Mitigation of salinity stress in cucumber seedlings by exogenous hydrogen sulfide
This research hypothesized that tolerance of cucumber seedlings to salinity stress could be increased by hydrogen sulfide (H 2 S) treatments. In pot experiments, the cucumber seedlings were exposed to three levels of salt stress (0, 50 and 100 mM NaCl), and NaHS as H 2 S donor was foliar applied to...
Gespeichert in:
| Veröffentlicht in: | Journal of plant research Jg. 135; H. 3; S. 517 - 529 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Singapore
Springer Nature Singapore
01.05.2022
|
| Schlagworte: | |
| ISSN: | 0918-9440, 1618-0860, 1618-0860 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This research hypothesized that tolerance of cucumber seedlings to salinity stress could be increased by hydrogen sulfide (H
2
S) treatments. In pot experiments, the cucumber seedlings were exposed to three levels of salt stress (0, 50 and 100 mM NaCl), and NaHS as H
2
S donor was foliar applied to the cucumber seedlings at five different doses (0, 25, 50, 75 and 100 µM). The effects of the treatments on cucumber seedlings were tested with plant growth properties as well as physiological and biochemical analyses. As the salinity level increased, plant growth properties and chlorophyll reading value (SPAD) decreased. However, H
2
S treatments significantly mitigated the impact of salinity. Salt stress elevated the membrane permeability (MP) and decreased the leaf relative water content (LRWC). H
2
S applied leaves had lower MP and higher LRWC than non-H
2
S applied leaves. On the other hand, photosynthetic properties (net photosynthetic rate, stomatal conductance, transpiration rate and intercellular CO
2
concentration) of the seedlings under salt stress conditions were decreased but this decrease was considerably relieved by H
2
S treatment. The K/Na and Ca/Na ratios under salt stress conditions were higher in H
2
S-applied plants than in non-applied plants. Furthermore, antioxidant enzyme activity [(catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD)] and hydrogen peroxide (H
2
O
2
), malondialdehyde (MDA), proline, and sucrose concentration in the leaves increased with salinity stress whereas they were reduced with H
2
S treatments under salt stress. Mitigation of salt stress damage in cucumber using H
2
S treatment can be expounded via modulation of enzyme activity, nutrient content, reactive oxygen species (ROS) formation, and osmolytes accumulation. |
|---|---|
| AbstractList | This research hypothesized that tolerance of cucumber seedlings to salinity stress could be increased by hydrogen sulfide (H
2
S) treatments. In pot experiments, the cucumber seedlings were exposed to three levels of salt stress (0, 50 and 100 mM NaCl), and NaHS as H
2
S donor was foliar applied to the cucumber seedlings at five different doses (0, 25, 50, 75 and 100 µM). The effects of the treatments on cucumber seedlings were tested with plant growth properties as well as physiological and biochemical analyses. As the salinity level increased, plant growth properties and chlorophyll reading value (SPAD) decreased. However, H
2
S treatments significantly mitigated the impact of salinity. Salt stress elevated the membrane permeability (MP) and decreased the leaf relative water content (LRWC). H
2
S applied leaves had lower MP and higher LRWC than non-H
2
S applied leaves. On the other hand, photosynthetic properties (net photosynthetic rate, stomatal conductance, transpiration rate and intercellular CO
2
concentration) of the seedlings under salt stress conditions were decreased but this decrease was considerably relieved by H
2
S treatment. The K/Na and Ca/Na ratios under salt stress conditions were higher in H
2
S-applied plants than in non-applied plants. Furthermore, antioxidant enzyme activity [(catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD)] and hydrogen peroxide (H
2
O
2
), malondialdehyde (MDA), proline, and sucrose concentration in the leaves increased with salinity stress whereas they were reduced with H
2
S treatments under salt stress. Mitigation of salt stress damage in cucumber using H
2
S treatment can be expounded via modulation of enzyme activity, nutrient content, reactive oxygen species (ROS) formation, and osmolytes accumulation. This research hypothesized that tolerance of cucumber seedlings to salinity stress could be increased by hydrogen sulfide (H2S) treatments. In pot experiments, the cucumber seedlings were exposed to three levels of salt stress (0, 50 and 100 mM NaCl), and NaHS as H2S donor was foliar applied to the cucumber seedlings at five different doses (0, 25, 50, 75 and 100 µM). The effects of the treatments on cucumber seedlings were tested with plant growth properties as well as physiological and biochemical analyses. As the salinity level increased, plant growth properties and chlorophyll reading value (SPAD) decreased. However, H2S treatments significantly mitigated the impact of salinity. Salt stress elevated the membrane permeability (MP) and decreased the leaf relative water content (LRWC). H2S applied leaves had lower MP and higher LRWC than non-H2S applied leaves. On the other hand, photosynthetic properties (net photosynthetic rate, stomatal conductance, transpiration rate and intercellular CO2 concentration) of the seedlings under salt stress conditions were decreased but this decrease was considerably relieved by H2S treatment. The K/Na and Ca/Na ratios under salt stress conditions were higher in H2S-applied plants than in non-applied plants. Furthermore, antioxidant enzyme activity [(catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD)] and hydrogen peroxide (H2O2), malondialdehyde (MDA), proline, and sucrose concentration in the leaves increased with salinity stress whereas they were reduced with H2S treatments under salt stress. Mitigation of salt stress damage in cucumber using H2S treatment can be expounded via modulation of enzyme activity, nutrient content, reactive oxygen species (ROS) formation, and osmolytes accumulation.This research hypothesized that tolerance of cucumber seedlings to salinity stress could be increased by hydrogen sulfide (H2S) treatments. In pot experiments, the cucumber seedlings were exposed to three levels of salt stress (0, 50 and 100 mM NaCl), and NaHS as H2S donor was foliar applied to the cucumber seedlings at five different doses (0, 25, 50, 75 and 100 µM). The effects of the treatments on cucumber seedlings were tested with plant growth properties as well as physiological and biochemical analyses. As the salinity level increased, plant growth properties and chlorophyll reading value (SPAD) decreased. However, H2S treatments significantly mitigated the impact of salinity. Salt stress elevated the membrane permeability (MP) and decreased the leaf relative water content (LRWC). H2S applied leaves had lower MP and higher LRWC than non-H2S applied leaves. On the other hand, photosynthetic properties (net photosynthetic rate, stomatal conductance, transpiration rate and intercellular CO2 concentration) of the seedlings under salt stress conditions were decreased but this decrease was considerably relieved by H2S treatment. The K/Na and Ca/Na ratios under salt stress conditions were higher in H2S-applied plants than in non-applied plants. Furthermore, antioxidant enzyme activity [(catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD)] and hydrogen peroxide (H2O2), malondialdehyde (MDA), proline, and sucrose concentration in the leaves increased with salinity stress whereas they were reduced with H2S treatments under salt stress. Mitigation of salt stress damage in cucumber using H2S treatment can be expounded via modulation of enzyme activity, nutrient content, reactive oxygen species (ROS) formation, and osmolytes accumulation. This research hypothesized that tolerance of cucumber seedlings to salinity stress could be increased by hydrogen sulfide (H₂S) treatments. In pot experiments, the cucumber seedlings were exposed to three levels of salt stress (0, 50 and 100 mM NaCl), and NaHS as H₂S donor was foliar applied to the cucumber seedlings at five different doses (0, 25, 50, 75 and 100 µM). The effects of the treatments on cucumber seedlings were tested with plant growth properties as well as physiological and biochemical analyses. As the salinity level increased, plant growth properties and chlorophyll reading value (SPAD) decreased. However, H₂S treatments significantly mitigated the impact of salinity. Salt stress elevated the membrane permeability (MP) and decreased the leaf relative water content (LRWC). H₂S applied leaves had lower MP and higher LRWC than non-H₂S applied leaves. On the other hand, photosynthetic properties (net photosynthetic rate, stomatal conductance, transpiration rate and intercellular CO₂ concentration) of the seedlings under salt stress conditions were decreased but this decrease was considerably relieved by H₂S treatment. The K/Na and Ca/Na ratios under salt stress conditions were higher in H₂S-applied plants than in non-applied plants. Furthermore, antioxidant enzyme activity [(catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD)] and hydrogen peroxide (H₂O₂), malondialdehyde (MDA), proline, and sucrose concentration in the leaves increased with salinity stress whereas they were reduced with H₂S treatments under salt stress. Mitigation of salt stress damage in cucumber using H₂S treatment can be expounded via modulation of enzyme activity, nutrient content, reactive oxygen species (ROS) formation, and osmolytes accumulation. This research hypothesized that tolerance of cucumber seedlings to salinity stress could be increased by hydrogen sulfide (H S) treatments. In pot experiments, the cucumber seedlings were exposed to three levels of salt stress (0, 50 and 100 mM NaCl), and NaHS as H S donor was foliar applied to the cucumber seedlings at five different doses (0, 25, 50, 75 and 100 µM). The effects of the treatments on cucumber seedlings were tested with plant growth properties as well as physiological and biochemical analyses. As the salinity level increased, plant growth properties and chlorophyll reading value (SPAD) decreased. However, H S treatments significantly mitigated the impact of salinity. Salt stress elevated the membrane permeability (MP) and decreased the leaf relative water content (LRWC). H S applied leaves had lower MP and higher LRWC than non-H S applied leaves. On the other hand, photosynthetic properties (net photosynthetic rate, stomatal conductance, transpiration rate and intercellular CO concentration) of the seedlings under salt stress conditions were decreased but this decrease was considerably relieved by H S treatment. The K/Na and Ca/Na ratios under salt stress conditions were higher in H S-applied plants than in non-applied plants. Furthermore, antioxidant enzyme activity [(catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD)] and hydrogen peroxide (H O ), malondialdehyde (MDA), proline, and sucrose concentration in the leaves increased with salinity stress whereas they were reduced with H S treatments under salt stress. Mitigation of salt stress damage in cucumber using H S treatment can be expounded via modulation of enzyme activity, nutrient content, reactive oxygen species (ROS) formation, and osmolytes accumulation. |
| Author | Kul, Raziye Turan, Metin Boynueyri, Fatma G. Ekinci, Melek Yildirim, Ertan |
| Author_xml | – sequence: 1 givenname: Metin surname: Turan fullname: Turan, Metin organization: Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University – sequence: 2 givenname: Melek surname: Ekinci fullname: Ekinci, Melek organization: Department of Horticulture, Faculty of Agriculture, Atatürk University – sequence: 3 givenname: Raziye surname: Kul fullname: Kul, Raziye organization: Department of Horticulture, Faculty of Agriculture, Atatürk University – sequence: 4 givenname: Fatma G. surname: Boynueyri fullname: Boynueyri, Fatma G. organization: Central Research Institute Food and Feed Control – sequence: 5 givenname: Ertan orcidid: 0000-0003-3369-0645 surname: Yildirim fullname: Yildirim, Ertan email: ertanyil@atauni.edu.tr organization: Department of Horticulture, Faculty of Agriculture, Atatürk University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35445911$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU1PFTEUhhuDkQv6B1yYLt0Mtqdf06UhoCQQY6LrptM5cy2Z28F2JmH-Pb1ccMECVz1Jn6c9ed8TcpSmhIR85OyMM2a-FM5Aq4YBNIwLy5v1DdlwzduGtZodkQ2zdbZSsmNyUsotY9wo274jx0JJqSznG_LzJs5x6-c4JToNtPgxpjivtMwZS6Ex0bCEZddhpgWxr7fbQruV4v20xTQthf5Z-7yfaVnGIfb4nrwd_Fjww9N5Sn5fXvw6_95c__h2df71ugnCsLlpe-kt66RHCVz0CEKrAaRQRgWJXgr0hrUdeA2dAAUdQ9OiD1b7PoA14pR8Prx7l6e_C5bZ7WIJOI4-Yd3LgeEtgNXc_h_VSoA2YKCin57Qpdth7-5y3Pm8uufEKgAHIOSplIzDP4Qzt6_FHWpxtRb3WItbq9S-kEKcH0Ofs4_j66o4qKX-k7aY3e205FSTfc16AD8tofw |
| CitedBy_id | crossref_primary_10_1016_j_bcab_2025_103536 crossref_primary_10_1016_j_plaphy_2024_108453 crossref_primary_10_3390_microorganisms13061303 crossref_primary_10_3390_plants12244156 crossref_primary_10_3390_plants12030599 crossref_primary_10_1590_1519_6984_281286 crossref_primary_10_1590_1807_1929_agriambi_v29n10e293009 crossref_primary_10_3390_agronomy13071749 crossref_primary_10_1186_s12870_024_05071_y crossref_primary_10_3389_fpls_2024_1406092 crossref_primary_10_3390_agriculture13020395 crossref_primary_10_3390_agronomy14071462 crossref_primary_10_1007_s11103_024_01451_y crossref_primary_10_1016_j_niox_2024_01_002 crossref_primary_10_1016_j_ijbiomac_2025_142400 crossref_primary_10_47115_bsagriculture_1183604 crossref_primary_10_1080_15592324_2023_2276611 crossref_primary_10_1007_s00299_025_03509_7 crossref_primary_10_1007_s10343_024_01094_5 crossref_primary_10_3390_plants12132450 crossref_primary_10_3390_su15021098 crossref_primary_10_3390_antiox12051043 crossref_primary_10_3390_cimb47090754 crossref_primary_10_3390_plants13172418 crossref_primary_10_1016_j_scienta_2023_112508 crossref_primary_10_1016_j_envexpbot_2022_105075 crossref_primary_10_1186_s12870_024_05576_6 crossref_primary_10_1016_j_jenvman_2023_119759 crossref_primary_10_3390_horticulturae8111066 crossref_primary_10_1007_s10341_025_01548_8 |
| Cites_doi | 10.1007/s12298-019-00692-2 10.1155/2020/8882486 10.1023/A:1002164719609 10.1016/0003-2697(68)90317-5 10.1007/s00299-017-2239-4 10.1007/s10725-013-9868-6 10.3389/fpls.2016.02035 10.1007/s11105-017-1055-x 10.1002/9780470988503.ch3 10.3390/antiox9080681 10.1016/j.plaphy.2020.09.009 10.1016/0003-2697(79)90738-3 10.1007/s11738-009-0275-6 10.1038/s41598-021-04174-y 10.1146/annurev.arplant.59.032607.092911 10.1016/j.scienta.2009.04.004 10.1016/S1360-1385(00)01838-0 10.1016/j.sajb.2021.07.034 10.1080/03650340.2015.1030611 10.1016/j.scienta.2020.109641 10.3389/fpls.2019.00678 10.1016/j.plantsci.2003.10.024 10.1038/srep42039 10.1134/S1021443719010084 10.1155/2014/701596 10.1093/jxb/ert055 10.1007/s11356-017-0761-0 10.1080/03650340.2016.1168517 10.1111/j.1399-3054.1991.tb00121.x 10.1016/j.jplph.2009.04.001 10.1007/s10725-009-9372-1 10.3389/fpls.2019.00080 10.1007/s11738-009-0385-1 10.1007/978-3-030-40277-8_2 10.1007/s11738-019-2918-6 10.1016/S0168-9452(99)00197-1 10.1007/s11104-011-0936-2 10.1016/j.envexpbot.2018.08.034 10.3389/fpls.2015.00759 10.1016/j.plaphy.2013.07.021 10.1007/s10725-015-0143-x 10.1016/S1360-1385(02)02312-9 10.1080/01904160801895118 10.1007/978-1-4614-4747-4_2 10.1007/BF00018060 10.1016/j.plantsci.2014.06.006 10.1081/PLN-120017664 10.1016/j.niox.2021.04.002 10.1016/j.jplph.2012.12.018 10.1016/j.scienta.2019.109070 10.17221/383-PSE 10.1111/j.1469-8137.2010.03465.x 10.1016/j.plaphy.2021.09.004 10.3389/fpls.2015.01055 10.1093/jxb/erx352 10.1007/s11738-010-0469-y 10.1007/s10535-013-0366-5 |
| ContentType | Journal Article |
| Copyright | The Author(s) under exclusive licence to The Botanical Society of Japan 2022 2022. The Author(s) under exclusive licence to The Botanical Society of Japan. |
| Copyright_xml | – notice: The Author(s) under exclusive licence to The Botanical Society of Japan 2022 – notice: 2022. The Author(s) under exclusive licence to The Botanical Society of Japan. |
| DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
| DOI | 10.1007/s10265-022-01391-y |
| DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Botany |
| EISSN | 1618-0860 |
| EndPage | 529 |
| ExternalDocumentID | 35445911 10_1007_s10265_022_01391_y |
| Genre | Journal Article |
| GroupedDBID | --- -4W -56 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 199 1N0 203 28- 29L 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67N 67Z 6NX 78A 7X2 7X7 88A 88E 8AO 8CJ 8FE 8FH 8FI 8FJ 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG APEBS ARMRJ ASPBG ATCPS AVWKF AXYYD AZFZN AZQEC B-. BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BKSAR BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIOEI EJD EMB EMOBN EN4 EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JMI JZLTJ KDC KOV KOW KPH LAS LK8 LLZTM M0K M0L M1P M2O M4Y M7P MA- MOJWN N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 PCBAR PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R89 R9I RHV RNI ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK6 WK8 YLTOR Z45 Z7U Z7V Z7W Z7Y Z8P Z8Q Z8S ZMTXR ZOVNA ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB NPM 7X8 PUEGO 7S9 L.6 |
| ID | FETCH-LOGICAL-c370t-8d4a90b4ae4213de2365f243575c4ea43ea708b2a62b3252b0e78eac96adc2973 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 35 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000784732700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0918-9440 1618-0860 |
| IngestDate | Sat Sep 27 21:39:44 EDT 2025 Thu Oct 02 10:29:54 EDT 2025 Wed Feb 19 02:25:40 EST 2025 Tue Nov 18 22:23:55 EST 2025 Sat Nov 29 06:00:10 EST 2025 Fri Feb 21 02:47:41 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Hydrogen sulfide Physiology Plant growth L Salinity Cucumis sativus L |
| Language | English |
| License | 2022. The Author(s) under exclusive licence to The Botanical Society of Japan. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c370t-8d4a90b4ae4213de2365f243575c4ea43ea708b2a62b3252b0e78eac96adc2973 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-3369-0645 |
| PMID | 35445911 |
| PQID | 2653267272 |
| PQPubID | 23479 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_2718229619 proquest_miscellaneous_2653267272 pubmed_primary_35445911 crossref_primary_10_1007_s10265_022_01391_y crossref_citationtrail_10_1007_s10265_022_01391_y springer_journals_10_1007_s10265_022_01391_y |
| PublicationCentury | 2000 |
| PublicationDate | 20220500 2022-05-00 2022-May 20220501 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 5 year: 2022 text: 20220500 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore – name: Japan |
| PublicationTitle | Journal of plant research |
| PublicationTitleAbbrev | J Plant Res |
| PublicationTitleAlternate | J Plant Res |
| PublicationYear | 2022 |
| Publisher | Springer Nature Singapore |
| Publisher_xml | – name: Springer Nature Singapore |
| References | Mertens D (2005a) Official method 922.02. Preparation of plant laboratory samples. In: Horwitz W, Latimer GW (eds) Official methods of analysis. 18th ed. Association of Official Agricultural Chemists-International, Gaitherburg, MD, pp 1–2 DingHHanQMaDHouJHuangXWangCXieYKangGGuoTCharacterizing physiological and proteomic analysis of the action of H2S to mitigate drought stress in young seedling of wheatPlant Mol Biol Rep20183645571:CAS:528:DC%2BC2sXhvFektrjF10.1007/s11105-017-1055-x HasanuzzamanMBhuyanMHMZulfiqarFRazaAMohsinSMMahmudJAFıjitaMFotopoulosVReactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulatorAntioxidants202096811:CAS:528:DC%2BB3cXhs12ht73O10.3390/antiox90806817465626 WangYLiLCuiWXuSShenWWangRHydrogen sulfide enhances alfalfa (Medicago sativa) tolerance against salinity during seed germination by nitric oxide pathwayPlant Soil20123511071191:CAS:528:DC%2BC38XhsVOks7g%3D10.1007/s11104-011-0936-2 KolupaevYEFirsovaENYastrebTORyabchunNIKirichenkoVVEffect of hydrogen sulfide donor on antioxidant state of wheat plants and their resistance to soil droughtRuss J Plant Physiol20196659661:CAS:528:DC%2BC1MXht1yktLnO10.1134/S1021443719010084 Mertens D (2005b) Official method 922.02. Preparation of plant laboratory samples. In: Horwitz W, Latimer GW (eds) Official methods of analysis. 18th ed. Association of Official Agricultural Chemists-International, Gaitherburg, MD pp 3–4. ShiHYeTChanZExogenous application of hydrogen sulfide donor sodium hydrosulfide enhanced multiple abiotic stress tolerance in bermudagrass (Cynodon dactylon (L). Pers.)Plant Physiol Biochem2013712262341:CAS:528:DC%2BC3sXhsFent77J10.1016/j.plaphy.2013.07.02123974354 ElhakemAHGrowth, water relations, and photosynthetic activity are associated with evaluating salinity stress tolerance of wheat cultivarsInt J Agron202010.1155/2020/8882486 ZhangHYeYKWangSHLuoJTangJMaDFHydrogen sulphide counteracts chlorophyll loss in sweet potato seedling leaves and alleviates oxidative damage against osmotic stressPlant Growth Regul2009582432501:CAS:528:DC%2BD1MXmtlKntbo%3D10.1007/s10725-009-9372-1 MittlerROxidative stress, antioxidants and stress toleranceTrends Plant Sci200274054101:CAS:528:DC%2BD38XntVWnu7Y%3D10.1016/S1360-1385(02)02312-912234732 YildirimEKarlidagHTuranMMitigation of salt stress in strawberry by foliar K, Ca and Mg nutrient supplyPlant Soil Environ2009552132211:CAS:528:DC%2BD1MXptFSltr8%3D10.17221/383-PSE ChenPYangWJinSLiuYHydrogen sulfide alleviates salinity stress in Cyclocarya paliurus by maintaining chlorophyll fluorescence and regulating nitric oxide level and antioxidant capacityPlant Physiol Biochem20211677387471:CAS:528:DC%2BB3MXitVSrtrnP10.1016/j.plaphy.2021.09.00434509132 LiHShiJWangZZhangWYangHH2S pretreatment mitigates the alkaline salt stress on Malus hupehensis roots by regulating Na+/K+ homeostasis and oxidative stressPlant Physiol Biochem20201562332411:CAS:528:DC%2BB3cXhvFSitL%2FL10.1016/j.plaphy.2020.09.00932977178 Martin JHI (2008) A new method to evaluate hydrogen sulfide removal from biogas. http://www.lib.ncsu.edu/resolver/1840.16/1047 BatesLSWaldrenRPTeareIDRapid determination of free proline for water-stress studiesPlant Soil1973392052071:CAS:528:DyaE3sXlsVGitLk%3D10.1007/BF00018060 WeiMYLiuJYLiHHuWJShenZJQiaoFChenJLiuXZhengHLProteomic analysis reveals the protective role of exogenous hydrogen sulfide against salt stress in rice seedlingsNitric Oxide202111114301:CAS:528:DC%2BB3MXovV2ntbw%3D10.1016/j.niox.2021.04.00233839259 GuptaBHuangBMechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterizationInt J Genomics201410.1155/2014/701596248041923996477 FAO (2020) FAO Global Soil Partnership (Soil salinity). http://www.fao.org/global-soil-partnership/areas-of-work/soil-salinity/en/. Accessed 4 Feb 2022 ZhangHJiaoHJiangCXWangSHWeiZJLuoJPJonesRLHydrogen sulfide protects soybean seedlings against drought-induced oxidative stressActa Physiol Plant2010328498571:CAS:528:DC%2BC3cXht1aqtbnF10.1007/s11738-010-0469-y WangSLiuPChenDYinLLiHDengXSilicon enhanced salt tolerance by improving the root water uptake and decreasing the ion toxicity in cucumberFront Plant Sci2015675910.3389/fpls.2015.00759264420724585001 SairamRKTyagiAPhysiology and molecular biology of salinity stress tolerance in plantsCurr Sci20042004407421 YasinNAKhanWUAhmadSRAliAAhmadAAkramWImperative roles of halotolerant plant growth-promoting rhizobacteria and kinetin in improving salt tolerance and growth of black gram (Phaseolus mungo)Environ Sci Pollut Res201825449145051:CAS:528:DC%2BC2sXhvFektrrF10.1007/s11356-017-0761-0 TiwariJKMunshiADKumarRPandeyRNAroraABhatJSSurejaAKEffect of salt stress on cucumber: Na+–K+ ratio, osmolyte concentration, phenols and chlorophyll contentActa Physiol Plant2010321031141:CAS:528:DC%2BD1MXhsFOqur7M10.1007/s11738-009-0385-1 HongCYChaoYYYangMYChoSCKaoCHNa+ but not Cl− or osmotic stress is involved in NaCl-induced expression of glutathione reductase in roots of rice seedlingsJ Plant Physiol2009166159816061:CAS:528:DC%2BD1MXhtlShtbbF10.1016/j.jplph.2009.04.00119423186 YildirimETuranMGuvencIEffect of foliar salicylic acid applications on growth, chlorophyll, and mineral content of cucumber grown under salt stressJ Plant Nutr2008315936121:CAS:528:DC%2BD1cXislWjurY%3D10.1080/01904160801895118 ZhangTShiZZhangXZhengSWangJMoJAlleviating effects of exogenous melatonin on salt stress in cucumberSci Hortic20202621:CAS:528:DC%2BC1MXitlehurrM10.1016/j.scienta.2019.109070 ShamsMEkinciMOrsSTuranMAgarGKulRYildirimENitric oxide mitigates salt stress effects of pepper seedlings by altering nutrient uptake, enzyme activity and osmolyte accumulationPhysiol Mol Biol Plants201925114911611:CAS:528:DC%2BC1MXhsFChtbfN10.1007/s12298-019-00692-2315647786745581 SouanaKTaïbiKAbderrahimLAAmiratMAchirMBoussaidMMuletJMSalt-tolerance in Vicia faba L. is mitigated by the capacity of salicylic acid to improve photosynthesis and antioxidant responseSci Hortic20202731096411:CAS:528:DC%2BB3cXhsFygs73E10.1016/j.scienta.2020.109641 LiuSDongYXuLKongJEffects of foliar applications of nitric oxide and salicylic acid on salt-induced changes in photosynthesis and antioxidative metabolism of cotton seedlingsPlant Growth Regul20147367781:CAS:528:DC%2BC3sXhs1KjtbnI10.1007/s10725-013-9868-6 JouybanZThe effects of salt stress on plant growthTech J Eng Appl Sci201227101:CAS:528:DC%2BC2cXntVKmsro%3D LaiDMaoYZhouHLiFWuMZhangJHeZCuiWXieYEndogenous hydrogen sulfide enhances salt tolerance by coupling the reestablishment of redox homeostasis and preventing salt-induced K+ loss in seedlings of Medicago sativaPlant Sci20142251171291:CAS:528:DC%2BC2cXhtFGqs7%2FK10.1016/j.plantsci.2014.06.00625017167 AshrafMPJCHarrisPJCPotential biochemical indicators of salinity tolerance in plantsPlant Sci20041663161:CAS:528:DC%2BD2cXltVOqsA%3D%3D10.1016/j.plantsci.2003.10.024 ChristouAManganarisGAPapadopoulosIFotopoulosVHydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathwaysJ Exp Bot201364195319661:CAS:528:DC%2BC3sXmslSlu7s%3D10.1093/jxb/ert055235678653638822 García-MataCLamattinaLHydrogen sulphide, a novel gasotransmitter involved in guard cell signallingNew Phytol20101889779841:CAS:528:DC%2BC3cXhs1arsL7I10.1111/j.1469-8137.2010.03465.x20831717 FilipovicMRJovanovićVMMore than just an intermediate: hydrogen sulfide signalling in plantsJ Exp Bot201768473347361:CAS:528:DC%2BC1cXhs1WltbfI10.1093/jxb/erx352290485685853611 CakmakIHorstWJEffect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max)Physiol Plant1991834634681:CAS:528:DyaK38XjsFymuw%3D%3D10.1111/j.1399-3054.1991.tb00121.x JaleelCARiadhKGopiRManivannanPJallaliIAl-JuburiHJXingZCHong-BoSPanneerselvamRAntioxidant defense responses: physiological plasticity in higher plants under abiotic constraintsActa Physiol Plant2009314274361:CAS:528:DC%2BD1MXksF2iu7s%3D10.1007/s11738-009-0275-6 VelikovaVYordanovIEdrevaAOxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyaminesPlant Sci200015159661:CAS:528:DyaK1MXotVKqtb0%3D10.1016/S0168-9452(99)00197-1 ShanCLiuHZhaoLWangXEffects of exogenous hydrogen sulfide on the redox states of ascorbate and glutathione in maize leaves under salt stressBiol Plant2014581691731:CAS:528:DC%2BC2cXht12ktrw%3D10.1007/s10535-013-0366-5 LiZGDingXJDuPFHydrogen sulfide donor sodium hydrosulfide-improved heat tolerance in maize and involvement of prolineJ Plant Physiol20131707417471:CAS:528:DC%2BC3sXktlOht7o%3D10.1016/j.jplph.2012.12.01823523123 OhkawaHOhishiNYagiKAssay for lipid peroxides in animal tissues by thiobarbituric acid reactionAnal Biochem1979953513581:CAS:528:DyaE1MXksFaisbk%3D10.1016/0003-2697(79)90738-336810 YildirimEEkinciMTuranMDursunAKulRParlakovaFRoles of glycine betaine in mitigating deleterious effect of salt stress on lettuce (Lactuca sativa L.)Arch Agron Soil Sci201561167316891:CAS:528:DC%2BC2MXmsl2msbw%3D10.1080/03650340.2015.1030611 EkinciMYildirimETuranMAmeliorating effects of hydrogen sulfide on growth, physiological and biochemical characteristics of eggplant seedlings under salt stressS Afr J Bot202114379891:CAS:528:DC%2BB3MXhvVKqtLnM10.1016/j.sajb.2021.07.034 Abobatta WF (2020) Plant responses and tolerance to combined salt and drought stress. In: Salt and drought stress tolerance in plants. Springer, Cham, pp 17–52. https://doi.org/10.1007/978-3-030-40277-8_2 MostofaMGSaegusaDFujitaMTranLSPHydrogen sulfide regulates salt tolerance in rice by maintaining Na+/K+ balance, mineral homeostasis and oxidative metabolism under excessive salt stressFront Plant Sci20156105510.3389/fpls.2015.01055267340154685665 DengYQBaoJYuanFLiangXFengZTWangBSExogenous hydrogen sulfide alleviates salt stress in wheat seedlings by decreasing Na+ contentPlant Grow CY Hong (1391_CR25) 2009; 166 Z Jouyban (1391_CR31) 2012; 2 AR Al-Harbi (1391_CR2) 1994; 6 H Zhang (1391_CR64) 2010; 32 M Sarwar (1391_CR48) 2021; 11 T Zhang (1391_CR65) 2020; 262 1391_CR1 A Christou (1391_CR10) 2013; 64 P Chen (1391_CR9) 2021; 167 1391_CR16 H Zhang (1391_CR63) 2009; 58 S Wang (1391_CR57) 2015; 6 B Gupta (1391_CR20) 2014 JT Hancock (1391_CR21) 2019; 161 CA Jaleel (1391_CR28) 2009; 31 E Yildirim (1391_CR61) 2009; 55 MAA Gadallah (1391_CR18) 1999; 42 M Hasanuzzaman (1391_CR22) 2020; 9 YQ Deng (1391_CR11) 2016; 79 LS Bates (1391_CR5) 1973; 39 MR Filipovic (1391_CR17) 2017; 68 R Mittler (1391_CR42) 2002; 7 RK Sairam (1391_CR47) 2004; 2004 1391_CR40 1391_CR41 M Shams (1391_CR49) 2019; 25 M Ekinci (1391_CR14) 2021; 143 C Kaya (1391_CR32) 2003; 26 YE Kolupaev (1391_CR33) 2019; 66 Y Huang (1391_CR26) 2009; 122 C Shan (1391_CR50) 2014; 58 E Yildirim (1391_CR60) 2008; 31 1391_CR6 H Shi (1391_CR51) 2013; 71 S Liu (1391_CR37) 2014; 73 I Cakmak (1391_CR7) 1991; 83 MG Mostofa (1391_CR43) 2015; 6 K Souana (1391_CR52) 2020; 273 MPJC Ashraf (1391_CR4) 2004; 166 H Ding (1391_CR13) 2019; 41 S Ors (1391_CR46) 2016; 62 LF Chen (1391_CR8) 2011; 34 1391_CR39 Y Wang (1391_CR56) 2012; 351 JK Tiwari (1391_CR53) 2010; 32 H Ding (1391_CR12) 2018; 36 H Li (1391_CR36) 2020; 156 H Ohkawa (1391_CR45) 1979; 95 1391_CR23 R Munns (1391_CR44) 2008; 59 JK Zhu (1391_CR66) 2001; 6 C Jiang (1391_CR29) 2017; 7 D Lai (1391_CR34) 2014; 225 E Yildirim (1391_CR62) 2015; 61 MG Annunziata (1391_CR3) 2017; 7 MY Wei (1391_CR58) 2021; 111 V Velikova (1391_CR55) 2000; 151 JL Jiang (1391_CR30) 2019 NA Yasin (1391_CR59) 2018; 25 C García-Mata (1391_CR19) 2010; 188 SV Isayenkov (1391_CR27) 2019; 10 H He (1391_CR24) 2018; 37 AH Elhakem (1391_CR15) 2020 ZG Li (1391_CR35) 2013; 170 J Liu (1391_CR38) 2017; 48 E van Handel (1391_CR54) 1968; 22 |
| References_xml | – reference: MunnsRTesterMMechanisms of salinity toleranceAnnu Rev Plant Biol2008596516811:CAS:528:DC%2BD1cXntFaqtrw%3D10.1146/annurev.arplant.59.032607.09291118444910 – reference: ChristouAManganarisGAPapadopoulosIFotopoulosVHydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathwaysJ Exp Bot201364195319661:CAS:528:DC%2BC3sXmslSlu7s%3D10.1093/jxb/ert055235678653638822 – reference: García-MataCLamattinaLHydrogen sulphide, a novel gasotransmitter involved in guard cell signallingNew Phytol20101889779841:CAS:528:DC%2BC3cXhs1arsL7I10.1111/j.1469-8137.2010.03465.x20831717 – reference: GuptaBHuangBMechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterizationInt J Genomics201410.1155/2014/701596248041923996477 – reference: MittlerROxidative stress, antioxidants and stress toleranceTrends Plant Sci200274054101:CAS:528:DC%2BD38XntVWnu7Y%3D10.1016/S1360-1385(02)02312-912234732 – reference: SouanaKTaïbiKAbderrahimLAAmiratMAchirMBoussaidMMuletJMSalt-tolerance in Vicia faba L. is mitigated by the capacity of salicylic acid to improve photosynthesis and antioxidant responseSci Hortic20202731096411:CAS:528:DC%2BB3cXhsFygs73E10.1016/j.scienta.2020.109641 – reference: LiuSDongYXuLKongJEffects of foliar applications of nitric oxide and salicylic acid on salt-induced changes in photosynthesis and antioxidative metabolism of cotton seedlingsPlant Growth Regul20147367781:CAS:528:DC%2BC3sXhs1KjtbnI10.1007/s10725-013-9868-6 – reference: HasanuzzamanMBhuyanMHMZulfiqarFRazaAMohsinSMMahmudJAFıjitaMFotopoulosVReactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulatorAntioxidants202096811:CAS:528:DC%2BB3cXhs12ht73O10.3390/antiox90806817465626 – reference: JaleelCARiadhKGopiRManivannanPJallaliIAl-JuburiHJXingZCHong-BoSPanneerselvamRAntioxidant defense responses: physiological plasticity in higher plants under abiotic constraintsActa Physiol Plant2009314274361:CAS:528:DC%2BD1MXksF2iu7s%3D10.1007/s11738-009-0275-6 – reference: YildirimETuranMGuvencIEffect of foliar salicylic acid applications on growth, chlorophyll, and mineral content of cucumber grown under salt stressJ Plant Nutr2008315936121:CAS:528:DC%2BD1cXislWjurY%3D10.1080/01904160801895118 – reference: DingHMaDHuangXHouJWangCXieYWangYQinHGuoTExogenous hydrogen sulfide alleviates salt stress by improving antioxidant defenses and the salt overly sensitive pathway in wheat seedlingsActa Physiol Plant2019411231:CAS:528:DC%2BC1MXhtFKqsb7P10.1007/s11738-019-2918-6 – reference: LaiDMaoYZhouHLiFWuMZhangJHeZCuiWXieYEndogenous hydrogen sulfide enhances salt tolerance by coupling the reestablishment of redox homeostasis and preventing salt-induced K+ loss in seedlings of Medicago sativaPlant Sci20142251171291:CAS:528:DC%2BC2cXhtFGqs7%2FK10.1016/j.plantsci.2014.06.00625017167 – reference: OhkawaHOhishiNYagiKAssay for lipid peroxides in animal tissues by thiobarbituric acid reactionAnal Biochem1979953513581:CAS:528:DyaE1MXksFaisbk%3D10.1016/0003-2697(79)90738-336810 – reference: JiangCZuCLuDZhengQShenJWangHLiDEffect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stressSci Rep201771141:CAS:528:DC%2BC2sXitlCku7c%3D10.1038/srep42039 – reference: MostofaMGSaegusaDFujitaMTranLSPHydrogen sulfide regulates salt tolerance in rice by maintaining Na+/K+ balance, mineral homeostasis and oxidative metabolism under excessive salt stressFront Plant Sci20156105510.3389/fpls.2015.01055267340154685665 – reference: WeiMYLiuJYLiHHuWJShenZJQiaoFChenJLiuXZhengHLProteomic analysis reveals the protective role of exogenous hydrogen sulfide against salt stress in rice seedlingsNitric Oxide202111114301:CAS:528:DC%2BB3MXovV2ntbw%3D10.1016/j.niox.2021.04.00233839259 – reference: Botella MA, Rosado A, Bressan RA, Hasegawa PM (2005) Plant adaptive responses to salinity stress. In: Matthew AJ, Paul MH (eds) Plant abiotic stress, vol 21, pp 38–70 – reference: Al-HarbiARInfluence of salinity on the growth and nutrients composition of cucumber plants (Cucumis sativus)J King Saud Univ19946263271 – reference: Abobatta WF (2020) Plant responses and tolerance to combined salt and drought stress. In: Salt and drought stress tolerance in plants. Springer, Cham, pp 17–52. https://doi.org/10.1007/978-3-030-40277-8_2 – reference: OrsSEkinciMYildirimESahinUChanges in gas exchange capacity and selected physiological properties of squash seedlings (Cucurbita pepo L.) under well-watered and drought stress conditionsArch Agron Soil Sci201662170017101:CAS:528:DC%2BC28XmtFant78%3D10.1080/03650340.2016.1168517 – reference: HongCYChaoYYYangMYChoSCKaoCHNa+ but not Cl− or osmotic stress is involved in NaCl-induced expression of glutathione reductase in roots of rice seedlingsJ Plant Physiol2009166159816061:CAS:528:DC%2BD1MXhtlShtbbF10.1016/j.jplph.2009.04.00119423186 – reference: SairamRKTyagiAPhysiology and molecular biology of salinity stress tolerance in plantsCurr Sci20042004407421 – reference: BatesLSWaldrenRPTeareIDRapid determination of free proline for water-stress studiesPlant Soil1973392052071:CAS:528:DyaE3sXlsVGitLk%3D10.1007/BF00018060 – reference: EkinciMYildirimETuranMAmeliorating effects of hydrogen sulfide on growth, physiological and biochemical characteristics of eggplant seedlings under salt stressS Afr J Bot202114379891:CAS:528:DC%2BB3MXhvVKqtLnM10.1016/j.sajb.2021.07.034 – reference: ShiHYeTChanZExogenous application of hydrogen sulfide donor sodium hydrosulfide enhanced multiple abiotic stress tolerance in bermudagrass (Cynodon dactylon (L). Pers.)Plant Physiol Biochem2013712262341:CAS:528:DC%2BC3sXhsFent77J10.1016/j.plaphy.2013.07.02123974354 – reference: SarwarMAnjumSAliQAlamMWHaiderMSMehboobWTriacontanol modulates salt stress tolerance in cucumber by altering the physiological and biochemical status of plant cellsSci Rep2021111101:CAS:528:DC%2BB38Xjt1yj10.1038/s41598-021-04174-y – reference: KolupaevYEFirsovaENYastrebTORyabchunNIKirichenkoVVEffect of hydrogen sulfide donor on antioxidant state of wheat plants and their resistance to soil droughtRuss J Plant Physiol20196659661:CAS:528:DC%2BC1MXht1yktLnO10.1134/S1021443719010084 – reference: ZhangHYeYKWangSHLuoJTangJMaDFHydrogen sulphide counteracts chlorophyll loss in sweet potato seedling leaves and alleviates oxidative damage against osmotic stressPlant Growth Regul2009582432501:CAS:528:DC%2BD1MXmtlKntbo%3D10.1007/s10725-009-9372-1 – reference: IsayenkovSVMaathuisFJPlant salinity stress: many unanswered questions remainFront Plant Sci2019108010.3389/fpls.2019.00080308283396384275 – reference: JiangJLTianYLiLYuMHouRPRenXMH2S alleviates salinity stress in cucumber by maintaining the Na+/K+ balance and regulating H2S metabolism and oxidative stress responseFront Plant Sci201910.3389/fpls.2019.00678320639116930182 – reference: LiHShiJWangZZhangWYangHH2S pretreatment mitigates the alkaline salt stress on Malus hupehensis roots by regulating Na+/K+ homeostasis and oxidative stressPlant Physiol Biochem20201562332411:CAS:528:DC%2BB3cXhvFSitL%2FL10.1016/j.plaphy.2020.09.00932977178 – reference: DingHHanQMaDHouJHuangXWangCXieYKangGGuoTCharacterizing physiological and proteomic analysis of the action of H2S to mitigate drought stress in young seedling of wheatPlant Mol Biol Rep20183645571:CAS:528:DC%2BC2sXhvFektrjF10.1007/s11105-017-1055-x – reference: LiZGDingXJDuPFHydrogen sulfide donor sodium hydrosulfide-improved heat tolerance in maize and involvement of prolineJ Plant Physiol20131707417471:CAS:528:DC%2BC3sXktlOht7o%3D10.1016/j.jplph.2012.12.01823523123 – reference: ShamsMEkinciMOrsSTuranMAgarGKulRYildirimENitric oxide mitigates salt stress effects of pepper seedlings by altering nutrient uptake, enzyme activity and osmolyte accumulationPhysiol Mol Biol Plants201925114911611:CAS:528:DC%2BC1MXhsFChtbfN10.1007/s12298-019-00692-2315647786745581 – reference: ElhakemAHGrowth, water relations, and photosynthetic activity are associated with evaluating salinity stress tolerance of wheat cultivarsInt J Agron202010.1155/2020/8882486 – reference: GadallahMAAEffects of proline and glycinebetaine on Vicia faba responses to salt stressBiol Plant1999422492571:CAS:528:DyaK1MXltVCksb8%3D10.1023/A:1002164719609 – reference: WangSLiuPChenDYinLLiHDengXSilicon enhanced salt tolerance by improving the root water uptake and decreasing the ion toxicity in cucumberFront Plant Sci2015675910.3389/fpls.2015.00759264420724585001 – reference: CakmakIHorstWJEffect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max)Physiol Plant1991834634681:CAS:528:DyaK38XjsFymuw%3D%3D10.1111/j.1399-3054.1991.tb00121.x – reference: van HandelEDirect microdetermination of sucroseAnal Biochem19682228028310.1016/0003-2697(68)90317-55641848 – reference: ZhangTShiZZhangXZhengSWangJMoJAlleviating effects of exogenous melatonin on salt stress in cucumberSci Hortic20202621:CAS:528:DC%2BC1MXitlehurrM10.1016/j.scienta.2019.109070 – reference: AnnunziataMGCiarmielloLFWoodrowPMaximovaEFuggiACarilloPDurum wheat roots adapt to salinity remodeling the cellular content of nitrogen metabolites and sucroseFront Plant Sci20177203510.3389/fpls.2016.02035281197165220018 – reference: ZhangHJiaoHJiangCXWangSHWeiZJLuoJPJonesRLHydrogen sulfide protects soybean seedlings against drought-induced oxidative stressActa Physiol Plant2010328498571:CAS:528:DC%2BC3cXht1aqtbnF10.1007/s11738-010-0469-y – reference: JouybanZThe effects of salt stress on plant growthTech J Eng Appl Sci201227101:CAS:528:DC%2BC2cXntVKmsro%3D – reference: HeHHeLFRegulation of gaseous signaling molecules on proline metabolism in plantsPlant Cell Rep2018373873921:CAS:528:DC%2BC2sXhvVKgsLjI10.1007/s00299-017-2239-429177845 – reference: VelikovaVYordanovIEdrevaAOxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyaminesPlant Sci200015159661:CAS:528:DyaK1MXotVKqtb0%3D10.1016/S0168-9452(99)00197-1 – reference: Mertens D (2005a) Official method 922.02. Preparation of plant laboratory samples. In: Horwitz W, Latimer GW (eds) Official methods of analysis. 18th ed. Association of Official Agricultural Chemists-International, Gaitherburg, MD, pp 1–2 – reference: YasinNAKhanWUAhmadSRAliAAhmadAAkramWImperative roles of halotolerant plant growth-promoting rhizobacteria and kinetin in improving salt tolerance and growth of black gram (Phaseolus mungo)Environ Sci Pollut Res201825449145051:CAS:528:DC%2BC2sXhvFektrrF10.1007/s11356-017-0761-0 – reference: FilipovicMRJovanovićVMMore than just an intermediate: hydrogen sulfide signalling in plantsJ Exp Bot201768473347361:CAS:528:DC%2BC1cXhs1WltbfI10.1093/jxb/erx352290485685853611 – reference: YildirimEKarlidagHTuranMMitigation of salt stress in strawberry by foliar K, Ca and Mg nutrient supplyPlant Soil Environ2009552132211:CAS:528:DC%2BD1MXptFSltr8%3D10.17221/383-PSE – reference: LiuJZhangHYinYChenHEffects of exogenous hydrogen sulfide on antioxidant metabolism of rice seed germinated under drought stressJ South Agric2017483137 – reference: ShanCLiuHZhaoLWangXEffects of exogenous hydrogen sulfide on the redox states of ascorbate and glutathione in maize leaves under salt stressBiol Plant2014581691731:CAS:528:DC%2BC2cXht12ktrw%3D10.1007/s10535-013-0366-5 – reference: AshrafMPJCHarrisPJCPotential biochemical indicators of salinity tolerance in plantsPlant Sci20041663161:CAS:528:DC%2BD2cXltVOqsA%3D%3D10.1016/j.plantsci.2003.10.024 – reference: YildirimEEkinciMTuranMDursunAKulRParlakovaFRoles of glycine betaine in mitigating deleterious effect of salt stress on lettuce (Lactuca sativa L.)Arch Agron Soil Sci201561167316891:CAS:528:DC%2BC2MXmsl2msbw%3D10.1080/03650340.2015.1030611 – reference: ChenLFLuWSunJGuoSRZhangZXYangYJEffects of exogenous spermidine on photosynthesis and carbohydrate accumulation in roots and leaves of cucumber (Cucumis sativus L.) seedlings under salt stressJ Nanjing Agric Univ2011343136 – reference: WangYLiLCuiWXuSShenWWangRHydrogen sulfide enhances alfalfa (Medicago sativa) tolerance against salinity during seed germination by nitric oxide pathwayPlant Soil20123511071191:CAS:528:DC%2BC38XhsVOks7g%3D10.1007/s11104-011-0936-2 – reference: KayaCAkBEHiggsDResponse of salt-stressed strawberry plants to supplementary calcium nitrate and/or potassium nitrateJ Plant Nutr2003265435601:CAS:528:DC%2BD3sXhvVOnsbk%3D10.1081/PLN-120017664 – reference: HancockJTHydrogen sulfide and environmental stressesEnviron Exp Bot201916150561:CAS:528:DC%2BC1cXhslOqtbbM10.1016/j.envexpbot.2018.08.034 – reference: Martin JHI (2008) A new method to evaluate hydrogen sulfide removal from biogas. http://www.lib.ncsu.edu/resolver/1840.16/1047 – reference: ZhuJKPlant salt toleranceTrends Plant Sci2001666711:CAS:528:DC%2BD3MXlsFyjtLs%3D10.1016/S1360-1385(00)01838-011173290 – reference: DengYQBaoJYuanFLiangXFengZTWangBSExogenous hydrogen sulfide alleviates salt stress in wheat seedlings by decreasing Na+ contentPlant Growth Regul2016793913991:CAS:528:DC%2BC28Xps1Gl10.1007/s10725-015-0143-x – reference: FAO (2020) FAO Global Soil Partnership (Soil salinity). http://www.fao.org/global-soil-partnership/areas-of-work/soil-salinity/en/. Accessed 4 Feb 2022 – reference: Hasanuzzaman M, Nahar K, Fujita M (2013) Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In: Ahmad P, Azooz M, Prasad M (eds) Ecophysiology and responses of plants under salt stress. Springer, New York. https://doi.org/10.1007/978-1-4614-4747-4_2 – reference: Mertens D (2005b) Official method 922.02. Preparation of plant laboratory samples. In: Horwitz W, Latimer GW (eds) Official methods of analysis. 18th ed. Association of Official Agricultural Chemists-International, Gaitherburg, MD pp 3–4. – reference: TiwariJKMunshiADKumarRPandeyRNAroraABhatJSSurejaAKEffect of salt stress on cucumber: Na+–K+ ratio, osmolyte concentration, phenols and chlorophyll contentActa Physiol Plant2010321031141:CAS:528:DC%2BD1MXhsFOqur7M10.1007/s11738-009-0385-1 – reference: ChenPYangWJinSLiuYHydrogen sulfide alleviates salinity stress in Cyclocarya paliurus by maintaining chlorophyll fluorescence and regulating nitric oxide level and antioxidant capacityPlant Physiol Biochem20211677387471:CAS:528:DC%2BB3MXitVSrtrnP10.1016/j.plaphy.2021.09.00434509132 – reference: HuangYTangRCaoQBieZImproving the fruit yield and quality of cucumber by grafting onto the salt tolerant rootstock under NaCl stressSci Hortic200912226311:CAS:528:DC%2BD1MXnsV2ksLo%3D10.1016/j.scienta.2009.04.004 – volume: 48 start-page: 31 year: 2017 ident: 1391_CR38 publication-title: J South Agric – volume: 25 start-page: 1149 year: 2019 ident: 1391_CR49 publication-title: Physiol Mol Biol Plants doi: 10.1007/s12298-019-00692-2 – year: 2020 ident: 1391_CR15 publication-title: Int J Agron doi: 10.1155/2020/8882486 – volume: 42 start-page: 249 year: 1999 ident: 1391_CR18 publication-title: Biol Plant doi: 10.1023/A:1002164719609 – volume: 22 start-page: 280 year: 1968 ident: 1391_CR54 publication-title: Anal Biochem doi: 10.1016/0003-2697(68)90317-5 – volume: 37 start-page: 387 year: 2018 ident: 1391_CR24 publication-title: Plant Cell Rep doi: 10.1007/s00299-017-2239-4 – volume: 73 start-page: 67 year: 2014 ident: 1391_CR37 publication-title: Plant Growth Regul doi: 10.1007/s10725-013-9868-6 – volume: 7 start-page: 2035 year: 2017 ident: 1391_CR3 publication-title: Front Plant Sci doi: 10.3389/fpls.2016.02035 – volume: 36 start-page: 45 year: 2018 ident: 1391_CR12 publication-title: Plant Mol Biol Rep doi: 10.1007/s11105-017-1055-x – ident: 1391_CR39 – ident: 1391_CR16 – ident: 1391_CR6 doi: 10.1002/9780470988503.ch3 – volume: 9 start-page: 681 year: 2020 ident: 1391_CR22 publication-title: Antioxidants doi: 10.3390/antiox9080681 – volume: 156 start-page: 233 year: 2020 ident: 1391_CR36 publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2020.09.009 – volume: 95 start-page: 351 year: 1979 ident: 1391_CR45 publication-title: Anal Biochem doi: 10.1016/0003-2697(79)90738-3 – volume: 31 start-page: 427 year: 2009 ident: 1391_CR28 publication-title: Acta Physiol Plant doi: 10.1007/s11738-009-0275-6 – volume: 11 start-page: 1 year: 2021 ident: 1391_CR48 publication-title: Sci Rep doi: 10.1038/s41598-021-04174-y – volume: 59 start-page: 651 year: 2008 ident: 1391_CR44 publication-title: Annu Rev Plant Biol doi: 10.1146/annurev.arplant.59.032607.092911 – volume: 122 start-page: 26 year: 2009 ident: 1391_CR26 publication-title: Sci Hortic doi: 10.1016/j.scienta.2009.04.004 – volume: 6 start-page: 66 year: 2001 ident: 1391_CR66 publication-title: Trends Plant Sci doi: 10.1016/S1360-1385(00)01838-0 – volume: 6 start-page: 263 year: 1994 ident: 1391_CR2 publication-title: J King Saud Univ – volume: 143 start-page: 79 year: 2021 ident: 1391_CR14 publication-title: S Afr J Bot doi: 10.1016/j.sajb.2021.07.034 – volume: 61 start-page: 1673 year: 2015 ident: 1391_CR62 publication-title: Arch Agron Soil Sci doi: 10.1080/03650340.2015.1030611 – volume: 273 start-page: 109641 year: 2020 ident: 1391_CR52 publication-title: Sci Hortic doi: 10.1016/j.scienta.2020.109641 – year: 2019 ident: 1391_CR30 publication-title: Front Plant Sci doi: 10.3389/fpls.2019.00678 – volume: 166 start-page: 3 year: 2004 ident: 1391_CR4 publication-title: Plant Sci doi: 10.1016/j.plantsci.2003.10.024 – volume: 7 start-page: 1 year: 2017 ident: 1391_CR29 publication-title: Sci Rep doi: 10.1038/srep42039 – volume: 66 start-page: 59 year: 2019 ident: 1391_CR33 publication-title: Russ J Plant Physiol doi: 10.1134/S1021443719010084 – year: 2014 ident: 1391_CR20 publication-title: Int J Genomics doi: 10.1155/2014/701596 – volume: 64 start-page: 1953 year: 2013 ident: 1391_CR10 publication-title: J Exp Bot doi: 10.1093/jxb/ert055 – volume: 34 start-page: 31 year: 2011 ident: 1391_CR8 publication-title: J Nanjing Agric Univ – volume: 25 start-page: 4491 year: 2018 ident: 1391_CR59 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-017-0761-0 – volume: 2 start-page: 7 year: 2012 ident: 1391_CR31 publication-title: Tech J Eng Appl Sci – volume: 62 start-page: 1700 year: 2016 ident: 1391_CR46 publication-title: Arch Agron Soil Sci doi: 10.1080/03650340.2016.1168517 – volume: 83 start-page: 463 year: 1991 ident: 1391_CR7 publication-title: Physiol Plant doi: 10.1111/j.1399-3054.1991.tb00121.x – volume: 166 start-page: 1598 year: 2009 ident: 1391_CR25 publication-title: J Plant Physiol doi: 10.1016/j.jplph.2009.04.001 – volume: 58 start-page: 243 year: 2009 ident: 1391_CR63 publication-title: Plant Growth Regul doi: 10.1007/s10725-009-9372-1 – volume: 10 start-page: 80 year: 2019 ident: 1391_CR27 publication-title: Front Plant Sci doi: 10.3389/fpls.2019.00080 – volume: 32 start-page: 103 year: 2010 ident: 1391_CR53 publication-title: Acta Physiol Plant doi: 10.1007/s11738-009-0385-1 – ident: 1391_CR1 doi: 10.1007/978-3-030-40277-8_2 – volume: 41 start-page: 123 year: 2019 ident: 1391_CR13 publication-title: Acta Physiol Plant doi: 10.1007/s11738-019-2918-6 – volume: 151 start-page: 59 year: 2000 ident: 1391_CR55 publication-title: Plant Sci doi: 10.1016/S0168-9452(99)00197-1 – volume: 351 start-page: 107 year: 2012 ident: 1391_CR56 publication-title: Plant Soil doi: 10.1007/s11104-011-0936-2 – volume: 161 start-page: 50 year: 2019 ident: 1391_CR21 publication-title: Environ Exp Bot doi: 10.1016/j.envexpbot.2018.08.034 – volume: 6 start-page: 759 year: 2015 ident: 1391_CR57 publication-title: Front Plant Sci doi: 10.3389/fpls.2015.00759 – volume: 71 start-page: 226 year: 2013 ident: 1391_CR51 publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2013.07.021 – volume: 79 start-page: 391 year: 2016 ident: 1391_CR11 publication-title: Plant Growth Regul doi: 10.1007/s10725-015-0143-x – volume: 7 start-page: 405 year: 2002 ident: 1391_CR42 publication-title: Trends Plant Sci doi: 10.1016/S1360-1385(02)02312-9 – volume: 31 start-page: 593 year: 2008 ident: 1391_CR60 publication-title: J Plant Nutr doi: 10.1080/01904160801895118 – ident: 1391_CR23 doi: 10.1007/978-1-4614-4747-4_2 – ident: 1391_CR40 – volume: 2004 start-page: 407 year: 2004 ident: 1391_CR47 publication-title: Curr Sci – volume: 39 start-page: 205 year: 1973 ident: 1391_CR5 publication-title: Plant Soil doi: 10.1007/BF00018060 – volume: 225 start-page: 117 year: 2014 ident: 1391_CR34 publication-title: Plant Sci doi: 10.1016/j.plantsci.2014.06.006 – volume: 26 start-page: 543 year: 2003 ident: 1391_CR32 publication-title: J Plant Nutr doi: 10.1081/PLN-120017664 – volume: 111 start-page: 14 year: 2021 ident: 1391_CR58 publication-title: Nitric Oxide doi: 10.1016/j.niox.2021.04.002 – volume: 170 start-page: 741 year: 2013 ident: 1391_CR35 publication-title: J Plant Physiol doi: 10.1016/j.jplph.2012.12.018 – volume: 262 year: 2020 ident: 1391_CR65 publication-title: Sci Hortic doi: 10.1016/j.scienta.2019.109070 – volume: 55 start-page: 213 year: 2009 ident: 1391_CR61 publication-title: Plant Soil Environ doi: 10.17221/383-PSE – volume: 188 start-page: 977 year: 2010 ident: 1391_CR19 publication-title: New Phytol doi: 10.1111/j.1469-8137.2010.03465.x – volume: 167 start-page: 738 year: 2021 ident: 1391_CR9 publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2021.09.004 – volume: 6 start-page: 1055 year: 2015 ident: 1391_CR43 publication-title: Front Plant Sci doi: 10.3389/fpls.2015.01055 – volume: 68 start-page: 4733 year: 2017 ident: 1391_CR17 publication-title: J Exp Bot doi: 10.1093/jxb/erx352 – volume: 32 start-page: 849 year: 2010 ident: 1391_CR64 publication-title: Acta Physiol Plant doi: 10.1007/s11738-010-0469-y – ident: 1391_CR41 – volume: 58 start-page: 169 year: 2014 ident: 1391_CR50 publication-title: Biol Plant doi: 10.1007/s10535-013-0366-5 |
| SSID | ssj0017598 |
| Score | 2.4622083 |
| Snippet | This research hypothesized that tolerance of cucumber seedlings to salinity stress could be increased by hydrogen sulfide (H
2
S) treatments. In pot... This research hypothesized that tolerance of cucumber seedlings to salinity stress could be increased by hydrogen sulfide (H S) treatments. In pot experiments,... This research hypothesized that tolerance of cucumber seedlings to salinity stress could be increased by hydrogen sulfide (H2S) treatments. In pot experiments,... This research hypothesized that tolerance of cucumber seedlings to salinity stress could be increased by hydrogen sulfide (H₂S) treatments. In pot experiments,... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 517 |
| SubjectTerms | antioxidant enzymes Biomedical and Life Sciences carbon dioxide catalase chlorophyll cucumbers enzyme activity foliar application hydrogen peroxide hydrogen sulfide leaf relative water content Life Sciences malondialdehyde membrane permeability nutrient content peroxidase photosynthesis Plant Biochemistry Plant Ecology plant growth Plant Physiology Plant Sciences proline Regular Paper – Physiology/Biochemistry/Molecular and Cellular Biology salinity salt stress stomatal conductance sucrose superoxide dismutase |
| Title | Mitigation of salinity stress in cucumber seedlings by exogenous hydrogen sulfide |
| URI | https://link.springer.com/article/10.1007/s10265-022-01391-y https://www.ncbi.nlm.nih.gov/pubmed/35445911 https://www.proquest.com/docview/2653267272 https://www.proquest.com/docview/2718229619 |
| Volume | 135 |
| WOSCitedRecordID | wos000784732700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK customDbUrl: eissn: 1618-0860 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017598 issn: 0918-9440 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ47MCF92M8piBxg0pt0kd6BMTEASae025VkqZiEmrRuiH673H6GKChSXDrwW0jO8lny_5sgBNBudS-phbGysJyBcaskisHo5RECBm4WpQZ_P5N0OvxwSC8q0lheVPt3qQky5v6G9mN-oZNbEoJWOhYxSIsI9xxM7Dh4bE_zR0EXjkBF4EQj7Lr2jVV5vdv_ISjGR9zJj9awk537X8LXofV2s0k59W-2IAFnW5C6yJDV7DYgvvbYdVaI0tJlpBcGHrkuCAVcYQMU6ImqhwVQnJEN8NYz4ksiP7Iqp6u5KWIR-aZ5JPXZBjrbXjuXj1dXlv1bAVLscAeWzx20QrSFdqlDos1Zb6XUPSdAk-hgVymRWBzSYVPJaMelbYOOF7SoS9iZeZd7cBSmqV6D4hEkEuk4ycx2pYxwYUdKuYkOrQ97cmwDU6j4kjVjcfN_IvX6KtlstFUhJqKSk1FRRtOp--8VW035kofN5aL8HSYlIdINWojQkH0T02yeY4MwjOlIUaSbditzD79JzO9ihAP2nDW2DiqD3k-Z0H7fxM_gBVabhNTR3kIS-PRRB9BS72Ph_moA4vBgHfKPf4J5-L1Bw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB68QF-8j_WM4JsW2qTno4qiuC7e-BaSNMWFpZXtrth_76THqigL-taHaRtmknwzzHwzAAeChlL7mloYKwvLFRizylA5GKUkQsjA1aLM4D-1g04nfH6ObmpSWN5UuzcpyfKm_kJ2o75hE5tSAhY5VjEJ0y4ilumYf3f_NModBF45AReBEI-y69o1Veb3b3yHox8-5o_8aAk75wv_W_AizNduJjmu9sUSTOh0GWZOMnQFixW4ve5WrTWylGQJyYWhRw4KUhFHSDclaqjKUSEkR3QzjPWcyILo96zq6Upeirhvnkk-7CXdWK_C4_nZw-mFVc9WsBQL7IEVxi5aQbpCowpZrCnzvYSi7xR4Cg3kMi0CO5RU-FQy6lFp6yDESzryRazMvKs1mEqzVG8AkQhyiXT8JEbbMiZCYUeKOYmObE97MmqB06iYq7rxuJl_0eOfLZONpjhqipea4kULDkfvvFZtN8ZK7zeW43g6TMpDpBq1wVEQ_VOTbB4jg_BMaYSRZAvWK7OP_slMryLEgxYcNTbm9SHPxyxo82_iezB78XDd5u3LztUWzNFyy5iaym2YGvSHegdm1Nugm_d3y53-AaaS9wM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB4VGqFeaHk2fcAicQMLe3f9OhbaCAREQUDEbbW7XotIyEaxg-p_31nbCaCgSKg3H8YPzcx6ZjTzfQOwL2mkTGCog7WydLjEmlVF2sMqJZVShdzIuoM_vAj7_ejuLh68QPHX0-7TlmSDabAsTVl59JikRy-AbzSwyGI7VsBiz6mW4CO3g_S2Xr8ezvoIoV9vw8WgiMeac7eFzbz9jNehaS7fnOuV1iGo9_n_P_4LrLbpJ_nV-MsafDDZOnSOc0wRqw24uhw1lBt5RvKUFNLCJsuKNIASMsqInuh6hQgpMOpZJHtBVEXM37zheiX3VTK216SYPKSjxGzCbe_Pzcmp0-5ccDQL3dKJEo7WUVwaTj2WGMoCP6WYU4W-RsNxZmToRorKgCpGfapcE0b4844DmWi7B2sLlrM8M1-BKAx-qfKCNEGbMyYj6caaeamJXd_4Ku6CN1W30C0hud2L8SCeqZStpgRqStSaElUXDmb3PDZ0HAul96ZWFHhqbCtEZga1IVAQ81bbhF4gg2Gb0hgrzC5sNy4weyezHEYYJ7pwOLW3aA9_seCDvr1PfBdWBr974uKsf_4dPtHaY-yo5Q9YLscT8xM6-qkcFeOd2un_AWfw_-c |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitigation+of+salinity+stress+in+cucumber+seedlings+by+exogenous+hydrogen+sulfide&rft.jtitle=Journal+of+plant+research&rft.au=Turan%2C+Metin&rft.au=Ekinci%2C+Melek&rft.au=Kul%2C+Raziye&rft.au=Boynueyri%2C+Fatma+G&rft.date=2022-05-01&rft.issn=0918-9440&rft.volume=135&rft.issue=3+p.517-529&rft.spage=517&rft.epage=529&rft_id=info:doi/10.1007%2Fs10265-022-01391-y&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0918-9440&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0918-9440&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0918-9440&client=summon |