Library size-stabilized metacells construction enhances co-expression network analysis in single-cell data
Single-cell RNA sequencing (scRNA-seq) deciphers cell type-specific co-expression networks to resolve biological functions but remains constrained by data sparsity and compositional biases. Conventional metacells construction strategies mitigate sparsity by aggregating transcriptionally similar cell...
Gespeichert in:
| Veröffentlicht in: | PLoS computational biology Jg. 21; H. 11; S. e1013697 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Public Library of Science (PLoS)
01.11.2025
|
| Schlagworte: | |
| ISSN: | 1553-7358, 1553-734X, 1553-7358 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Single-cell RNA sequencing (scRNA-seq) deciphers cell type-specific co-expression networks to resolve biological functions but remains constrained by data sparsity and compositional biases. Conventional metacells construction strategies mitigate sparsity by aggregating transcriptionally similar cells but often neglect systematic biases introduced by compositional data. This problem leads to spurious co-expression correlations and obscuring biologically meaningful interactions. Through mathematical modeling and simulations, we demonstrate that uncontrolled library size variance in traditional metacells inflates false-positive correlations and distorts co-expression networks. Here, we present LSMetacell (Library Size-stabilized Metacells), a computational framework that explicitly stabilizes library sizes across metacells to reduce compositional noise while preserving cellular heterogeneity. LSMetacell addresses this by stabilizing library sizes during metacells aggregation, thereby enhancing the accuracy of downstream analyses such as Weighted Gene Co-expression Network Analysis (WGCNA). Applied to a postmortem Alzheimer’s disease brain scRNA-seq dataset, LSMetacell revealed robust, cell type-specific co-expression modules enriched for disease-relevant pathways, outperforming the conventional metacells approach. Our work establishes a principled strategy for resolving compositional biases in scRNA-seq data, advancing the reliability of co-expression network inference in studying complex biological systems. This framework provides a generalizable solution for improving transcriptional analyses in single-cell studies. |
|---|---|
| AbstractList | Single-cell RNA sequencing (scRNA-seq) deciphers cell type-specific co-expression networks to resolve biological functions but remains constrained by data sparsity and compositional biases. Conventional metacells construction strategies mitigate sparsity by aggregating transcriptionally similar cells but often neglect systematic biases introduced by compositional data. This problem leads to spurious co-expression correlations and obscuring biologically meaningful interactions. Through mathematical modeling and simulations, we demonstrate that uncontrolled library size variance in traditional metacells inflates false-positive correlations and distorts co-expression networks. Here, we present LSMetacell (Library Size-stabilized Metacells), a computational framework that explicitly stabilizes library sizes across metacells to reduce compositional noise while preserving cellular heterogeneity. LSMetacell addresses this by stabilizing library sizes during metacells aggregation, thereby enhancing the accuracy of downstream analyses such as Weighted Gene Co-expression Network Analysis (WGCNA). Applied to a postmortem Alzheimer’s disease brain scRNA-seq dataset, LSMetacell revealed robust, cell type-specific co-expression modules enriched for disease-relevant pathways, outperforming the conventional metacells approach. Our work establishes a principled strategy for resolving compositional biases in scRNA-seq data, advancing the reliability of co-expression network inference in studying complex biological systems. This framework provides a generalizable solution for improving transcriptional analyses in single-cell studies. Single-cell RNA sequencing (scRNA-seq) deciphers cell type-specific co-expression networks to resolve biological functions but remains constrained by data sparsity and compositional biases. Conventional metacells construction strategies mitigate sparsity by aggregating transcriptionally similar cells but often neglect systematic biases introduced by compositional data. This problem leads to spurious co-expression correlations and obscuring biologically meaningful interactions. Through mathematical modeling and simulations, we demonstrate that uncontrolled library size variance in traditional metacells inflates false-positive correlations and distorts co-expression networks. Here, we present LSMetacell (Library Size-stabilized Metacells), a computational framework that explicitly stabilizes library sizes across metacells to reduce compositional noise while preserving cellular heterogeneity. LSMetacell addresses this by stabilizing library sizes during metacells aggregation, thereby enhancing the accuracy of downstream analyses such as Weighted Gene Co-expression Network Analysis (WGCNA). Applied to a postmortem Alzheimer's disease brain scRNA-seq dataset, LSMetacell revealed robust, cell type-specific co-expression modules enriched for disease-relevant pathways, outperforming the conventional metacells approach. Our work establishes a principled strategy for resolving compositional biases in scRNA-seq data, advancing the reliability of co-expression network inference in studying complex biological systems. This framework provides a generalizable solution for improving transcriptional analyses in single-cell studies.Single-cell RNA sequencing (scRNA-seq) deciphers cell type-specific co-expression networks to resolve biological functions but remains constrained by data sparsity and compositional biases. Conventional metacells construction strategies mitigate sparsity by aggregating transcriptionally similar cells but often neglect systematic biases introduced by compositional data. This problem leads to spurious co-expression correlations and obscuring biologically meaningful interactions. Through mathematical modeling and simulations, we demonstrate that uncontrolled library size variance in traditional metacells inflates false-positive correlations and distorts co-expression networks. Here, we present LSMetacell (Library Size-stabilized Metacells), a computational framework that explicitly stabilizes library sizes across metacells to reduce compositional noise while preserving cellular heterogeneity. LSMetacell addresses this by stabilizing library sizes during metacells aggregation, thereby enhancing the accuracy of downstream analyses such as Weighted Gene Co-expression Network Analysis (WGCNA). Applied to a postmortem Alzheimer's disease brain scRNA-seq dataset, LSMetacell revealed robust, cell type-specific co-expression modules enriched for disease-relevant pathways, outperforming the conventional metacells approach. Our work establishes a principled strategy for resolving compositional biases in scRNA-seq data, advancing the reliability of co-expression network inference in studying complex biological systems. This framework provides a generalizable solution for improving transcriptional analyses in single-cell studies. |
| Author | Zhu, Haibin Zhang, Tianjiao |
| Author_xml | – sequence: 1 givenname: Tianjiao surname: Zhang fullname: Zhang, Tianjiao – sequence: 2 givenname: Haibin orcidid: 0000-0001-8169-9703 surname: Zhu fullname: Zhu, Haibin |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/41231963$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkU9v1DAQxS1U1H_0GyCUI5csHjuJ4yOqKFRaiUt7tsbOpHjJ2oudCMqnx2GXipOfnn5-nvG7YmchBmLsLfANSAUfdnFJAafNwVm_AQ6y0-oVu4S2lbWSbX_2n75gVznvOC9Sd-fsogEhQXfyku223iZMz1X2v6nOM1o_FTVUe5rR0TTlysWQ57S42cdQUfiGwdHq1vTrkCjn1Q40_4zpe4Vloufsc-VDSQxPE9VrSDXgjG_Y6xGnTDen85o93n16uP1Sb79-vr_9uK2dVHyu-0aT1Y3ietCcO0H9KABch4oE8aGhbrDWAhC3NJKw2qqWo0IpVbnXgrxm98fcIeLOHJLfl_1MRG_-GjE9GUyzdxMZ0ajOjaOUbqSmbzVaDYPUDnqBIPhYst4fsw4p_lgoz2bv87oRBopLNlIo0FJ2fVPQdyd0sXsaXh7-99cFaI6ASzHnROMLAtyslZpTpWat1JwqlX8AT7uZpQ |
| Cites_doi | 10.1038/s41467-020-18158-5 10.1038/s41467-024-50299-9 10.1186/1752-0509-1-24 10.1016/j.crmeth.2023.100498 10.1016/j.csbj.2022.07.018 10.1038/s41598-023-42708-8 10.1038/nmeth.1315 10.1111/j.2517-6161.1982.tb01195.x 10.1186/s13059-017-1382-0 10.1186/s12859-022-04861-1 10.1016/S1474-4422(18)30232-1 10.1038/s41590-023-01604-z 10.1093/bioinformatics/btm563 10.1186/s13059-022-02667-1 10.1186/s12974-022-02613-9 10.1038/s41586-023-05788-0 10.1186/1471-2105-9-559 10.1371/journal.pcbi.1001057 10.1186/s13059-019-1812-2 10.1038/nbt.4096 10.1073/pnas.2008762117 10.14348/molcells.2017.0011 10.1093/nar/gkg034 10.1002/dvdy.384 10.1186/s13195-017-0320-4 10.1089/omi.2011.0118 10.1038/s41592-019-0372-4 10.1186/s12864-024-10364-5 10.1186/s12964-021-00715-0 10.1007/s12017-024-08822-0 10.1016/j.neuron.2022.09.028 10.1038/s41587-023-01716-9 10.1038/s44320-024-00045-6 10.1038/s41586-019-1195-2 10.1186/s13024-022-00542-y 10.1016/S1474-4422(20)30412-9 10.1186/s13024-024-00706-y 10.1126/science.1073374 10.1038/s41467-025-56424-6 |
| ContentType | Journal Article |
| Copyright | Copyright: © 2025 Zhang, Zhu. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
| Copyright_xml | – notice: Copyright: © 2025 Zhang, Zhu. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 DOA |
| DOI | 10.1371/journal.pcbi.1013697 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1553-7358 |
| ExternalDocumentID | oai_doaj_org_article_2476cff33cfe4859ab91d39c182a120f 41231963 10_1371_journal_pcbi_1013697 |
| Genre | Journal Article |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAKPC AAUCC AAWOE AAYXX ABDBF ABUWG ACCTH ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC B0M BAIFH BAWUL BBNVY BBTPI BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DWQXO E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS INH INR ISN ISR ITC J9A K6V K7- KQ8 LK8 M1P M7P O5R O5S OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PV9 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB ~8M ADRAZ C1A CGR CUY CVF ECM EIF H13 IPNFZ M48 NPM RIG WOQ 7X8 |
| ID | FETCH-LOGICAL-c370t-849eb94709d900c2e8f211c6a7e2e0d4e6dbbb11e0befe2b9b750a7a337eb9513 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001615767900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1553-7358 1553-734X |
| IngestDate | Mon Nov 24 19:21:09 EST 2025 Fri Nov 14 18:48:30 EST 2025 Fri Nov 21 01:40:58 EST 2025 Thu Nov 20 00:41:45 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | Copyright: © 2025 Zhang, Zhu. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c370t-849eb94709d900c2e8f211c6a7e2e0d4e6dbbb11e0befe2b9b750a7a337eb9513 |
| Notes | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-8169-9703 |
| OpenAccessLink | https://doaj.org/article/2476cff33cfe4859ab91d39c182a120f |
| PMID | 41231963 |
| PQID | 3271933684 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2476cff33cfe4859ab91d39c182a120f proquest_miscellaneous_3271933684 pubmed_primary_41231963 crossref_primary_10_1371_journal_pcbi_1013697 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-11-01 |
| PublicationDateYYYYMMDD | 2025-11-01 |
| PublicationDate_xml | – month: 11 year: 2025 text: 2025-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | PLoS computational biology |
| PublicationTitleAlternate | PLoS Comput Biol |
| PublicationYear | 2025 |
| Publisher | Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science (PLoS) |
| References | C Feregrino (pcbi.1013697.ref006) 2022; 251 C Su (pcbi.1013697.ref010) 2022 BJ Aguilar (pcbi.1013697.ref021) 2017; 9 N Wang (pcbi.1013697.ref039) 2022; 110 Y Li (pcbi.1013697.ref032) 2022; 19 C von Mering (pcbi.1013697.ref036) 2003; 31 M Bilous (pcbi.1013697.ref019) 2022; 23 Y Li (pcbi.1013697.ref017) 2025; 16 JM Grayson (pcbi.1013697.ref028) 2023; 13 MA Skinnider (pcbi.1013697.ref009) 2019; 16 J Dong (pcbi.1013697.ref038) 2007; 1 W Su (pcbi.1013697.ref026) 2023; 24 S Aldridge (pcbi.1013697.ref004) 2020; 11 S Morabito (pcbi.1013697.ref007) 2023; 3 S-F Lau (pcbi.1013697.ref033) 2020; 117 E Ravasz (pcbi.1013697.ref034) 2002; 297 G Yu (pcbi.1013697.ref040) 2012; 16 FA Wolf (pcbi.1013697.ref013) 2018; 19 R-Y Li (pcbi.1013697.ref024) 2022; 17 Y Fan (pcbi.1013697.ref020) 2017; 40 S Xu (pcbi.1013697.ref022) 2024; 15 C Huang (pcbi.1013697.ref030) 2025; 27 P Langfelder (pcbi.1013697.ref037) 2011; 7 Y Baran (pcbi.1013697.ref016) 2019; 20 F Tang (pcbi.1013697.ref003) 2009; 6 H Mathys (pcbi.1013697.ref014) 2019; 570 R Cuevas-Diaz Duran (pcbi.1013697.ref011) 2024; 25 P Langfelder (pcbi.1013697.ref001) 2008; 9 O Ben-Kiki (pcbi.1013697.ref015) 2022; 23 P Langfelder (pcbi.1013697.ref035) 2008; 24 M Bilous (pcbi.1013697.ref005) 2024; 20 J Aitchison (pcbi.1013697.ref008) 1982; 44 SE Desale (pcbi.1013697.ref023) 2021; 19 S Persad (pcbi.1013697.ref018) 2023; 41 A Serrano-Pozo (pcbi.1013697.ref029) 2021; 20 T Zhang (pcbi.1013697.ref002) 2022; 20 A Butler (pcbi.1013697.ref012) 2018; 36 D Hu (pcbi.1013697.ref025) 2024; 19 X Chen (pcbi.1013697.ref027) 2023; 615 S Carmona (pcbi.1013697.ref031) 2018; 17 |
| References_xml | – volume: 11 start-page: 4307 issue: 1 year: 2020 ident: pcbi.1013697.ref004 article-title: Single cell transcriptomics comes of age publication-title: Nat Commun doi: 10.1038/s41467-020-18158-5 – volume: 15 start-page: 6252 issue: 1 year: 2024 ident: pcbi.1013697.ref022 article-title: Spatially and temporally probing distinctive glycerophospholipid alterations in Alzheimer’s disease mouse brain via high-resolution ion mobility-enabled sn-position resolved lipidomics publication-title: Nat Commun doi: 10.1038/s41467-024-50299-9 – volume: 1 start-page: 24 year: 2007 ident: pcbi.1013697.ref038 article-title: Understanding network concepts in modules publication-title: BMC Syst Biol doi: 10.1186/1752-0509-1-24 – volume: 3 start-page: 100498 issue: 6 year: 2023 ident: pcbi.1013697.ref007 article-title: hdWGCNA identifies co-expression networks in high-dimensional transcriptomics data publication-title: Cell Rep Methods doi: 10.1016/j.crmeth.2023.100498 – volume: 20 start-page: 3851 year: 2022 ident: pcbi.1013697.ref002 article-title: Gene expression data analysis using Hellinger correlation in weighted gene co-expression networks (WGCNA) publication-title: Comput Struct Biotechnol J doi: 10.1016/j.csbj.2022.07.018 – volume: 13 start-page: 15779 issue: 1 year: 2023 ident: pcbi.1013697.ref028 article-title: T cell exhaustion is associated with cognitive status and amyloid accumulation in Alzheimer’s disease publication-title: Sci Rep doi: 10.1038/s41598-023-42708-8 – volume: 6 start-page: 377 issue: 5 year: 2009 ident: pcbi.1013697.ref003 article-title: mRNA-Seq whole-transcriptome analysis of a single cell publication-title: Nat Methods doi: 10.1038/nmeth.1315 – volume: 44 start-page: 139 issue: 2 year: 1982 ident: pcbi.1013697.ref008 article-title: The statistical analysis of compositional data publication-title: J R Stat Soc Ser B Stat Methodol doi: 10.1111/j.2517-6161.1982.tb01195.x – volume: 19 start-page: 15 issue: 1 year: 2018 ident: pcbi.1013697.ref013 article-title: SCANPY: large-scale single-cell gene expression data analysis publication-title: Genome Biol doi: 10.1186/s13059-017-1382-0 – volume: 23 start-page: 336 issue: 1 year: 2022 ident: pcbi.1013697.ref019 article-title: Metacells untangle large and complex single-cell transcriptome networks publication-title: BMC Bioinform doi: 10.1186/s12859-022-04861-1 – volume: 17 start-page: 721 issue: 8 year: 2018 ident: pcbi.1013697.ref031 article-title: The role of TREM2 in Alzheimer’s disease and other neurodegenerative disorders publication-title: Lancet Neurol doi: 10.1016/S1474-4422(18)30232-1 – volume: 24 start-page: 1735 issue: 10 year: 2023 ident: pcbi.1013697.ref026 article-title: CXCR6 orchestrates brain CD8+ T cell residency and limits mouse Alzheimer’s disease pathology publication-title: Nat Immunol doi: 10.1038/s41590-023-01604-z – volume: 24 start-page: 719 issue: 5 year: 2008 ident: pcbi.1013697.ref035 article-title: Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm563 – volume: 23 start-page: 100 issue: 1 year: 2022 ident: pcbi.1013697.ref015 article-title: Metacell-2: a divide-and-conquer metacell algorithm for scalable scRNA-seq analysis publication-title: Genome Biol doi: 10.1186/s13059-022-02667-1 – volume: 19 start-page: 248 issue: 1 year: 2022 ident: pcbi.1013697.ref032 article-title: Mitochondrial dysfunction in microglia: a novel perspective for pathogenesis of Alzheimer’s disease publication-title: J Neuroinflammation doi: 10.1186/s12974-022-02613-9 – volume: 615 start-page: 668 issue: 7953 year: 2023 ident: pcbi.1013697.ref027 article-title: Microglia-mediated T cell infiltration drives neurodegeneration in tauopathy publication-title: Nature doi: 10.1038/s41586-023-05788-0 – volume: 9 start-page: 559 year: 2008 ident: pcbi.1013697.ref001 article-title: WGCNA: an R package for weighted correlation network analysis publication-title: BMC Bioinform doi: 10.1186/1471-2105-9-559 – volume: 7 issue: 1 year: 2011 ident: pcbi.1013697.ref037 article-title: Is my network module preserved and reproducible? publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1001057 – volume: 20 start-page: 206 issue: 1 year: 2019 ident: pcbi.1013697.ref016 article-title: MetaCell: analysis of single-cell RNA-seq data using K-nn graph partitions publication-title: Genome Biol doi: 10.1186/s13059-019-1812-2 – volume: 36 start-page: 411 issue: 5 year: 2018 ident: pcbi.1013697.ref012 article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species publication-title: Nat Biotechnol doi: 10.1038/nbt.4096 – volume: 117 start-page: 25800 issue: 41 year: 2020 ident: pcbi.1013697.ref033 article-title: Single-nucleus transcriptome analysis reveals dysregulation of angiogenic endothelial cells and neuroprotective glia in Alzheimer’s disease publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.2008762117 – volume: 40 start-page: 163 issue: 3 year: 2017 ident: pcbi.1013697.ref020 article-title: Signaling pathways controlling microglia chemotaxis publication-title: Mol Cells doi: 10.14348/molcells.2017.0011 – volume: 31 start-page: 258 issue: 1 year: 2003 ident: pcbi.1013697.ref036 article-title: STRING: a database of predicted functional associations between proteins publication-title: Nucleic Acids Res doi: 10.1093/nar/gkg034 – volume: 251 start-page: 1472 issue: 9 year: 2022 ident: pcbi.1013697.ref006 article-title: Assessing evolutionary and developmental transcriptome dynamics in homologous cell types publication-title: Dev Dyn doi: 10.1002/dvdy.384 – volume: 9 start-page: 97 issue: 1 year: 2017 ident: pcbi.1013697.ref021 article-title: Rho GTPases as therapeutic targets in Alzheimer’s disease publication-title: Alzheimers Res Ther doi: 10.1186/s13195-017-0320-4 – volume: 16 start-page: 284 issue: 5 year: 2012 ident: pcbi.1013697.ref040 article-title: clusterProfiler: an R package for comparing biological themes among gene clusters publication-title: OMICS doi: 10.1089/omi.2011.0118 – volume: 16 start-page: 381 issue: 5 year: 2019 ident: pcbi.1013697.ref009 article-title: Evaluating measures of association for single-cell transcriptomics publication-title: Nat Methods doi: 10.1038/s41592-019-0372-4 – volume: 25 start-page: 444 issue: 1 year: 2024 ident: pcbi.1013697.ref011 article-title: Data normalization for addressing the challenges in the analysis of single-cell transcriptomic datasets publication-title: BMC Genomics doi: 10.1186/s12864-024-10364-5 – year: 2022 ident: pcbi.1013697.ref010 article-title: Cell-type-specific co-expression inference from single cell RNA-sequencing data publication-title: bioRxiv – volume: 19 start-page: 28 issue: 1 year: 2021 ident: pcbi.1013697.ref023 article-title: Phosphoinositides signaling modulates microglial actin remodeling and phagocytosis in Alzheimer’s disease publication-title: Cell Commun Signal doi: 10.1186/s12964-021-00715-0 – volume: 27 start-page: 6 issue: 1 year: 2025 ident: pcbi.1013697.ref030 article-title: From genes to metabolites: HSP90B1’s role in Alzheimer’s disease and potential for therapeutic intervention publication-title: Neuromolecular Med doi: 10.1007/s12017-024-08822-0 – volume: 110 issue: 20 year: 2022 ident: pcbi.1013697.ref039 article-title: Mapping brain gene coexpression in daytime transcriptomes unveils diurnal molecular networks and deciphers perturbation gene signatures publication-title: Neuron doi: 10.1016/j.neuron.2022.09.028 – volume: 41 start-page: 1746 issue: 12 year: 2023 ident: pcbi.1013697.ref018 article-title: SEACells infers transcriptional and epigenomic cellular states from single-cell genomics data publication-title: Nat Biotechnol doi: 10.1038/s41587-023-01716-9 – volume: 20 start-page: 744 issue: 7 year: 2024 ident: pcbi.1013697.ref005 article-title: Building and analyzing metacells in single-cell genomics data publication-title: Mol Syst Biol doi: 10.1038/s44320-024-00045-6 – volume: 570 start-page: 332 issue: 7761 year: 2019 ident: pcbi.1013697.ref014 article-title: Single-cell transcriptomic analysis of Alzheimer’s disease publication-title: Nature doi: 10.1038/s41586-019-1195-2 – volume: 17 start-page: 40 issue: 1 year: 2022 ident: pcbi.1013697.ref024 article-title: TREM2 in the pathogenesis of AD: a lipid metabolism regulator and potential metabolic therapeutic target publication-title: Mol Neurodegener doi: 10.1186/s13024-022-00542-y – volume: 20 start-page: 68 issue: 1 year: 2021 ident: pcbi.1013697.ref029 article-title: APOE and Alzheimer’s disease: advances in genetics, pathophysiology, and therapeutic approaches publication-title: Lancet Neurol doi: 10.1016/S1474-4422(20)30412-9 – volume: 19 start-page: 16 issue: 1 year: 2024 ident: pcbi.1013697.ref025 article-title: Unraveling the dual nature of brain CD8+ T cells in Alzheimer’s disease publication-title: Mol Neurodegener doi: 10.1186/s13024-024-00706-y – volume: 297 start-page: 1551 issue: 5586 year: 2002 ident: pcbi.1013697.ref034 article-title: Hierarchical organization of modularity in metabolic networks publication-title: Science doi: 10.1126/science.1073374 – volume: 16 start-page: 1205 issue: 1 year: 2025 ident: pcbi.1013697.ref017 article-title: MetaQ: fast, scalable and accurate metacell inference via single-cell quantization publication-title: Nat Commun doi: 10.1038/s41467-025-56424-6 |
| SSID | ssj0035896 |
| Score | 2.4739518 |
| Snippet | Single-cell RNA sequencing (scRNA-seq) deciphers cell type-specific co-expression networks to resolve biological functions but remains constrained by data... |
| SourceID | doaj proquest pubmed crossref |
| SourceType | Open Website Aggregation Database Index Database |
| StartPage | e1013697 |
| SubjectTerms | Algorithms Alzheimer Disease - genetics Alzheimer Disease - metabolism Brain - metabolism Computational Biology - methods Computer Simulation Gene Expression Profiling - methods Gene Library Gene Regulatory Networks - genetics Humans RNA-Seq - methods Sequence Analysis, RNA - methods Single-Cell Analysis - methods Single-Cell Analysis - statistics & numerical data |
| Title | Library size-stabilized metacells construction enhances co-expression network analysis in single-cell data |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/41231963 https://www.proquest.com/docview/3271933684 https://doaj.org/article/2476cff33cfe4859ab91d39c182a120f |
| Volume | 21 |
| WOSCitedRecordID | wos001615767900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: DOA dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: P5Z dateStart: 20050601 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: M7P dateStart: 20050601 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: K7- dateStart: 20050601 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: 7X7 dateStart: 20050601 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: BENPR dateStart: 20050601 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: PIMPY dateStart: 20050601 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVATS databaseName: Public Library of Science (PLoS) Journals Open Access customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: FPL dateStart: 20050101 isFulltext: true titleUrlDefault: http://www.plos.org/publications/ providerName: Public Library of Science |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA66KngR346PIYLXuJ2ku9M5urKDog6NKIxemiRdwRHtWZxRdH-9VUlm3Yt48VKHkH5QX7oe6cpXjD3BDCDxfAnpAGjrphNOKS9CwMXg2og-NaZmE2a57FYr259r9UU1YZkeOCvuUNWmDTFqHSLUXWOdt3LUNmBc7KSqIlnfyth9MpVtsG661JmLmuIIo-tVOTSnjTwsGD09CX5NuatuifDpnFNK3P1_DziT41lcZ9dKxMif5Te9wS7AdJNdyT0kf91in8vJA75dn4LAWI-qXU9h5F9h52hbfsvD5g9NLIfpEwFNowJ-ljLYiU-5HJy7QlLC1xOnbYQvIOgmnCpJb7P3i-N3z1-I0kBBBG2qnehqC97WprKjraqgoIuY74XWGVBQjTW0o_deSqg8RFDeeowfnHFaG7yukfoOO5g2E9xjvHOq8hGttLeamlT7UUbtjXQN5msu6BkTew0OJ5knY0g_ywzmF1lRA2l8KBqfsSNS89lcYrlOA4j9ULAf_oX9jD3egzTgV0HqcBNsvm8HrQxGprrt6hm7m9E7e1SNzprszv3_8QoP2FVFHYHT6cSH7ADRhEfscvixW2-_zdlFszJJdnN26eh42b-dp4WKctG_RvnKiDnVm_Yo--Yjzupfvuk__AYSj_HS |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Library+size-stabilized+metacells+construction+enhances+co-expression+network+analysis+in+single-cell+data&rft.jtitle=PLoS+computational+biology&rft.au=Tianjiao+Zhang&rft.au=Haibin+Zhu&rft.date=2025-11-01&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.issn=1553-734X&rft.eissn=1553-7358&rft.volume=21&rft.issue=11&rft.spage=e1013697&rft_id=info:doi/10.1371%2Fjournal.pcbi.1013697&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2476cff33cfe4859ab91d39c182a120f |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon |