Rare earth doped metal oxide nanoparticles for photocatalysis: a perspective

Metal oxides are well-known materials that have been considered as the prominent photocatalysts. Photocatalysis is a promising way to address the environmental issues which are caused by fossil fuel the combustion and industrial pollutants. Lot of efforts such as doping of metal oxides with metals,...

Full description

Saved in:
Bibliographic Details
Published in:Nanotechnology Vol. 33; no. 14
Main Authors: Mehtab, Amir, Ahmed, Jahangeer, Alshehri, Saad M, Mao, Yuanbing, Ahmad, Tokeer
Format: Journal Article
Language:English
Published: England 02.04.2022
Subjects:
ISSN:1361-6528, 1361-6528
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Metal oxides are well-known materials that have been considered as the prominent photocatalysts. Photocatalysis is a promising way to address the environmental issues which are caused by fossil fuel the combustion and industrial pollutants. Lot of efforts such as doping of metal oxides with metals, non-metals have been made to enhance their photocatalytic activity. More specifically, in this review we have discussed detailed synthesis procedures of rare earth doped metal oxides performed in the past decades. The advantage of doping metal oxides with rare earth metals is that they readily combine with functional groups due to the 4f vacant orbitals. Moreover, doping rare earth metals causes absorbance shift to the visible region of the electromagnetic spectrum which results to show prominent photocatalysis in this region. The effect of rare earth doping on different parameters of metal oxides such as band gap and charge carrier recombination rate has been made in great details. In perspective section, we have given a brief description about how researchers can improve the photocatalytic efficiencies of different metal oxides in coming future. The strategies and outcomes outlined in this review are expected to stimulate the search for a whole new set of rare earth doped metal oxides for efficient photocatalytic applications.
AbstractList Metal oxides are well-known materials that have been considered as the prominent photocatalysts. Photocatalysis is a promising way to address the environmental issues which are caused by fossil fuel the combustion and industrial pollutants. Lot of efforts such as doping of metal oxides with metals, non-metals have been made to enhance their photocatalytic activity. More specifically, in this review we have discussed detailed synthesis procedures of rare earth doped metal oxides performed in the past decades. The advantage of doping metal oxides with rare earth metals is that they readily combine with functional groups due to the 4f vacant orbitals. Moreover, doping rare earth metals causes absorbance shift to the visible region of the electromagnetic spectrum which results to show prominent photocatalysis in this region. The effect of rare earth doping on different parameters of metal oxides such as band gap and charge carrier recombination rate has been made in great details. In perspective section, we have given a brief description about how researchers can improve the photocatalytic efficiencies of different metal oxides in coming future. The strategies and outcomes outlined in this review are expected to stimulate the search for a whole new set of rare earth doped metal oxides for efficient photocatalytic applications.
Metal oxides are well-known materials that have been considered as the prominent photocatalysts. Photocatalysis is a promising way to address the environmental issues which are caused by fossil fuel the combustion and industrial pollutants. Lot of efforts such as doping of metal oxides with metals, non-metals have been made to enhance their photocatalytic activity. More specifically, in this review we have discussed detailed synthesis procedures of rare earth doped metal oxides performed in the past decades. The advantage of doping metal oxides with rare earth metals is that they readily combine with functional groups due to the 4f vacant orbitals. Moreover, doping rare earth metals causes absorbance shift to the visible region of the electromagnetic spectrum which results to show prominent photocatalysis in this region. The effect of rare earth doping on different parameters of metal oxides such as band gap and charge carrier recombination rate has been made in great details. In perspective section, we have given a brief description about how researchers can improve the photocatalytic efficiencies of different metal oxides in coming future. The strategies and outcomes outlined in this review are expected to stimulate the search for a whole new set of rare earth doped metal oxides for efficient photocatalytic applications.Metal oxides are well-known materials that have been considered as the prominent photocatalysts. Photocatalysis is a promising way to address the environmental issues which are caused by fossil fuel the combustion and industrial pollutants. Lot of efforts such as doping of metal oxides with metals, non-metals have been made to enhance their photocatalytic activity. More specifically, in this review we have discussed detailed synthesis procedures of rare earth doped metal oxides performed in the past decades. The advantage of doping metal oxides with rare earth metals is that they readily combine with functional groups due to the 4f vacant orbitals. Moreover, doping rare earth metals causes absorbance shift to the visible region of the electromagnetic spectrum which results to show prominent photocatalysis in this region. The effect of rare earth doping on different parameters of metal oxides such as band gap and charge carrier recombination rate has been made in great details. In perspective section, we have given a brief description about how researchers can improve the photocatalytic efficiencies of different metal oxides in coming future. The strategies and outcomes outlined in this review are expected to stimulate the search for a whole new set of rare earth doped metal oxides for efficient photocatalytic applications.
Author Alshehri, Saad M
Ahmad, Tokeer
Mehtab, Amir
Mao, Yuanbing
Ahmed, Jahangeer
Author_xml – sequence: 1
  givenname: Amir
  surname: Mehtab
  fullname: Mehtab, Amir
  organization: Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi-110025, India
– sequence: 2
  givenname: Jahangeer
  surname: Ahmed
  fullname: Ahmed, Jahangeer
  organization: Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
– sequence: 3
  givenname: Saad M
  surname: Alshehri
  fullname: Alshehri, Saad M
  organization: Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
– sequence: 4
  givenname: Yuanbing
  surname: Mao
  fullname: Mao, Yuanbing
  organization: Department of Chemistry, Illinois Institute of Technology, 3105 South Dearborn Street, Chicago, IL 60616, United States of America
– sequence: 5
  givenname: Tokeer
  orcidid: 0000-0002-7807-315X
  surname: Ahmad
  fullname: Ahmad, Tokeer
  organization: Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi-110025, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34915455$$D View this record in MEDLINE/PubMed
BookMark eNpNkM1LxDAUxIOsuB969yQ5eqmbl6RJ6k0Wv6AgiJ5LNnnLVtqmJl1x_3srruJl3jDz4x1mTiZd6JCQc2BXwIxZglCQqZybpXVSoD4is79o8s9PyTylN8YADIcTMhWygFzm-YyUzzYiRRuHLfWhR09bHGxDw2ftkXa2C_3Y1a7BRDch0n4bhuDsiOxTna6ppT3G1KMb6g88Jccb2yQ8O9wFeb27fVk9ZOXT_ePqpsyc0GzICpCgciOYt4VBwYw3yvPCSauU31ihR1lr7rhi0rl8rHAtoNASCvcd8gW5_Pnbx_C-wzRUbZ0cNo3tMOxSxRWAUkxrNaIXB3S3btFXfaxbG_fV7wL8Cy4yX3E
CitedBy_id crossref_primary_10_1016_j_ijhydene_2022_11_143
crossref_primary_10_1039_D3RA01505J
crossref_primary_10_3390_catal13010173
crossref_primary_10_3390_catal12101254
crossref_primary_10_1016_j_envres_2022_114672
crossref_primary_10_1016_j_mseb_2022_116018
crossref_primary_10_1016_j_apt_2024_104404
crossref_primary_10_1007_s40995_024_01611_1
crossref_primary_10_1016_j_matpr_2023_02_148
crossref_primary_10_1080_12269328_2024_2434466
crossref_primary_10_3390_molecules29010254
crossref_primary_10_1007_s10876_022_02257_y
crossref_primary_10_1016_j_inoche_2024_112858
crossref_primary_10_1016_j_ceramint_2024_05_216
crossref_primary_10_1007_s10854_024_12261_9
crossref_primary_10_1016_j_cej_2025_161117
crossref_primary_10_1002_slct_202203176
crossref_primary_10_1016_j_fuel_2024_131446
crossref_primary_10_3390_nano14191560
crossref_primary_10_3390_su162310324
crossref_primary_10_1088_1361_6528_ac9a57
crossref_primary_10_1002_anie_202307632
crossref_primary_10_1088_1402_4896_ad3858
crossref_primary_10_1016_j_mtchem_2023_101387
crossref_primary_10_1016_j_inoche_2024_112220
crossref_primary_10_1016_j_molliq_2022_119084
crossref_primary_10_1039_D2RA05304G
crossref_primary_10_1016_j_ceramint_2024_10_363
crossref_primary_10_1016_j_materresbull_2024_113222
crossref_primary_10_1007_s11270_024_07076_7
crossref_primary_10_1002_cjoc_202200715
crossref_primary_10_1016_j_molliq_2023_121729
crossref_primary_10_1016_j_heliyon_2024_e38414
crossref_primary_10_1016_j_heliyon_2024_e37689
crossref_primary_10_1080_00194506_2025_2462951
crossref_primary_10_1016_j_ijhydene_2023_03_048
crossref_primary_10_1016_j_optmat_2023_114724
crossref_primary_10_1080_10420150_2025_2553275
crossref_primary_10_1557_s43578_023_01274_5
crossref_primary_10_1016_j_jre_2024_03_022
crossref_primary_10_1016_j_inoche_2023_111423
crossref_primary_10_1016_j_jelechem_2025_119231
crossref_primary_10_1016_j_fuel_2023_130654
crossref_primary_10_1002_slct_202202547
crossref_primary_10_1016_j_matpr_2022_03_608
crossref_primary_10_1016_j_materresbull_2023_112208
crossref_primary_10_1007_s10971_025_06869_4
crossref_primary_10_1088_2053_1591_ad3db4
crossref_primary_10_1016_j_materresbull_2025_113335
crossref_primary_10_1016_j_jcis_2023_08_144
crossref_primary_10_1016_j_jre_2024_07_007
crossref_primary_10_3390_catal13010109
crossref_primary_10_1016_j_molliq_2025_127497
crossref_primary_10_3390_molecules30183784
crossref_primary_10_1016_j_ceramint_2023_10_283
crossref_primary_10_1016_j_partic_2023_07_013
crossref_primary_10_1016_j_jmst_2023_07_064
crossref_primary_10_1016_j_jallcom_2024_178101
crossref_primary_10_1134_S1063783423600012
crossref_primary_10_1007_s00339_023_07054_6
crossref_primary_10_3390_nano13010145
crossref_primary_10_1016_j_jpcs_2025_112593
crossref_primary_10_1088_1361_6463_ac7619
crossref_primary_10_1007_s11696_024_03493_4
crossref_primary_10_3390_catal13020295
crossref_primary_10_3390_ijms26135925
crossref_primary_10_3390_technologies11050144
crossref_primary_10_1016_j_molstruc_2025_142301
crossref_primary_10_1016_j_microc_2024_111151
crossref_primary_10_1088_1361_6528_ac705a
crossref_primary_10_1039_D3CY00184A
crossref_primary_10_1002_cnma_202300091
crossref_primary_10_1016_j_seppur_2023_124028
crossref_primary_10_3390_catal13010093
crossref_primary_10_1016_j_physb_2023_414924
crossref_primary_10_3390_inorganics13050147
crossref_primary_10_1016_j_jksus_2022_101963
crossref_primary_10_1021_acs_energyfuels_5c00967
crossref_primary_10_1016_j_jpowsour_2025_237346
crossref_primary_10_1016_j_ijhydene_2022_06_269
crossref_primary_10_1016_j_materresbull_2023_112346
crossref_primary_10_3389_fchem_2023_1167701
crossref_primary_10_1016_j_jwpe_2023_104069
crossref_primary_10_1007_s43153_023_00425_9
crossref_primary_10_1016_j_ceramint_2023_04_065
crossref_primary_10_1016_j_csbj_2024_10_020
crossref_primary_10_1007_s10854_023_10348_3
crossref_primary_10_1007_s11468_024_02383_5
crossref_primary_10_1016_j_materresbull_2023_112232
crossref_primary_10_1002_slct_202201800
crossref_primary_10_3390_molecules27207038
crossref_primary_10_1007_s11837_024_06704_1
crossref_primary_10_1039_D4RA03437F
crossref_primary_10_1016_j_ceramint_2024_08_377
crossref_primary_10_3390_molecules29133126
crossref_primary_10_1088_2399_1984_accf54
crossref_primary_10_1002_aoc_7616
crossref_primary_10_1007_s00339_023_07051_9
crossref_primary_10_1016_j_jksus_2023_102584
crossref_primary_10_1016_j_apsusc_2025_164203
crossref_primary_10_1007_s11664_023_10856_2
crossref_primary_10_1016_j_matlet_2023_134026
crossref_primary_10_1016_j_matchemphys_2025_130422
crossref_primary_10_1016_j_chphi_2022_100101
crossref_primary_10_1016_j_nxmate_2024_100191
crossref_primary_10_1016_j_solidstatesciences_2023_107112
crossref_primary_10_1016_j_chemosphere_2024_142224
crossref_primary_10_1016_j_jallcom_2022_167469
crossref_primary_10_1016_j_jallcom_2024_174183
crossref_primary_10_1016_j_surfin_2023_102887
crossref_primary_10_1088_1361_6463_acad10
crossref_primary_10_3390_en15197399
crossref_primary_10_1088_1402_4896_ad7910
crossref_primary_10_1155_2022_7844259
crossref_primary_10_1016_j_dyepig_2023_111420
crossref_primary_10_1080_00084433_2025_2552059
crossref_primary_10_1016_j_jre_2024_08_007
crossref_primary_10_1007_s11664_024_11417_x
crossref_primary_10_1002_ange_202307632
ContentType Journal Article
Copyright 2022 IOP Publishing Ltd.
Copyright_xml – notice: 2022 IOP Publishing Ltd.
DBID NPM
7X8
DOI 10.1088/1361-6528/ac43e7
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1361-6528
ExternalDocumentID 34915455
Genre Journal Article
Review
GroupedDBID ---
-~X
123
1JI
4.4
53G
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
NPM
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
W28
XPP
ZMT
7X8
ADEQX
AEINN
ID FETCH-LOGICAL-c370t-914165830da98e308d86d29c4a66dfa37dfab72c2604cc5d29eb3197419cc2602
IEDL.DBID 7X8
ISICitedReferencesCount 143
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000741708900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1361-6528
IngestDate Fri Sep 05 14:40:44 EDT 2025
Thu Jan 02 22:56:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords doping
rare earth
optical properties
dye degradation
metal oxides
photocatalysis
Language English
License 2022 IOP Publishing Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-914165830da98e308d86d29c4a66dfa37dfab72c2604cc5d29eb3197419cc2602
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-7807-315X
PMID 34915455
PQID 2611660776
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2611660776
pubmed_primary_34915455
PublicationCentury 2000
PublicationDate 2022-04-02
PublicationDateYYYYMMDD 2022-04-02
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-02
  day: 02
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nanotechnology
PublicationTitleAlternate Nanotechnology
PublicationYear 2022
SSID ssj0011821
Score 2.6693516
SecondaryResourceType review_article
Snippet Metal oxides are well-known materials that have been considered as the prominent photocatalysts. Photocatalysis is a promising way to address the environmental...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
Title Rare earth doped metal oxide nanoparticles for photocatalysis: a perspective
URI https://www.ncbi.nlm.nih.gov/pubmed/34915455
https://www.proquest.com/docview/2611660776
Volume 33
WOSCitedRecordID wos000741708900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NS8MwFMAf6hT04Mf8ml9E8Fq2NG3SehERh4c5hijsVtIkZTvY1rWKf74vXea8CIKXHFIC5fUl_b3PAFxpIVONmuIZjrZJIHzlxUqEHkW2pSZLUyqb7voDMRxG43E8cg63yqVVLs7E5qDWhbI-8i6SPuXcNp-5Kd88e2uUja66KzRWocUQZaxWi_EyioDs7OquqMdDP3JhStxY3e-5rlQBM-J3wGx-NP2d_77iLmw7xCS3c53YgxWTt2HrR-PBNmw0iZ-q2ofBk5wZgupeT4guSqPJq0EeJ8XnVBuSyxyNapc7R5BvSTkp6qLx-dhWJtdEknJZrnkAL_3757sHz92w4CkmejWedMhjYcR6WsaRYb1IR1z7sQok5zqTTOCQ4vdDoydQKsRHaHtTNEForOykfwhreZGbYyBIUiwSfqgCKgOF1CIMolaGW5zylPeyDlwuhJagBtuwhMxN8V4lS7F14Ggu-aSct9pIWBBbxgtP_rD6FDZ9W5tg02r8M2hluH_NOayrj3pazS4a1cBxOHr8Aqbwwd4
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rare+earth+doped+metal+oxide+nanoparticles+for+photocatalysis%3A+a+perspective&rft.jtitle=Nanotechnology&rft.au=Mehtab%2C+Amir&rft.au=Ahmed%2C+Jahangeer&rft.au=Alshehri%2C+Saad+M&rft.au=Mao%2C+Yuanbing&rft.date=2022-04-02&rft.issn=1361-6528&rft.eissn=1361-6528&rft.volume=33&rft.issue=14&rft_id=info:doi/10.1088%2F1361-6528%2Fac43e7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-6528&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-6528&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-6528&client=summon