. Moreover, doping rare earth metals causes absorbance shift to the visible region of the electromagnetic spectrum which results to show prominent photocatalysis in this region. The effect of rare earth doping on different parameters of metal oxides such as band gap and charge carrier recombination rate has been made in great details. In perspective section, we have given a brief description about how researchers can improve the photocatalytic efficiencies of different metal oxides in coming future. The strategies and outcomes outlined in this review are expected to stimulate the search for a whole new set of rare earth doped metal oxides for efficient photocatalytic applications. |
| Author | Alshehri, Saad M Ahmad, Tokeer Mehtab, Amir Mao, Yuanbing Ahmed, Jahangeer |
| Author_xml | – sequence: 1 givenname: Amir surname: Mehtab fullname: Mehtab, Amir organization: Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi-110025, India – sequence: 2 givenname: Jahangeer surname: Ahmed fullname: Ahmed, Jahangeer organization: Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia – sequence: 3 givenname: Saad M surname: Alshehri fullname: Alshehri, Saad M organization: Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia – sequence: 4 givenname: Yuanbing surname: Mao fullname: Mao, Yuanbing organization: Department of Chemistry, Illinois Institute of Technology, 3105 South Dearborn Street, Chicago, IL 60616, United States of America – sequence: 5 givenname: Tokeer orcidid: 0000-0002-7807-315X surname: Ahmad fullname: Ahmad, Tokeer organization: Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi-110025, India |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34915455$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkM1LxDAUxIOsuB969yQ5eqmbl6RJ6k0Wv6AgiJ5LNnnLVtqmJl1x_3srruJl3jDz4x1mTiZd6JCQc2BXwIxZglCQqZybpXVSoD4is79o8s9PyTylN8YADIcTMhWygFzm-YyUzzYiRRuHLfWhR09bHGxDw2ftkXa2C_3Y1a7BRDch0n4bhuDsiOxTna6ppT3G1KMb6g88Jccb2yQ8O9wFeb27fVk9ZOXT_ePqpsyc0GzICpCgciOYt4VBwYw3yvPCSauU31ihR1lr7rhi0rl8rHAtoNASCvcd8gW5_Pnbx_C-wzRUbZ0cNo3tMOxSxRWAUkxrNaIXB3S3btFXfaxbG_fV7wL8Cy4yX3E |
| CitedBy_id | crossref_primary_10_1016_j_ijhydene_2022_11_143 crossref_primary_10_1039_D3RA01505J crossref_primary_10_3390_catal13010173 crossref_primary_10_3390_catal12101254 crossref_primary_10_1016_j_envres_2022_114672 crossref_primary_10_1016_j_mseb_2022_116018 crossref_primary_10_1016_j_apt_2024_104404 crossref_primary_10_1007_s40995_024_01611_1 crossref_primary_10_1016_j_matpr_2023_02_148 crossref_primary_10_1080_12269328_2024_2434466 crossref_primary_10_3390_molecules29010254 crossref_primary_10_1007_s10876_022_02257_y crossref_primary_10_1016_j_inoche_2024_112858 crossref_primary_10_1016_j_ceramint_2024_05_216 crossref_primary_10_1007_s10854_024_12261_9 crossref_primary_10_1016_j_cej_2025_161117 crossref_primary_10_1002_slct_202203176 crossref_primary_10_1016_j_fuel_2024_131446 crossref_primary_10_3390_nano14191560 crossref_primary_10_3390_su162310324 crossref_primary_10_1088_1361_6528_ac9a57 crossref_primary_10_1002_anie_202307632 crossref_primary_10_1088_1402_4896_ad3858 crossref_primary_10_1016_j_mtchem_2023_101387 crossref_primary_10_1016_j_inoche_2024_112220 crossref_primary_10_1016_j_molliq_2022_119084 crossref_primary_10_1039_D2RA05304G crossref_primary_10_1016_j_ceramint_2024_10_363 crossref_primary_10_1016_j_materresbull_2024_113222 crossref_primary_10_1007_s11270_024_07076_7 crossref_primary_10_1002_cjoc_202200715 crossref_primary_10_1016_j_molliq_2023_121729 crossref_primary_10_1016_j_heliyon_2024_e38414 crossref_primary_10_1016_j_heliyon_2024_e37689 crossref_primary_10_1080_00194506_2025_2462951 crossref_primary_10_1016_j_ijhydene_2023_03_048 crossref_primary_10_1016_j_optmat_2023_114724 crossref_primary_10_1080_10420150_2025_2553275 crossref_primary_10_1557_s43578_023_01274_5 crossref_primary_10_1016_j_jre_2024_03_022 crossref_primary_10_1016_j_inoche_2023_111423 crossref_primary_10_1016_j_jelechem_2025_119231 crossref_primary_10_1016_j_fuel_2023_130654 crossref_primary_10_1002_slct_202202547 crossref_primary_10_1016_j_matpr_2022_03_608 crossref_primary_10_1016_j_materresbull_2023_112208 crossref_primary_10_1007_s10971_025_06869_4 crossref_primary_10_1088_2053_1591_ad3db4 crossref_primary_10_1016_j_materresbull_2025_113335 crossref_primary_10_1016_j_jcis_2023_08_144 crossref_primary_10_1016_j_jre_2024_07_007 crossref_primary_10_3390_catal13010109 crossref_primary_10_1016_j_molliq_2025_127497 crossref_primary_10_3390_molecules30183784 crossref_primary_10_1016_j_ceramint_2023_10_283 crossref_primary_10_1016_j_partic_2023_07_013 crossref_primary_10_1016_j_jmst_2023_07_064 crossref_primary_10_1016_j_jallcom_2024_178101 crossref_primary_10_1134_S1063783423600012 crossref_primary_10_1007_s00339_023_07054_6 crossref_primary_10_3390_nano13010145 crossref_primary_10_1016_j_jpcs_2025_112593 crossref_primary_10_1088_1361_6463_ac7619 crossref_primary_10_1007_s11696_024_03493_4 crossref_primary_10_3390_catal13020295 crossref_primary_10_3390_ijms26135925 crossref_primary_10_3390_technologies11050144 crossref_primary_10_1016_j_molstruc_2025_142301 crossref_primary_10_1016_j_microc_2024_111151 crossref_primary_10_1088_1361_6528_ac705a crossref_primary_10_1039_D3CY00184A crossref_primary_10_1002_cnma_202300091 crossref_primary_10_1016_j_seppur_2023_124028 crossref_primary_10_3390_catal13010093 crossref_primary_10_1016_j_physb_2023_414924 crossref_primary_10_3390_inorganics13050147 crossref_primary_10_1016_j_jksus_2022_101963 crossref_primary_10_1021_acs_energyfuels_5c00967 crossref_primary_10_1016_j_jpowsour_2025_237346 crossref_primary_10_1016_j_ijhydene_2022_06_269 crossref_primary_10_1016_j_materresbull_2023_112346 crossref_primary_10_3389_fchem_2023_1167701 crossref_primary_10_1016_j_jwpe_2023_104069 crossref_primary_10_1007_s43153_023_00425_9 crossref_primary_10_1016_j_ceramint_2023_04_065 crossref_primary_10_1016_j_csbj_2024_10_020 crossref_primary_10_1007_s10854_023_10348_3 crossref_primary_10_1007_s11468_024_02383_5 crossref_primary_10_1016_j_materresbull_2023_112232 crossref_primary_10_1002_slct_202201800 crossref_primary_10_3390_molecules27207038 crossref_primary_10_1007_s11837_024_06704_1 crossref_primary_10_1039_D4RA03437F crossref_primary_10_1016_j_ceramint_2024_08_377 crossref_primary_10_3390_molecules29133126 crossref_primary_10_1088_2399_1984_accf54 crossref_primary_10_1002_aoc_7616 crossref_primary_10_1007_s00339_023_07051_9 crossref_primary_10_1016_j_jksus_2023_102584 crossref_primary_10_1016_j_apsusc_2025_164203 crossref_primary_10_1007_s11664_023_10856_2 crossref_primary_10_1016_j_matlet_2023_134026 crossref_primary_10_1016_j_matchemphys_2025_130422 crossref_primary_10_1016_j_chphi_2022_100101 crossref_primary_10_1016_j_nxmate_2024_100191 crossref_primary_10_1016_j_solidstatesciences_2023_107112 crossref_primary_10_1016_j_chemosphere_2024_142224 crossref_primary_10_1016_j_jallcom_2022_167469 crossref_primary_10_1016_j_jallcom_2024_174183 crossref_primary_10_1016_j_surfin_2023_102887 crossref_primary_10_1088_1361_6463_acad10 crossref_primary_10_3390_en15197399 crossref_primary_10_1088_1402_4896_ad7910 crossref_primary_10_1155_2022_7844259 crossref_primary_10_1016_j_dyepig_2023_111420 crossref_primary_10_1080_00084433_2025_2552059 crossref_primary_10_1016_j_jre_2024_08_007 crossref_primary_10_1007_s11664_024_11417_x crossref_primary_10_1002_ange_202307632 |
| ContentType | Journal Article |
| Copyright | 2022 IOP Publishing Ltd. |
| Copyright_xml | – notice: 2022 IOP Publishing Ltd. |
| DBID | NPM 7X8 |
| DOI | 10.1088/1361-6528/ac43e7 |
| DatabaseName | PubMed MEDLINE - Academic |
| DatabaseTitle | PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1361-6528 |
| ExternalDocumentID | 34915455 |
| Genre | Journal Article Review |
| GroupedDBID | --- -~X 123 1JI 4.4 53G 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A NPM P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 W28 XPP ZMT 7X8 ADEQX AEINN |
| ID | FETCH-LOGICAL-c370t-914165830da98e308d86d29c4a66dfa37dfab72c2604cc5d29eb3197419cc2602 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 143 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000741708900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1361-6528 |
| IngestDate | Fri Sep 05 14:40:44 EDT 2025 Thu Jan 02 22:56:40 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Keywords | doping rare earth optical properties dye degradation metal oxides photocatalysis |
| Language | English |
| License | 2022 IOP Publishing Ltd. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c370t-914165830da98e308d86d29c4a66dfa37dfab72c2604cc5d29eb3197419cc2602 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-7807-315X |
| PMID | 34915455 |
| PQID | 2611660776 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2611660776 pubmed_primary_34915455 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-04-02 |
| PublicationDateYYYYMMDD | 2022-04-02 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Nanotechnology |
| PublicationTitleAlternate | Nanotechnology |
| PublicationYear | 2022 |
| SSID | ssj0011821 |
| Score | 2.6693516 |
| SecondaryResourceType | review_article |
| Snippet | Metal oxides are well-known materials that have been considered as the prominent photocatalysts. Photocatalysis is a promising way to address the environmental... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| Title | Rare earth doped metal oxide nanoparticles for photocatalysis: a perspective |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/34915455 https://www.proquest.com/docview/2611660776 |
| Volume | 33 |
| WOSCitedRecordID | wos000741708900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NS8MwFMAf6hT04Mf8ml9E8Fq2NG3SehERh4c5hijsVtIkZTvY1rWKf74vXea8CIKXHFIC5fUl_b3PAFxpIVONmuIZjrZJIHzlxUqEHkW2pSZLUyqb7voDMRxG43E8cg63yqVVLs7E5qDWhbI-8i6SPuXcNp-5Kd88e2uUja66KzRWocUQZaxWi_EyioDs7OquqMdDP3JhStxY3e-5rlQBM-J3wGx-NP2d_77iLmw7xCS3c53YgxWTt2HrR-PBNmw0iZ-q2ofBk5wZgupeT4guSqPJq0EeJ8XnVBuSyxyNapc7R5BvSTkp6qLx-dhWJtdEknJZrnkAL_3757sHz92w4CkmejWedMhjYcR6WsaRYb1IR1z7sQok5zqTTOCQ4vdDoydQKsRHaHtTNEForOykfwhreZGbYyBIUiwSfqgCKgOF1CIMolaGW5zylPeyDlwuhJagBtuwhMxN8V4lS7F14Ggu-aSct9pIWBBbxgtP_rD6FDZ9W5tg02r8M2hluH_NOayrj3pazS4a1cBxOHr8Aqbwwd4 |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rare+earth+doped+metal+oxide+nanoparticles+for+photocatalysis%3A+a+perspective&rft.jtitle=Nanotechnology&rft.au=Mehtab%2C+Amir&rft.au=Ahmed%2C+Jahangeer&rft.au=Alshehri%2C+Saad+M&rft.au=Mao%2C+Yuanbing&rft.date=2022-04-02&rft.issn=1361-6528&rft.eissn=1361-6528&rft.volume=33&rft.issue=14&rft_id=info:doi/10.1088%2F1361-6528%2Fac43e7&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-6528&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-6528&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-6528&client=summon |