Mitigation of salinity stress in cucumber seedlings by exogenous hydrogen sulfide

This research hypothesized that tolerance of cucumber seedlings to salinity stress could be increased by hydrogen sulfide (H 2 S) treatments. In pot experiments, the cucumber seedlings were exposed to three levels of salt stress (0, 50 and 100 mM NaCl), and NaHS as H 2 S donor was foliar applied to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of plant research Jg. 135; H. 3; S. 517 - 529
Hauptverfasser: Turan, Metin, Ekinci, Melek, Kul, Raziye, Boynueyri, Fatma G., Yildirim, Ertan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Singapore Springer Nature Singapore 01.05.2022
Schlagworte:
ISSN:0918-9440, 1618-0860, 1618-0860
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This research hypothesized that tolerance of cucumber seedlings to salinity stress could be increased by hydrogen sulfide (H 2 S) treatments. In pot experiments, the cucumber seedlings were exposed to three levels of salt stress (0, 50 and 100 mM NaCl), and NaHS as H 2 S donor was foliar applied to the cucumber seedlings at five different doses (0, 25, 50, 75 and 100 µM). The effects of the treatments on cucumber seedlings were tested with plant growth properties as well as physiological and biochemical analyses. As the salinity level increased, plant growth properties and chlorophyll reading value (SPAD) decreased. However, H 2 S treatments significantly mitigated the impact of salinity. Salt stress elevated the membrane permeability (MP) and decreased the leaf relative water content (LRWC). H 2 S applied leaves had lower MP and higher LRWC than non-H 2 S applied leaves. On the other hand, photosynthetic properties (net photosynthetic rate, stomatal conductance, transpiration rate and intercellular CO 2 concentration) of the seedlings under salt stress conditions were decreased but this decrease was considerably relieved by H 2 S treatment. The K/Na and Ca/Na ratios under salt stress conditions were higher in H 2 S-applied plants than in non-applied plants. Furthermore, antioxidant enzyme activity [(catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD)] and hydrogen peroxide (H 2 O 2 ), malondialdehyde (MDA), proline, and sucrose concentration in the leaves increased with salinity stress whereas they were reduced with H 2 S treatments under salt stress. Mitigation of salt stress damage in cucumber using H 2 S treatment can be expounded via modulation of enzyme activity, nutrient content, reactive oxygen species (ROS) formation, and osmolytes accumulation.
AbstractList This research hypothesized that tolerance of cucumber seedlings to salinity stress could be increased by hydrogen sulfide (H 2 S) treatments. In pot experiments, the cucumber seedlings were exposed to three levels of salt stress (0, 50 and 100 mM NaCl), and NaHS as H 2 S donor was foliar applied to the cucumber seedlings at five different doses (0, 25, 50, 75 and 100 µM). The effects of the treatments on cucumber seedlings were tested with plant growth properties as well as physiological and biochemical analyses. As the salinity level increased, plant growth properties and chlorophyll reading value (SPAD) decreased. However, H 2 S treatments significantly mitigated the impact of salinity. Salt stress elevated the membrane permeability (MP) and decreased the leaf relative water content (LRWC). H 2 S applied leaves had lower MP and higher LRWC than non-H 2 S applied leaves. On the other hand, photosynthetic properties (net photosynthetic rate, stomatal conductance, transpiration rate and intercellular CO 2 concentration) of the seedlings under salt stress conditions were decreased but this decrease was considerably relieved by H 2 S treatment. The K/Na and Ca/Na ratios under salt stress conditions were higher in H 2 S-applied plants than in non-applied plants. Furthermore, antioxidant enzyme activity [(catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD)] and hydrogen peroxide (H 2 O 2 ), malondialdehyde (MDA), proline, and sucrose concentration in the leaves increased with salinity stress whereas they were reduced with H 2 S treatments under salt stress. Mitigation of salt stress damage in cucumber using H 2 S treatment can be expounded via modulation of enzyme activity, nutrient content, reactive oxygen species (ROS) formation, and osmolytes accumulation.
This research hypothesized that tolerance of cucumber seedlings to salinity stress could be increased by hydrogen sulfide (H2S) treatments. In pot experiments, the cucumber seedlings were exposed to three levels of salt stress (0, 50 and 100 mM NaCl), and NaHS as H2S donor was foliar applied to the cucumber seedlings at five different doses (0, 25, 50, 75 and 100 µM). The effects of the treatments on cucumber seedlings were tested with plant growth properties as well as physiological and biochemical analyses. As the salinity level increased, plant growth properties and chlorophyll reading value (SPAD) decreased. However, H2S treatments significantly mitigated the impact of salinity. Salt stress elevated the membrane permeability (MP) and decreased the leaf relative water content (LRWC). H2S applied leaves had lower MP and higher LRWC than non-H2S applied leaves. On the other hand, photosynthetic properties (net photosynthetic rate, stomatal conductance, transpiration rate and intercellular CO2 concentration) of the seedlings under salt stress conditions were decreased but this decrease was considerably relieved by H2S treatment. The K/Na and Ca/Na ratios under salt stress conditions were higher in H2S-applied plants than in non-applied plants. Furthermore, antioxidant enzyme activity [(catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD)] and hydrogen peroxide (H2O2), malondialdehyde (MDA), proline, and sucrose concentration in the leaves increased with salinity stress whereas they were reduced with H2S treatments under salt stress. Mitigation of salt stress damage in cucumber using H2S treatment can be expounded via modulation of enzyme activity, nutrient content, reactive oxygen species (ROS) formation, and osmolytes accumulation.This research hypothesized that tolerance of cucumber seedlings to salinity stress could be increased by hydrogen sulfide (H2S) treatments. In pot experiments, the cucumber seedlings were exposed to three levels of salt stress (0, 50 and 100 mM NaCl), and NaHS as H2S donor was foliar applied to the cucumber seedlings at five different doses (0, 25, 50, 75 and 100 µM). The effects of the treatments on cucumber seedlings were tested with plant growth properties as well as physiological and biochemical analyses. As the salinity level increased, plant growth properties and chlorophyll reading value (SPAD) decreased. However, H2S treatments significantly mitigated the impact of salinity. Salt stress elevated the membrane permeability (MP) and decreased the leaf relative water content (LRWC). H2S applied leaves had lower MP and higher LRWC than non-H2S applied leaves. On the other hand, photosynthetic properties (net photosynthetic rate, stomatal conductance, transpiration rate and intercellular CO2 concentration) of the seedlings under salt stress conditions were decreased but this decrease was considerably relieved by H2S treatment. The K/Na and Ca/Na ratios under salt stress conditions were higher in H2S-applied plants than in non-applied plants. Furthermore, antioxidant enzyme activity [(catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD)] and hydrogen peroxide (H2O2), malondialdehyde (MDA), proline, and sucrose concentration in the leaves increased with salinity stress whereas they were reduced with H2S treatments under salt stress. Mitigation of salt stress damage in cucumber using H2S treatment can be expounded via modulation of enzyme activity, nutrient content, reactive oxygen species (ROS) formation, and osmolytes accumulation.
This research hypothesized that tolerance of cucumber seedlings to salinity stress could be increased by hydrogen sulfide (H₂S) treatments. In pot experiments, the cucumber seedlings were exposed to three levels of salt stress (0, 50 and 100 mM NaCl), and NaHS as H₂S donor was foliar applied to the cucumber seedlings at five different doses (0, 25, 50, 75 and 100 µM). The effects of the treatments on cucumber seedlings were tested with plant growth properties as well as physiological and biochemical analyses. As the salinity level increased, plant growth properties and chlorophyll reading value (SPAD) decreased. However, H₂S treatments significantly mitigated the impact of salinity. Salt stress elevated the membrane permeability (MP) and decreased the leaf relative water content (LRWC). H₂S applied leaves had lower MP and higher LRWC than non-H₂S applied leaves. On the other hand, photosynthetic properties (net photosynthetic rate, stomatal conductance, transpiration rate and intercellular CO₂ concentration) of the seedlings under salt stress conditions were decreased but this decrease was considerably relieved by H₂S treatment. The K/Na and Ca/Na ratios under salt stress conditions were higher in H₂S-applied plants than in non-applied plants. Furthermore, antioxidant enzyme activity [(catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD)] and hydrogen peroxide (H₂O₂), malondialdehyde (MDA), proline, and sucrose concentration in the leaves increased with salinity stress whereas they were reduced with H₂S treatments under salt stress. Mitigation of salt stress damage in cucumber using H₂S treatment can be expounded via modulation of enzyme activity, nutrient content, reactive oxygen species (ROS) formation, and osmolytes accumulation.
This research hypothesized that tolerance of cucumber seedlings to salinity stress could be increased by hydrogen sulfide (H S) treatments. In pot experiments, the cucumber seedlings were exposed to three levels of salt stress (0, 50 and 100 mM NaCl), and NaHS as H S donor was foliar applied to the cucumber seedlings at five different doses (0, 25, 50, 75 and 100 µM). The effects of the treatments on cucumber seedlings were tested with plant growth properties as well as physiological and biochemical analyses. As the salinity level increased, plant growth properties and chlorophyll reading value (SPAD) decreased. However, H S treatments significantly mitigated the impact of salinity. Salt stress elevated the membrane permeability (MP) and decreased the leaf relative water content (LRWC). H S applied leaves had lower MP and higher LRWC than non-H S applied leaves. On the other hand, photosynthetic properties (net photosynthetic rate, stomatal conductance, transpiration rate and intercellular CO concentration) of the seedlings under salt stress conditions were decreased but this decrease was considerably relieved by H S treatment. The K/Na and Ca/Na ratios under salt stress conditions were higher in H S-applied plants than in non-applied plants. Furthermore, antioxidant enzyme activity [(catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD)] and hydrogen peroxide (H O ), malondialdehyde (MDA), proline, and sucrose concentration in the leaves increased with salinity stress whereas they were reduced with H S treatments under salt stress. Mitigation of salt stress damage in cucumber using H S treatment can be expounded via modulation of enzyme activity, nutrient content, reactive oxygen species (ROS) formation, and osmolytes accumulation.
Author Kul, Raziye
Turan, Metin
Boynueyri, Fatma G.
Ekinci, Melek
Yildirim, Ertan
Author_xml – sequence: 1
  givenname: Metin
  surname: Turan
  fullname: Turan, Metin
  organization: Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University
– sequence: 2
  givenname: Melek
  surname: Ekinci
  fullname: Ekinci, Melek
  organization: Department of Horticulture, Faculty of Agriculture, Atatürk University
– sequence: 3
  givenname: Raziye
  surname: Kul
  fullname: Kul, Raziye
  organization: Department of Horticulture, Faculty of Agriculture, Atatürk University
– sequence: 4
  givenname: Fatma G.
  surname: Boynueyri
  fullname: Boynueyri, Fatma G.
  organization: Central Research Institute Food and Feed Control
– sequence: 5
  givenname: Ertan
  orcidid: 0000-0003-3369-0645
  surname: Yildirim
  fullname: Yildirim, Ertan
  email: ertanyil@atauni.edu.tr
  organization: Department of Horticulture, Faculty of Agriculture, Atatürk University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35445911$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1PFTEUhhuDkQv6B1yYLt0Mtqdf06UhoCQQY6LrptM5cy2Z28F2JmH-Pb1ccMECVz1Jn6c9ed8TcpSmhIR85OyMM2a-FM5Aq4YBNIwLy5v1DdlwzduGtZodkQ2zdbZSsmNyUsotY9wo274jx0JJqSznG_LzJs5x6-c4JToNtPgxpjivtMwZS6Ex0bCEZddhpgWxr7fbQruV4v20xTQthf5Z-7yfaVnGIfb4nrwd_Fjww9N5Sn5fXvw6_95c__h2df71ugnCsLlpe-kt66RHCVz0CEKrAaRQRgWJXgr0hrUdeA2dAAUdQ9OiD1b7PoA14pR8Prx7l6e_C5bZ7WIJOI4-Yd3LgeEtgNXc_h_VSoA2YKCin57Qpdth7-5y3Pm8uufEKgAHIOSplIzDP4Qzt6_FHWpxtRb3WItbq9S-kEKcH0Ofs4_j66o4qKX-k7aY3e205FSTfc16AD8tofw
CitedBy_id crossref_primary_10_1016_j_bcab_2025_103536
crossref_primary_10_1016_j_plaphy_2024_108453
crossref_primary_10_3390_microorganisms13061303
crossref_primary_10_3390_plants12244156
crossref_primary_10_3390_plants12030599
crossref_primary_10_1590_1519_6984_281286
crossref_primary_10_1590_1807_1929_agriambi_v29n10e293009
crossref_primary_10_3390_agronomy13071749
crossref_primary_10_1186_s12870_024_05071_y
crossref_primary_10_3389_fpls_2024_1406092
crossref_primary_10_3390_agriculture13020395
crossref_primary_10_3390_agronomy14071462
crossref_primary_10_1007_s11103_024_01451_y
crossref_primary_10_1016_j_niox_2024_01_002
crossref_primary_10_1016_j_ijbiomac_2025_142400
crossref_primary_10_47115_bsagriculture_1183604
crossref_primary_10_1080_15592324_2023_2276611
crossref_primary_10_1007_s00299_025_03509_7
crossref_primary_10_1007_s10343_024_01094_5
crossref_primary_10_3390_plants12132450
crossref_primary_10_3390_su15021098
crossref_primary_10_3390_antiox12051043
crossref_primary_10_3390_cimb47090754
crossref_primary_10_3390_plants13172418
crossref_primary_10_1016_j_scienta_2023_112508
crossref_primary_10_1016_j_envexpbot_2022_105075
crossref_primary_10_1186_s12870_024_05576_6
crossref_primary_10_1016_j_jenvman_2023_119759
crossref_primary_10_3390_horticulturae8111066
crossref_primary_10_1007_s10341_025_01548_8
Cites_doi 10.1007/s12298-019-00692-2
10.1155/2020/8882486
10.1023/A:1002164719609
10.1016/0003-2697(68)90317-5
10.1007/s00299-017-2239-4
10.1007/s10725-013-9868-6
10.3389/fpls.2016.02035
10.1007/s11105-017-1055-x
10.1002/9780470988503.ch3
10.3390/antiox9080681
10.1016/j.plaphy.2020.09.009
10.1016/0003-2697(79)90738-3
10.1007/s11738-009-0275-6
10.1038/s41598-021-04174-y
10.1146/annurev.arplant.59.032607.092911
10.1016/j.scienta.2009.04.004
10.1016/S1360-1385(00)01838-0
10.1016/j.sajb.2021.07.034
10.1080/03650340.2015.1030611
10.1016/j.scienta.2020.109641
10.3389/fpls.2019.00678
10.1016/j.plantsci.2003.10.024
10.1038/srep42039
10.1134/S1021443719010084
10.1155/2014/701596
10.1093/jxb/ert055
10.1007/s11356-017-0761-0
10.1080/03650340.2016.1168517
10.1111/j.1399-3054.1991.tb00121.x
10.1016/j.jplph.2009.04.001
10.1007/s10725-009-9372-1
10.3389/fpls.2019.00080
10.1007/s11738-009-0385-1
10.1007/978-3-030-40277-8_2
10.1007/s11738-019-2918-6
10.1016/S0168-9452(99)00197-1
10.1007/s11104-011-0936-2
10.1016/j.envexpbot.2018.08.034
10.3389/fpls.2015.00759
10.1016/j.plaphy.2013.07.021
10.1007/s10725-015-0143-x
10.1016/S1360-1385(02)02312-9
10.1080/01904160801895118
10.1007/978-1-4614-4747-4_2
10.1007/BF00018060
10.1016/j.plantsci.2014.06.006
10.1081/PLN-120017664
10.1016/j.niox.2021.04.002
10.1016/j.jplph.2012.12.018
10.1016/j.scienta.2019.109070
10.17221/383-PSE
10.1111/j.1469-8137.2010.03465.x
10.1016/j.plaphy.2021.09.004
10.3389/fpls.2015.01055
10.1093/jxb/erx352
10.1007/s11738-010-0469-y
10.1007/s10535-013-0366-5
ContentType Journal Article
Copyright The Author(s) under exclusive licence to The Botanical Society of Japan 2022
2022. The Author(s) under exclusive licence to The Botanical Society of Japan.
Copyright_xml – notice: The Author(s) under exclusive licence to The Botanical Society of Japan 2022
– notice: 2022. The Author(s) under exclusive licence to The Botanical Society of Japan.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1007/s10265-022-01391-y
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1618-0860
EndPage 529
ExternalDocumentID 35445911
10_1007_s10265_022_01391_y
Genre Journal Article
GroupedDBID ---
-4W
-56
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
199
1N0
203
28-
29L
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3SX
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67N
67Z
6NX
78A
7X2
7X7
88A
88E
8AO
8CJ
8FE
8FH
8FI
8FJ
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADBBV
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
APEBS
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
D1J
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JMI
JZLTJ
KDC
KOV
KOW
KPH
LAS
LK8
LLZTM
M0K
M0L
M1P
M2O
M4Y
M7P
MA-
MOJWN
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
PCBAR
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R89
R9I
RHV
RNI
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK6
WK8
YLTOR
Z45
Z7U
Z7V
Z7W
Z7Y
Z8P
Z8Q
Z8S
ZMTXR
ZOVNA
~A9
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
7X8
PUEGO
7S9
L.6
ID FETCH-LOGICAL-c370t-8d4a90b4ae4213de2365f243575c4ea43ea708b2a62b3252b0e78eac96adc2973
IEDL.DBID RSV
ISICitedReferencesCount 35
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000784732700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0918-9440
1618-0860
IngestDate Sat Sep 27 21:39:44 EDT 2025
Thu Oct 02 10:29:54 EDT 2025
Wed Feb 19 02:25:40 EST 2025
Tue Nov 18 22:23:55 EST 2025
Sat Nov 29 06:00:10 EST 2025
Fri Feb 21 02:47:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Hydrogen sulfide
Physiology
Plant growth
L
Salinity
Cucumis sativus L
Language English
License 2022. The Author(s) under exclusive licence to The Botanical Society of Japan.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-8d4a90b4ae4213de2365f243575c4ea43ea708b2a62b3252b0e78eac96adc2973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3369-0645
PMID 35445911
PQID 2653267272
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_2718229619
proquest_miscellaneous_2653267272
pubmed_primary_35445911
crossref_primary_10_1007_s10265_022_01391_y
crossref_citationtrail_10_1007_s10265_022_01391_y
springer_journals_10_1007_s10265_022_01391_y
PublicationCentury 2000
PublicationDate 20220500
2022-05-00
2022-May
20220501
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 5
  year: 2022
  text: 20220500
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Japan
PublicationTitle Journal of plant research
PublicationTitleAbbrev J Plant Res
PublicationTitleAlternate J Plant Res
PublicationYear 2022
Publisher Springer Nature Singapore
Publisher_xml – name: Springer Nature Singapore
References Mertens D (2005a) Official method 922.02. Preparation of plant laboratory samples. In: Horwitz W, Latimer GW (eds) Official methods of analysis. 18th ed. Association of Official Agricultural Chemists-International, Gaitherburg, MD, pp 1–2
DingHHanQMaDHouJHuangXWangCXieYKangGGuoTCharacterizing physiological and proteomic analysis of the action of H2S to mitigate drought stress in young seedling of wheatPlant Mol Biol Rep20183645571:CAS:528:DC%2BC2sXhvFektrjF10.1007/s11105-017-1055-x
HasanuzzamanMBhuyanMHMZulfiqarFRazaAMohsinSMMahmudJAFıjitaMFotopoulosVReactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulatorAntioxidants202096811:CAS:528:DC%2BB3cXhs12ht73O10.3390/antiox90806817465626
WangYLiLCuiWXuSShenWWangRHydrogen sulfide enhances alfalfa (Medicago sativa) tolerance against salinity during seed germination by nitric oxide pathwayPlant Soil20123511071191:CAS:528:DC%2BC38XhsVOks7g%3D10.1007/s11104-011-0936-2
KolupaevYEFirsovaENYastrebTORyabchunNIKirichenkoVVEffect of hydrogen sulfide donor on antioxidant state of wheat plants and their resistance to soil droughtRuss J Plant Physiol20196659661:CAS:528:DC%2BC1MXht1yktLnO10.1134/S1021443719010084
Mertens D (2005b) Official method 922.02. Preparation of plant laboratory samples. In: Horwitz W, Latimer GW (eds) Official methods of analysis. 18th ed. Association of Official Agricultural Chemists-International, Gaitherburg, MD pp 3–4.
ShiHYeTChanZExogenous application of hydrogen sulfide donor sodium hydrosulfide enhanced multiple abiotic stress tolerance in bermudagrass (Cynodon dactylon (L). Pers.)Plant Physiol Biochem2013712262341:CAS:528:DC%2BC3sXhsFent77J10.1016/j.plaphy.2013.07.02123974354
ElhakemAHGrowth, water relations, and photosynthetic activity are associated with evaluating salinity stress tolerance of wheat cultivarsInt J Agron202010.1155/2020/8882486
ZhangHYeYKWangSHLuoJTangJMaDFHydrogen sulphide counteracts chlorophyll loss in sweet potato seedling leaves and alleviates oxidative damage against osmotic stressPlant Growth Regul2009582432501:CAS:528:DC%2BD1MXmtlKntbo%3D10.1007/s10725-009-9372-1
MittlerROxidative stress, antioxidants and stress toleranceTrends Plant Sci200274054101:CAS:528:DC%2BD38XntVWnu7Y%3D10.1016/S1360-1385(02)02312-912234732
YildirimEKarlidagHTuranMMitigation of salt stress in strawberry by foliar K, Ca and Mg nutrient supplyPlant Soil Environ2009552132211:CAS:528:DC%2BD1MXptFSltr8%3D10.17221/383-PSE
ChenPYangWJinSLiuYHydrogen sulfide alleviates salinity stress in Cyclocarya paliurus by maintaining chlorophyll fluorescence and regulating nitric oxide level and antioxidant capacityPlant Physiol Biochem20211677387471:CAS:528:DC%2BB3MXitVSrtrnP10.1016/j.plaphy.2021.09.00434509132
LiHShiJWangZZhangWYangHH2S pretreatment mitigates the alkaline salt stress on Malus hupehensis roots by regulating Na+/K+ homeostasis and oxidative stressPlant Physiol Biochem20201562332411:CAS:528:DC%2BB3cXhvFSitL%2FL10.1016/j.plaphy.2020.09.00932977178
Martin JHI (2008) A new method to evaluate hydrogen sulfide removal from biogas. http://www.lib.ncsu.edu/resolver/1840.16/1047
BatesLSWaldrenRPTeareIDRapid determination of free proline for water-stress studiesPlant Soil1973392052071:CAS:528:DyaE3sXlsVGitLk%3D10.1007/BF00018060
WeiMYLiuJYLiHHuWJShenZJQiaoFChenJLiuXZhengHLProteomic analysis reveals the protective role of exogenous hydrogen sulfide against salt stress in rice seedlingsNitric Oxide202111114301:CAS:528:DC%2BB3MXovV2ntbw%3D10.1016/j.niox.2021.04.00233839259
GuptaBHuangBMechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterizationInt J Genomics201410.1155/2014/701596248041923996477
FAO (2020) FAO Global Soil Partnership (Soil salinity). http://www.fao.org/global-soil-partnership/areas-of-work/soil-salinity/en/. Accessed 4 Feb 2022
ZhangHJiaoHJiangCXWangSHWeiZJLuoJPJonesRLHydrogen sulfide protects soybean seedlings against drought-induced oxidative stressActa Physiol Plant2010328498571:CAS:528:DC%2BC3cXht1aqtbnF10.1007/s11738-010-0469-y
WangSLiuPChenDYinLLiHDengXSilicon enhanced salt tolerance by improving the root water uptake and decreasing the ion toxicity in cucumberFront Plant Sci2015675910.3389/fpls.2015.00759264420724585001
SairamRKTyagiAPhysiology and molecular biology of salinity stress tolerance in plantsCurr Sci20042004407421
YasinNAKhanWUAhmadSRAliAAhmadAAkramWImperative roles of halotolerant plant growth-promoting rhizobacteria and kinetin in improving salt tolerance and growth of black gram (Phaseolus mungo)Environ Sci Pollut Res201825449145051:CAS:528:DC%2BC2sXhvFektrrF10.1007/s11356-017-0761-0
TiwariJKMunshiADKumarRPandeyRNAroraABhatJSSurejaAKEffect of salt stress on cucumber: Na+–K+ ratio, osmolyte concentration, phenols and chlorophyll contentActa Physiol Plant2010321031141:CAS:528:DC%2BD1MXhsFOqur7M10.1007/s11738-009-0385-1
HongCYChaoYYYangMYChoSCKaoCHNa+ but not Cl− or osmotic stress is involved in NaCl-induced expression of glutathione reductase in roots of rice seedlingsJ Plant Physiol2009166159816061:CAS:528:DC%2BD1MXhtlShtbbF10.1016/j.jplph.2009.04.00119423186
YildirimETuranMGuvencIEffect of foliar salicylic acid applications on growth, chlorophyll, and mineral content of cucumber grown under salt stressJ Plant Nutr2008315936121:CAS:528:DC%2BD1cXislWjurY%3D10.1080/01904160801895118
ZhangTShiZZhangXZhengSWangJMoJAlleviating effects of exogenous melatonin on salt stress in cucumberSci Hortic20202621:CAS:528:DC%2BC1MXitlehurrM10.1016/j.scienta.2019.109070
ShamsMEkinciMOrsSTuranMAgarGKulRYildirimENitric oxide mitigates salt stress effects of pepper seedlings by altering nutrient uptake, enzyme activity and osmolyte accumulationPhysiol Mol Biol Plants201925114911611:CAS:528:DC%2BC1MXhsFChtbfN10.1007/s12298-019-00692-2315647786745581
SouanaKTaïbiKAbderrahimLAAmiratMAchirMBoussaidMMuletJMSalt-tolerance in Vicia faba L. is mitigated by the capacity of salicylic acid to improve photosynthesis and antioxidant responseSci Hortic20202731096411:CAS:528:DC%2BB3cXhsFygs73E10.1016/j.scienta.2020.109641
LiuSDongYXuLKongJEffects of foliar applications of nitric oxide and salicylic acid on salt-induced changes in photosynthesis and antioxidative metabolism of cotton seedlingsPlant Growth Regul20147367781:CAS:528:DC%2BC3sXhs1KjtbnI10.1007/s10725-013-9868-6
JouybanZThe effects of salt stress on plant growthTech J Eng Appl Sci201227101:CAS:528:DC%2BC2cXntVKmsro%3D
LaiDMaoYZhouHLiFWuMZhangJHeZCuiWXieYEndogenous hydrogen sulfide enhances salt tolerance by coupling the reestablishment of redox homeostasis and preventing salt-induced K+ loss in seedlings of Medicago sativaPlant Sci20142251171291:CAS:528:DC%2BC2cXhtFGqs7%2FK10.1016/j.plantsci.2014.06.00625017167
AshrafMPJCHarrisPJCPotential biochemical indicators of salinity tolerance in plantsPlant Sci20041663161:CAS:528:DC%2BD2cXltVOqsA%3D%3D10.1016/j.plantsci.2003.10.024
ChristouAManganarisGAPapadopoulosIFotopoulosVHydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathwaysJ Exp Bot201364195319661:CAS:528:DC%2BC3sXmslSlu7s%3D10.1093/jxb/ert055235678653638822
García-MataCLamattinaLHydrogen sulphide, a novel gasotransmitter involved in guard cell signallingNew Phytol20101889779841:CAS:528:DC%2BC3cXhs1arsL7I10.1111/j.1469-8137.2010.03465.x20831717
FilipovicMRJovanovićVMMore than just an intermediate: hydrogen sulfide signalling in plantsJ Exp Bot201768473347361:CAS:528:DC%2BC1cXhs1WltbfI10.1093/jxb/erx352290485685853611
CakmakIHorstWJEffect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max)Physiol Plant1991834634681:CAS:528:DyaK38XjsFymuw%3D%3D10.1111/j.1399-3054.1991.tb00121.x
JaleelCARiadhKGopiRManivannanPJallaliIAl-JuburiHJXingZCHong-BoSPanneerselvamRAntioxidant defense responses: physiological plasticity in higher plants under abiotic constraintsActa Physiol Plant2009314274361:CAS:528:DC%2BD1MXksF2iu7s%3D10.1007/s11738-009-0275-6
VelikovaVYordanovIEdrevaAOxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyaminesPlant Sci200015159661:CAS:528:DyaK1MXotVKqtb0%3D10.1016/S0168-9452(99)00197-1
ShanCLiuHZhaoLWangXEffects of exogenous hydrogen sulfide on the redox states of ascorbate and glutathione in maize leaves under salt stressBiol Plant2014581691731:CAS:528:DC%2BC2cXht12ktrw%3D10.1007/s10535-013-0366-5
LiZGDingXJDuPFHydrogen sulfide donor sodium hydrosulfide-improved heat tolerance in maize and involvement of prolineJ Plant Physiol20131707417471:CAS:528:DC%2BC3sXktlOht7o%3D10.1016/j.jplph.2012.12.01823523123
OhkawaHOhishiNYagiKAssay for lipid peroxides in animal tissues by thiobarbituric acid reactionAnal Biochem1979953513581:CAS:528:DyaE1MXksFaisbk%3D10.1016/0003-2697(79)90738-336810
YildirimEEkinciMTuranMDursunAKulRParlakovaFRoles of glycine betaine in mitigating deleterious effect of salt stress on lettuce (Lactuca sativa L.)Arch Agron Soil Sci201561167316891:CAS:528:DC%2BC2MXmsl2msbw%3D10.1080/03650340.2015.1030611
EkinciMYildirimETuranMAmeliorating effects of hydrogen sulfide on growth, physiological and biochemical characteristics of eggplant seedlings under salt stressS Afr J Bot202114379891:CAS:528:DC%2BB3MXhvVKqtLnM10.1016/j.sajb.2021.07.034
Abobatta WF (2020) Plant responses and tolerance to combined salt and drought stress. In: Salt and drought stress tolerance in plants. Springer, Cham, pp 17–52. https://doi.org/10.1007/978-3-030-40277-8_2
MostofaMGSaegusaDFujitaMTranLSPHydrogen sulfide regulates salt tolerance in rice by maintaining Na+/K+ balance, mineral homeostasis and oxidative metabolism under excessive salt stressFront Plant Sci20156105510.3389/fpls.2015.01055267340154685665
DengYQBaoJYuanFLiangXFengZTWangBSExogenous hydrogen sulfide alleviates salt stress in wheat seedlings by decreasing Na+ contentPlant Grow
CY Hong (1391_CR25) 2009; 166
Z Jouyban (1391_CR31) 2012; 2
AR Al-Harbi (1391_CR2) 1994; 6
H Zhang (1391_CR64) 2010; 32
M Sarwar (1391_CR48) 2021; 11
T Zhang (1391_CR65) 2020; 262
1391_CR1
A Christou (1391_CR10) 2013; 64
P Chen (1391_CR9) 2021; 167
1391_CR16
H Zhang (1391_CR63) 2009; 58
S Wang (1391_CR57) 2015; 6
B Gupta (1391_CR20) 2014
JT Hancock (1391_CR21) 2019; 161
CA Jaleel (1391_CR28) 2009; 31
E Yildirim (1391_CR61) 2009; 55
MAA Gadallah (1391_CR18) 1999; 42
M Hasanuzzaman (1391_CR22) 2020; 9
YQ Deng (1391_CR11) 2016; 79
LS Bates (1391_CR5) 1973; 39
MR Filipovic (1391_CR17) 2017; 68
R Mittler (1391_CR42) 2002; 7
RK Sairam (1391_CR47) 2004; 2004
1391_CR40
1391_CR41
M Shams (1391_CR49) 2019; 25
M Ekinci (1391_CR14) 2021; 143
C Kaya (1391_CR32) 2003; 26
YE Kolupaev (1391_CR33) 2019; 66
Y Huang (1391_CR26) 2009; 122
C Shan (1391_CR50) 2014; 58
E Yildirim (1391_CR60) 2008; 31
1391_CR6
H Shi (1391_CR51) 2013; 71
S Liu (1391_CR37) 2014; 73
I Cakmak (1391_CR7) 1991; 83
MG Mostofa (1391_CR43) 2015; 6
K Souana (1391_CR52) 2020; 273
MPJC Ashraf (1391_CR4) 2004; 166
H Ding (1391_CR13) 2019; 41
S Ors (1391_CR46) 2016; 62
LF Chen (1391_CR8) 2011; 34
1391_CR39
Y Wang (1391_CR56) 2012; 351
JK Tiwari (1391_CR53) 2010; 32
H Ding (1391_CR12) 2018; 36
H Li (1391_CR36) 2020; 156
H Ohkawa (1391_CR45) 1979; 95
1391_CR23
R Munns (1391_CR44) 2008; 59
JK Zhu (1391_CR66) 2001; 6
C Jiang (1391_CR29) 2017; 7
D Lai (1391_CR34) 2014; 225
E Yildirim (1391_CR62) 2015; 61
MG Annunziata (1391_CR3) 2017; 7
MY Wei (1391_CR58) 2021; 111
V Velikova (1391_CR55) 2000; 151
JL Jiang (1391_CR30) 2019
NA Yasin (1391_CR59) 2018; 25
C García-Mata (1391_CR19) 2010; 188
SV Isayenkov (1391_CR27) 2019; 10
H He (1391_CR24) 2018; 37
AH Elhakem (1391_CR15) 2020
ZG Li (1391_CR35) 2013; 170
J Liu (1391_CR38) 2017; 48
E van Handel (1391_CR54) 1968; 22
References_xml – reference: MunnsRTesterMMechanisms of salinity toleranceAnnu Rev Plant Biol2008596516811:CAS:528:DC%2BD1cXntFaqtrw%3D10.1146/annurev.arplant.59.032607.09291118444910
– reference: ChristouAManganarisGAPapadopoulosIFotopoulosVHydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathwaysJ Exp Bot201364195319661:CAS:528:DC%2BC3sXmslSlu7s%3D10.1093/jxb/ert055235678653638822
– reference: García-MataCLamattinaLHydrogen sulphide, a novel gasotransmitter involved in guard cell signallingNew Phytol20101889779841:CAS:528:DC%2BC3cXhs1arsL7I10.1111/j.1469-8137.2010.03465.x20831717
– reference: GuptaBHuangBMechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterizationInt J Genomics201410.1155/2014/701596248041923996477
– reference: MittlerROxidative stress, antioxidants and stress toleranceTrends Plant Sci200274054101:CAS:528:DC%2BD38XntVWnu7Y%3D10.1016/S1360-1385(02)02312-912234732
– reference: SouanaKTaïbiKAbderrahimLAAmiratMAchirMBoussaidMMuletJMSalt-tolerance in Vicia faba L. is mitigated by the capacity of salicylic acid to improve photosynthesis and antioxidant responseSci Hortic20202731096411:CAS:528:DC%2BB3cXhsFygs73E10.1016/j.scienta.2020.109641
– reference: LiuSDongYXuLKongJEffects of foliar applications of nitric oxide and salicylic acid on salt-induced changes in photosynthesis and antioxidative metabolism of cotton seedlingsPlant Growth Regul20147367781:CAS:528:DC%2BC3sXhs1KjtbnI10.1007/s10725-013-9868-6
– reference: HasanuzzamanMBhuyanMHMZulfiqarFRazaAMohsinSMMahmudJAFıjitaMFotopoulosVReactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulatorAntioxidants202096811:CAS:528:DC%2BB3cXhs12ht73O10.3390/antiox90806817465626
– reference: JaleelCARiadhKGopiRManivannanPJallaliIAl-JuburiHJXingZCHong-BoSPanneerselvamRAntioxidant defense responses: physiological plasticity in higher plants under abiotic constraintsActa Physiol Plant2009314274361:CAS:528:DC%2BD1MXksF2iu7s%3D10.1007/s11738-009-0275-6
– reference: YildirimETuranMGuvencIEffect of foliar salicylic acid applications on growth, chlorophyll, and mineral content of cucumber grown under salt stressJ Plant Nutr2008315936121:CAS:528:DC%2BD1cXislWjurY%3D10.1080/01904160801895118
– reference: DingHMaDHuangXHouJWangCXieYWangYQinHGuoTExogenous hydrogen sulfide alleviates salt stress by improving antioxidant defenses and the salt overly sensitive pathway in wheat seedlingsActa Physiol Plant2019411231:CAS:528:DC%2BC1MXhtFKqsb7P10.1007/s11738-019-2918-6
– reference: LaiDMaoYZhouHLiFWuMZhangJHeZCuiWXieYEndogenous hydrogen sulfide enhances salt tolerance by coupling the reestablishment of redox homeostasis and preventing salt-induced K+ loss in seedlings of Medicago sativaPlant Sci20142251171291:CAS:528:DC%2BC2cXhtFGqs7%2FK10.1016/j.plantsci.2014.06.00625017167
– reference: OhkawaHOhishiNYagiKAssay for lipid peroxides in animal tissues by thiobarbituric acid reactionAnal Biochem1979953513581:CAS:528:DyaE1MXksFaisbk%3D10.1016/0003-2697(79)90738-336810
– reference: JiangCZuCLuDZhengQShenJWangHLiDEffect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stressSci Rep201771141:CAS:528:DC%2BC2sXitlCku7c%3D10.1038/srep42039
– reference: MostofaMGSaegusaDFujitaMTranLSPHydrogen sulfide regulates salt tolerance in rice by maintaining Na+/K+ balance, mineral homeostasis and oxidative metabolism under excessive salt stressFront Plant Sci20156105510.3389/fpls.2015.01055267340154685665
– reference: WeiMYLiuJYLiHHuWJShenZJQiaoFChenJLiuXZhengHLProteomic analysis reveals the protective role of exogenous hydrogen sulfide against salt stress in rice seedlingsNitric Oxide202111114301:CAS:528:DC%2BB3MXovV2ntbw%3D10.1016/j.niox.2021.04.00233839259
– reference: Botella MA, Rosado A, Bressan RA, Hasegawa PM (2005) Plant adaptive responses to salinity stress. In: Matthew AJ, Paul MH (eds) Plant abiotic stress, vol 21, pp 38–70
– reference: Al-HarbiARInfluence of salinity on the growth and nutrients composition of cucumber plants (Cucumis sativus)J King Saud Univ19946263271
– reference: Abobatta WF (2020) Plant responses and tolerance to combined salt and drought stress. In: Salt and drought stress tolerance in plants. Springer, Cham, pp 17–52. https://doi.org/10.1007/978-3-030-40277-8_2
– reference: OrsSEkinciMYildirimESahinUChanges in gas exchange capacity and selected physiological properties of squash seedlings (Cucurbita pepo L.) under well-watered and drought stress conditionsArch Agron Soil Sci201662170017101:CAS:528:DC%2BC28XmtFant78%3D10.1080/03650340.2016.1168517
– reference: HongCYChaoYYYangMYChoSCKaoCHNa+ but not Cl− or osmotic stress is involved in NaCl-induced expression of glutathione reductase in roots of rice seedlingsJ Plant Physiol2009166159816061:CAS:528:DC%2BD1MXhtlShtbbF10.1016/j.jplph.2009.04.00119423186
– reference: SairamRKTyagiAPhysiology and molecular biology of salinity stress tolerance in plantsCurr Sci20042004407421
– reference: BatesLSWaldrenRPTeareIDRapid determination of free proline for water-stress studiesPlant Soil1973392052071:CAS:528:DyaE3sXlsVGitLk%3D10.1007/BF00018060
– reference: EkinciMYildirimETuranMAmeliorating effects of hydrogen sulfide on growth, physiological and biochemical characteristics of eggplant seedlings under salt stressS Afr J Bot202114379891:CAS:528:DC%2BB3MXhvVKqtLnM10.1016/j.sajb.2021.07.034
– reference: ShiHYeTChanZExogenous application of hydrogen sulfide donor sodium hydrosulfide enhanced multiple abiotic stress tolerance in bermudagrass (Cynodon dactylon (L). Pers.)Plant Physiol Biochem2013712262341:CAS:528:DC%2BC3sXhsFent77J10.1016/j.plaphy.2013.07.02123974354
– reference: SarwarMAnjumSAliQAlamMWHaiderMSMehboobWTriacontanol modulates salt stress tolerance in cucumber by altering the physiological and biochemical status of plant cellsSci Rep2021111101:CAS:528:DC%2BB38Xjt1yj10.1038/s41598-021-04174-y
– reference: KolupaevYEFirsovaENYastrebTORyabchunNIKirichenkoVVEffect of hydrogen sulfide donor on antioxidant state of wheat plants and their resistance to soil droughtRuss J Plant Physiol20196659661:CAS:528:DC%2BC1MXht1yktLnO10.1134/S1021443719010084
– reference: ZhangHYeYKWangSHLuoJTangJMaDFHydrogen sulphide counteracts chlorophyll loss in sweet potato seedling leaves and alleviates oxidative damage against osmotic stressPlant Growth Regul2009582432501:CAS:528:DC%2BD1MXmtlKntbo%3D10.1007/s10725-009-9372-1
– reference: IsayenkovSVMaathuisFJPlant salinity stress: many unanswered questions remainFront Plant Sci2019108010.3389/fpls.2019.00080308283396384275
– reference: JiangJLTianYLiLYuMHouRPRenXMH2S alleviates salinity stress in cucumber by maintaining the Na+/K+ balance and regulating H2S metabolism and oxidative stress responseFront Plant Sci201910.3389/fpls.2019.00678320639116930182
– reference: LiHShiJWangZZhangWYangHH2S pretreatment mitigates the alkaline salt stress on Malus hupehensis roots by regulating Na+/K+ homeostasis and oxidative stressPlant Physiol Biochem20201562332411:CAS:528:DC%2BB3cXhvFSitL%2FL10.1016/j.plaphy.2020.09.00932977178
– reference: DingHHanQMaDHouJHuangXWangCXieYKangGGuoTCharacterizing physiological and proteomic analysis of the action of H2S to mitigate drought stress in young seedling of wheatPlant Mol Biol Rep20183645571:CAS:528:DC%2BC2sXhvFektrjF10.1007/s11105-017-1055-x
– reference: LiZGDingXJDuPFHydrogen sulfide donor sodium hydrosulfide-improved heat tolerance in maize and involvement of prolineJ Plant Physiol20131707417471:CAS:528:DC%2BC3sXktlOht7o%3D10.1016/j.jplph.2012.12.01823523123
– reference: ShamsMEkinciMOrsSTuranMAgarGKulRYildirimENitric oxide mitigates salt stress effects of pepper seedlings by altering nutrient uptake, enzyme activity and osmolyte accumulationPhysiol Mol Biol Plants201925114911611:CAS:528:DC%2BC1MXhsFChtbfN10.1007/s12298-019-00692-2315647786745581
– reference: ElhakemAHGrowth, water relations, and photosynthetic activity are associated with evaluating salinity stress tolerance of wheat cultivarsInt J Agron202010.1155/2020/8882486
– reference: GadallahMAAEffects of proline and glycinebetaine on Vicia faba responses to salt stressBiol Plant1999422492571:CAS:528:DyaK1MXltVCksb8%3D10.1023/A:1002164719609
– reference: WangSLiuPChenDYinLLiHDengXSilicon enhanced salt tolerance by improving the root water uptake and decreasing the ion toxicity in cucumberFront Plant Sci2015675910.3389/fpls.2015.00759264420724585001
– reference: CakmakIHorstWJEffect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max)Physiol Plant1991834634681:CAS:528:DyaK38XjsFymuw%3D%3D10.1111/j.1399-3054.1991.tb00121.x
– reference: van HandelEDirect microdetermination of sucroseAnal Biochem19682228028310.1016/0003-2697(68)90317-55641848
– reference: ZhangTShiZZhangXZhengSWangJMoJAlleviating effects of exogenous melatonin on salt stress in cucumberSci Hortic20202621:CAS:528:DC%2BC1MXitlehurrM10.1016/j.scienta.2019.109070
– reference: AnnunziataMGCiarmielloLFWoodrowPMaximovaEFuggiACarilloPDurum wheat roots adapt to salinity remodeling the cellular content of nitrogen metabolites and sucroseFront Plant Sci20177203510.3389/fpls.2016.02035281197165220018
– reference: ZhangHJiaoHJiangCXWangSHWeiZJLuoJPJonesRLHydrogen sulfide protects soybean seedlings against drought-induced oxidative stressActa Physiol Plant2010328498571:CAS:528:DC%2BC3cXht1aqtbnF10.1007/s11738-010-0469-y
– reference: JouybanZThe effects of salt stress on plant growthTech J Eng Appl Sci201227101:CAS:528:DC%2BC2cXntVKmsro%3D
– reference: HeHHeLFRegulation of gaseous signaling molecules on proline metabolism in plantsPlant Cell Rep2018373873921:CAS:528:DC%2BC2sXhvVKgsLjI10.1007/s00299-017-2239-429177845
– reference: VelikovaVYordanovIEdrevaAOxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyaminesPlant Sci200015159661:CAS:528:DyaK1MXotVKqtb0%3D10.1016/S0168-9452(99)00197-1
– reference: Mertens D (2005a) Official method 922.02. Preparation of plant laboratory samples. In: Horwitz W, Latimer GW (eds) Official methods of analysis. 18th ed. Association of Official Agricultural Chemists-International, Gaitherburg, MD, pp 1–2
– reference: YasinNAKhanWUAhmadSRAliAAhmadAAkramWImperative roles of halotolerant plant growth-promoting rhizobacteria and kinetin in improving salt tolerance and growth of black gram (Phaseolus mungo)Environ Sci Pollut Res201825449145051:CAS:528:DC%2BC2sXhvFektrrF10.1007/s11356-017-0761-0
– reference: FilipovicMRJovanovićVMMore than just an intermediate: hydrogen sulfide signalling in plantsJ Exp Bot201768473347361:CAS:528:DC%2BC1cXhs1WltbfI10.1093/jxb/erx352290485685853611
– reference: YildirimEKarlidagHTuranMMitigation of salt stress in strawberry by foliar K, Ca and Mg nutrient supplyPlant Soil Environ2009552132211:CAS:528:DC%2BD1MXptFSltr8%3D10.17221/383-PSE
– reference: LiuJZhangHYinYChenHEffects of exogenous hydrogen sulfide on antioxidant metabolism of rice seed germinated under drought stressJ South Agric2017483137
– reference: ShanCLiuHZhaoLWangXEffects of exogenous hydrogen sulfide on the redox states of ascorbate and glutathione in maize leaves under salt stressBiol Plant2014581691731:CAS:528:DC%2BC2cXht12ktrw%3D10.1007/s10535-013-0366-5
– reference: AshrafMPJCHarrisPJCPotential biochemical indicators of salinity tolerance in plantsPlant Sci20041663161:CAS:528:DC%2BD2cXltVOqsA%3D%3D10.1016/j.plantsci.2003.10.024
– reference: YildirimEEkinciMTuranMDursunAKulRParlakovaFRoles of glycine betaine in mitigating deleterious effect of salt stress on lettuce (Lactuca sativa L.)Arch Agron Soil Sci201561167316891:CAS:528:DC%2BC2MXmsl2msbw%3D10.1080/03650340.2015.1030611
– reference: ChenLFLuWSunJGuoSRZhangZXYangYJEffects of exogenous spermidine on photosynthesis and carbohydrate accumulation in roots and leaves of cucumber (Cucumis sativus L.) seedlings under salt stressJ Nanjing Agric Univ2011343136
– reference: WangYLiLCuiWXuSShenWWangRHydrogen sulfide enhances alfalfa (Medicago sativa) tolerance against salinity during seed germination by nitric oxide pathwayPlant Soil20123511071191:CAS:528:DC%2BC38XhsVOks7g%3D10.1007/s11104-011-0936-2
– reference: KayaCAkBEHiggsDResponse of salt-stressed strawberry plants to supplementary calcium nitrate and/or potassium nitrateJ Plant Nutr2003265435601:CAS:528:DC%2BD3sXhvVOnsbk%3D10.1081/PLN-120017664
– reference: HancockJTHydrogen sulfide and environmental stressesEnviron Exp Bot201916150561:CAS:528:DC%2BC1cXhslOqtbbM10.1016/j.envexpbot.2018.08.034
– reference: Martin JHI (2008) A new method to evaluate hydrogen sulfide removal from biogas. http://www.lib.ncsu.edu/resolver/1840.16/1047
– reference: ZhuJKPlant salt toleranceTrends Plant Sci2001666711:CAS:528:DC%2BD3MXlsFyjtLs%3D10.1016/S1360-1385(00)01838-011173290
– reference: DengYQBaoJYuanFLiangXFengZTWangBSExogenous hydrogen sulfide alleviates salt stress in wheat seedlings by decreasing Na+ contentPlant Growth Regul2016793913991:CAS:528:DC%2BC28Xps1Gl10.1007/s10725-015-0143-x
– reference: FAO (2020) FAO Global Soil Partnership (Soil salinity). http://www.fao.org/global-soil-partnership/areas-of-work/soil-salinity/en/. Accessed 4 Feb 2022
– reference: Hasanuzzaman M, Nahar K, Fujita M (2013) Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In: Ahmad P, Azooz M, Prasad M (eds) Ecophysiology and responses of plants under salt stress. Springer, New York. https://doi.org/10.1007/978-1-4614-4747-4_2
– reference: Mertens D (2005b) Official method 922.02. Preparation of plant laboratory samples. In: Horwitz W, Latimer GW (eds) Official methods of analysis. 18th ed. Association of Official Agricultural Chemists-International, Gaitherburg, MD pp 3–4.
– reference: TiwariJKMunshiADKumarRPandeyRNAroraABhatJSSurejaAKEffect of salt stress on cucumber: Na+–K+ ratio, osmolyte concentration, phenols and chlorophyll contentActa Physiol Plant2010321031141:CAS:528:DC%2BD1MXhsFOqur7M10.1007/s11738-009-0385-1
– reference: ChenPYangWJinSLiuYHydrogen sulfide alleviates salinity stress in Cyclocarya paliurus by maintaining chlorophyll fluorescence and regulating nitric oxide level and antioxidant capacityPlant Physiol Biochem20211677387471:CAS:528:DC%2BB3MXitVSrtrnP10.1016/j.plaphy.2021.09.00434509132
– reference: HuangYTangRCaoQBieZImproving the fruit yield and quality of cucumber by grafting onto the salt tolerant rootstock under NaCl stressSci Hortic200912226311:CAS:528:DC%2BD1MXnsV2ksLo%3D10.1016/j.scienta.2009.04.004
– volume: 48
  start-page: 31
  year: 2017
  ident: 1391_CR38
  publication-title: J South Agric
– volume: 25
  start-page: 1149
  year: 2019
  ident: 1391_CR49
  publication-title: Physiol Mol Biol Plants
  doi: 10.1007/s12298-019-00692-2
– year: 2020
  ident: 1391_CR15
  publication-title: Int J Agron
  doi: 10.1155/2020/8882486
– volume: 42
  start-page: 249
  year: 1999
  ident: 1391_CR18
  publication-title: Biol Plant
  doi: 10.1023/A:1002164719609
– volume: 22
  start-page: 280
  year: 1968
  ident: 1391_CR54
  publication-title: Anal Biochem
  doi: 10.1016/0003-2697(68)90317-5
– volume: 37
  start-page: 387
  year: 2018
  ident: 1391_CR24
  publication-title: Plant Cell Rep
  doi: 10.1007/s00299-017-2239-4
– volume: 73
  start-page: 67
  year: 2014
  ident: 1391_CR37
  publication-title: Plant Growth Regul
  doi: 10.1007/s10725-013-9868-6
– volume: 7
  start-page: 2035
  year: 2017
  ident: 1391_CR3
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2016.02035
– volume: 36
  start-page: 45
  year: 2018
  ident: 1391_CR12
  publication-title: Plant Mol Biol Rep
  doi: 10.1007/s11105-017-1055-x
– ident: 1391_CR39
– ident: 1391_CR16
– ident: 1391_CR6
  doi: 10.1002/9780470988503.ch3
– volume: 9
  start-page: 681
  year: 2020
  ident: 1391_CR22
  publication-title: Antioxidants
  doi: 10.3390/antiox9080681
– volume: 156
  start-page: 233
  year: 2020
  ident: 1391_CR36
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2020.09.009
– volume: 95
  start-page: 351
  year: 1979
  ident: 1391_CR45
  publication-title: Anal Biochem
  doi: 10.1016/0003-2697(79)90738-3
– volume: 31
  start-page: 427
  year: 2009
  ident: 1391_CR28
  publication-title: Acta Physiol Plant
  doi: 10.1007/s11738-009-0275-6
– volume: 11
  start-page: 1
  year: 2021
  ident: 1391_CR48
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-04174-y
– volume: 59
  start-page: 651
  year: 2008
  ident: 1391_CR44
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev.arplant.59.032607.092911
– volume: 122
  start-page: 26
  year: 2009
  ident: 1391_CR26
  publication-title: Sci Hortic
  doi: 10.1016/j.scienta.2009.04.004
– volume: 6
  start-page: 66
  year: 2001
  ident: 1391_CR66
  publication-title: Trends Plant Sci
  doi: 10.1016/S1360-1385(00)01838-0
– volume: 6
  start-page: 263
  year: 1994
  ident: 1391_CR2
  publication-title: J King Saud Univ
– volume: 143
  start-page: 79
  year: 2021
  ident: 1391_CR14
  publication-title: S Afr J Bot
  doi: 10.1016/j.sajb.2021.07.034
– volume: 61
  start-page: 1673
  year: 2015
  ident: 1391_CR62
  publication-title: Arch Agron Soil Sci
  doi: 10.1080/03650340.2015.1030611
– volume: 273
  start-page: 109641
  year: 2020
  ident: 1391_CR52
  publication-title: Sci Hortic
  doi: 10.1016/j.scienta.2020.109641
– year: 2019
  ident: 1391_CR30
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2019.00678
– volume: 166
  start-page: 3
  year: 2004
  ident: 1391_CR4
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2003.10.024
– volume: 7
  start-page: 1
  year: 2017
  ident: 1391_CR29
  publication-title: Sci Rep
  doi: 10.1038/srep42039
– volume: 66
  start-page: 59
  year: 2019
  ident: 1391_CR33
  publication-title: Russ J Plant Physiol
  doi: 10.1134/S1021443719010084
– year: 2014
  ident: 1391_CR20
  publication-title: Int J Genomics
  doi: 10.1155/2014/701596
– volume: 64
  start-page: 1953
  year: 2013
  ident: 1391_CR10
  publication-title: J Exp Bot
  doi: 10.1093/jxb/ert055
– volume: 34
  start-page: 31
  year: 2011
  ident: 1391_CR8
  publication-title: J Nanjing Agric Univ
– volume: 25
  start-page: 4491
  year: 2018
  ident: 1391_CR59
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-017-0761-0
– volume: 2
  start-page: 7
  year: 2012
  ident: 1391_CR31
  publication-title: Tech J Eng Appl Sci
– volume: 62
  start-page: 1700
  year: 2016
  ident: 1391_CR46
  publication-title: Arch Agron Soil Sci
  doi: 10.1080/03650340.2016.1168517
– volume: 83
  start-page: 463
  year: 1991
  ident: 1391_CR7
  publication-title: Physiol Plant
  doi: 10.1111/j.1399-3054.1991.tb00121.x
– volume: 166
  start-page: 1598
  year: 2009
  ident: 1391_CR25
  publication-title: J Plant Physiol
  doi: 10.1016/j.jplph.2009.04.001
– volume: 58
  start-page: 243
  year: 2009
  ident: 1391_CR63
  publication-title: Plant Growth Regul
  doi: 10.1007/s10725-009-9372-1
– volume: 10
  start-page: 80
  year: 2019
  ident: 1391_CR27
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2019.00080
– volume: 32
  start-page: 103
  year: 2010
  ident: 1391_CR53
  publication-title: Acta Physiol Plant
  doi: 10.1007/s11738-009-0385-1
– ident: 1391_CR1
  doi: 10.1007/978-3-030-40277-8_2
– volume: 41
  start-page: 123
  year: 2019
  ident: 1391_CR13
  publication-title: Acta Physiol Plant
  doi: 10.1007/s11738-019-2918-6
– volume: 151
  start-page: 59
  year: 2000
  ident: 1391_CR55
  publication-title: Plant Sci
  doi: 10.1016/S0168-9452(99)00197-1
– volume: 351
  start-page: 107
  year: 2012
  ident: 1391_CR56
  publication-title: Plant Soil
  doi: 10.1007/s11104-011-0936-2
– volume: 161
  start-page: 50
  year: 2019
  ident: 1391_CR21
  publication-title: Environ Exp Bot
  doi: 10.1016/j.envexpbot.2018.08.034
– volume: 6
  start-page: 759
  year: 2015
  ident: 1391_CR57
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2015.00759
– volume: 71
  start-page: 226
  year: 2013
  ident: 1391_CR51
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2013.07.021
– volume: 79
  start-page: 391
  year: 2016
  ident: 1391_CR11
  publication-title: Plant Growth Regul
  doi: 10.1007/s10725-015-0143-x
– volume: 7
  start-page: 405
  year: 2002
  ident: 1391_CR42
  publication-title: Trends Plant Sci
  doi: 10.1016/S1360-1385(02)02312-9
– volume: 31
  start-page: 593
  year: 2008
  ident: 1391_CR60
  publication-title: J Plant Nutr
  doi: 10.1080/01904160801895118
– ident: 1391_CR23
  doi: 10.1007/978-1-4614-4747-4_2
– ident: 1391_CR40
– volume: 2004
  start-page: 407
  year: 2004
  ident: 1391_CR47
  publication-title: Curr Sci
– volume: 39
  start-page: 205
  year: 1973
  ident: 1391_CR5
  publication-title: Plant Soil
  doi: 10.1007/BF00018060
– volume: 225
  start-page: 117
  year: 2014
  ident: 1391_CR34
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2014.06.006
– volume: 26
  start-page: 543
  year: 2003
  ident: 1391_CR32
  publication-title: J Plant Nutr
  doi: 10.1081/PLN-120017664
– volume: 111
  start-page: 14
  year: 2021
  ident: 1391_CR58
  publication-title: Nitric Oxide
  doi: 10.1016/j.niox.2021.04.002
– volume: 170
  start-page: 741
  year: 2013
  ident: 1391_CR35
  publication-title: J Plant Physiol
  doi: 10.1016/j.jplph.2012.12.018
– volume: 262
  year: 2020
  ident: 1391_CR65
  publication-title: Sci Hortic
  doi: 10.1016/j.scienta.2019.109070
– volume: 55
  start-page: 213
  year: 2009
  ident: 1391_CR61
  publication-title: Plant Soil Environ
  doi: 10.17221/383-PSE
– volume: 188
  start-page: 977
  year: 2010
  ident: 1391_CR19
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2010.03465.x
– volume: 167
  start-page: 738
  year: 2021
  ident: 1391_CR9
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2021.09.004
– volume: 6
  start-page: 1055
  year: 2015
  ident: 1391_CR43
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2015.01055
– volume: 68
  start-page: 4733
  year: 2017
  ident: 1391_CR17
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erx352
– volume: 32
  start-page: 849
  year: 2010
  ident: 1391_CR64
  publication-title: Acta Physiol Plant
  doi: 10.1007/s11738-010-0469-y
– ident: 1391_CR41
– volume: 58
  start-page: 169
  year: 2014
  ident: 1391_CR50
  publication-title: Biol Plant
  doi: 10.1007/s10535-013-0366-5
SSID ssj0017598
Score 2.4622083
Snippet This research hypothesized that tolerance of cucumber seedlings to salinity stress could be increased by hydrogen sulfide (H 2 S) treatments. In pot...
This research hypothesized that tolerance of cucumber seedlings to salinity stress could be increased by hydrogen sulfide (H S) treatments. In pot experiments,...
This research hypothesized that tolerance of cucumber seedlings to salinity stress could be increased by hydrogen sulfide (H2S) treatments. In pot experiments,...
This research hypothesized that tolerance of cucumber seedlings to salinity stress could be increased by hydrogen sulfide (H₂S) treatments. In pot experiments,...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 517
SubjectTerms antioxidant enzymes
Biomedical and Life Sciences
carbon dioxide
catalase
chlorophyll
cucumbers
enzyme activity
foliar application
hydrogen peroxide
hydrogen sulfide
leaf relative water content
Life Sciences
malondialdehyde
membrane permeability
nutrient content
peroxidase
photosynthesis
Plant Biochemistry
Plant Ecology
plant growth
Plant Physiology
Plant Sciences
proline
Regular Paper – Physiology/Biochemistry/Molecular and Cellular Biology
salinity
salt stress
stomatal conductance
sucrose
superoxide dismutase
Title Mitigation of salinity stress in cucumber seedlings by exogenous hydrogen sulfide
URI https://link.springer.com/article/10.1007/s10265-022-01391-y
https://www.ncbi.nlm.nih.gov/pubmed/35445911
https://www.proquest.com/docview/2653267272
https://www.proquest.com/docview/2718229619
Volume 135
WOSCitedRecordID wos000784732700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK
  customDbUrl:
  eissn: 1618-0860
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017598
  issn: 0918-9440
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ47MCF92M8piBxg0pt0kd6BMTEASae025VkqZiEmrRuiH673H6GKChSXDrwW0jO8lny_5sgBNBudS-phbGysJyBcaskisHo5RECBm4WpQZ_P5N0OvxwSC8q0lheVPt3qQky5v6G9mN-oZNbEoJWOhYxSIsI9xxM7Dh4bE_zR0EXjkBF4EQj7Lr2jVV5vdv_ISjGR9zJj9awk537X8LXofV2s0k59W-2IAFnW5C6yJDV7DYgvvbYdVaI0tJlpBcGHrkuCAVcYQMU6ImqhwVQnJEN8NYz4ksiP7Iqp6u5KWIR-aZ5JPXZBjrbXjuXj1dXlv1bAVLscAeWzx20QrSFdqlDos1Zb6XUPSdAk-hgVymRWBzSYVPJaMelbYOOF7SoS9iZeZd7cBSmqV6D4hEkEuk4ycx2pYxwYUdKuYkOrQ97cmwDU6j4kjVjcfN_IvX6KtlstFUhJqKSk1FRRtOp--8VW035kofN5aL8HSYlIdINWojQkH0T02yeY4MwjOlIUaSbditzD79JzO9ihAP2nDW2DiqD3k-Z0H7fxM_gBVabhNTR3kIS-PRRB9BS72Ph_moA4vBgHfKPf4J5-L1Bw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB68QF-8j_WM4JsW2qTno4qiuC7e-BaSNMWFpZXtrth_76THqigL-taHaRtmknwzzHwzAAeChlL7mloYKwvLFRizylA5GKUkQsjA1aLM4D-1g04nfH6ObmpSWN5UuzcpyfKm_kJ2o75hE5tSAhY5VjEJ0y4ilumYf3f_NModBF45AReBEI-y69o1Veb3b3yHox8-5o_8aAk75wv_W_AizNduJjmu9sUSTOh0GWZOMnQFixW4ve5WrTWylGQJyYWhRw4KUhFHSDclaqjKUSEkR3QzjPWcyILo96zq6Upeirhvnkk-7CXdWK_C4_nZw-mFVc9WsBQL7IEVxi5aQbpCowpZrCnzvYSi7xR4Cg3kMi0CO5RU-FQy6lFp6yDESzryRazMvKs1mEqzVG8AkQhyiXT8JEbbMiZCYUeKOYmObE97MmqB06iYq7rxuJl_0eOfLZONpjhqipea4kULDkfvvFZtN8ZK7zeW43g6TMpDpBq1wVEQ_VOTbB4jg_BMaYSRZAvWK7OP_slMryLEgxYcNTbm9SHPxyxo82_iezB78XDd5u3LztUWzNFyy5iaym2YGvSHegdm1Nugm_d3y53-AaaS9wM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB4VGqFeaHk2fcAicQMLe3f9OhbaCAREQUDEbbW7XotIyEaxg-p_31nbCaCgSKg3H8YPzcx6ZjTzfQOwL2mkTGCog7WydLjEmlVF2sMqJZVShdzIuoM_vAj7_ejuLh68QPHX0-7TlmSDabAsTVl59JikRy-AbzSwyGI7VsBiz6mW4CO3g_S2Xr8ezvoIoV9vw8WgiMeac7eFzbz9jNehaS7fnOuV1iGo9_n_P_4LrLbpJ_nV-MsafDDZOnSOc0wRqw24uhw1lBt5RvKUFNLCJsuKNIASMsqInuh6hQgpMOpZJHtBVEXM37zheiX3VTK216SYPKSjxGzCbe_Pzcmp0-5ccDQL3dKJEo7WUVwaTj2WGMoCP6WYU4W-RsNxZmToRorKgCpGfapcE0b4844DmWi7B2sLlrM8M1-BKAx-qfKCNEGbMyYj6caaeamJXd_4Ku6CN1W30C0hud2L8SCeqZStpgRqStSaElUXDmb3PDZ0HAul96ZWFHhqbCtEZga1IVAQ81bbhF4gg2Gb0hgrzC5sNy4weyezHEYYJ7pwOLW3aA9_seCDvr1PfBdWBr974uKsf_4dPtHaY-yo5Q9YLscT8xM6-qkcFeOd2un_AWfw_-c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitigation+of+salinity+stress+in+cucumber+seedlings+by+exogenous+hydrogen+sulfide&rft.jtitle=Journal+of+plant+research&rft.au=Turan%2C+Metin&rft.au=Ekinci%2C+Melek&rft.au=Kul%2C+Raziye&rft.au=Boynueyri%2C+Fatma+G&rft.date=2022-05-01&rft.issn=0918-9440&rft.volume=135&rft.issue=3+p.517-529&rft.spage=517&rft.epage=529&rft_id=info:doi/10.1007%2Fs10265-022-01391-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0918-9440&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0918-9440&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0918-9440&client=summon