Library size-stabilized metacells construction enhances co-expression network analysis in single-cell data

Single-cell RNA sequencing (scRNA-seq) deciphers cell type-specific co-expression networks to resolve biological functions but remains constrained by data sparsity and compositional biases. Conventional metacells construction strategies mitigate sparsity by aggregating transcriptionally similar cell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology Jg. 21; H. 11; S. e1013697
Hauptverfasser: Zhang, Tianjiao, Zhu, Haibin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Public Library of Science (PLoS) 01.11.2025
Schlagworte:
ISSN:1553-7358, 1553-734X, 1553-7358
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Single-cell RNA sequencing (scRNA-seq) deciphers cell type-specific co-expression networks to resolve biological functions but remains constrained by data sparsity and compositional biases. Conventional metacells construction strategies mitigate sparsity by aggregating transcriptionally similar cells but often neglect systematic biases introduced by compositional data. This problem leads to spurious co-expression correlations and obscuring biologically meaningful interactions. Through mathematical modeling and simulations, we demonstrate that uncontrolled library size variance in traditional metacells inflates false-positive correlations and distorts co-expression networks. Here, we present LSMetacell (Library Size-stabilized Metacells), a computational framework that explicitly stabilizes library sizes across metacells to reduce compositional noise while preserving cellular heterogeneity. LSMetacell addresses this by stabilizing library sizes during metacells aggregation, thereby enhancing the accuracy of downstream analyses such as Weighted Gene Co-expression Network Analysis (WGCNA). Applied to a postmortem Alzheimer’s disease brain scRNA-seq dataset, LSMetacell revealed robust, cell type-specific co-expression modules enriched for disease-relevant pathways, outperforming the conventional metacells approach. Our work establishes a principled strategy for resolving compositional biases in scRNA-seq data, advancing the reliability of co-expression network inference in studying complex biological systems. This framework provides a generalizable solution for improving transcriptional analyses in single-cell studies.
AbstractList Single-cell RNA sequencing (scRNA-seq) deciphers cell type-specific co-expression networks to resolve biological functions but remains constrained by data sparsity and compositional biases. Conventional metacells construction strategies mitigate sparsity by aggregating transcriptionally similar cells but often neglect systematic biases introduced by compositional data. This problem leads to spurious co-expression correlations and obscuring biologically meaningful interactions. Through mathematical modeling and simulations, we demonstrate that uncontrolled library size variance in traditional metacells inflates false-positive correlations and distorts co-expression networks. Here, we present LSMetacell (Library Size-stabilized Metacells), a computational framework that explicitly stabilizes library sizes across metacells to reduce compositional noise while preserving cellular heterogeneity. LSMetacell addresses this by stabilizing library sizes during metacells aggregation, thereby enhancing the accuracy of downstream analyses such as Weighted Gene Co-expression Network Analysis (WGCNA). Applied to a postmortem Alzheimer’s disease brain scRNA-seq dataset, LSMetacell revealed robust, cell type-specific co-expression modules enriched for disease-relevant pathways, outperforming the conventional metacells approach. Our work establishes a principled strategy for resolving compositional biases in scRNA-seq data, advancing the reliability of co-expression network inference in studying complex biological systems. This framework provides a generalizable solution for improving transcriptional analyses in single-cell studies.
Single-cell RNA sequencing (scRNA-seq) deciphers cell type-specific co-expression networks to resolve biological functions but remains constrained by data sparsity and compositional biases. Conventional metacells construction strategies mitigate sparsity by aggregating transcriptionally similar cells but often neglect systematic biases introduced by compositional data. This problem leads to spurious co-expression correlations and obscuring biologically meaningful interactions. Through mathematical modeling and simulations, we demonstrate that uncontrolled library size variance in traditional metacells inflates false-positive correlations and distorts co-expression networks. Here, we present LSMetacell (Library Size-stabilized Metacells), a computational framework that explicitly stabilizes library sizes across metacells to reduce compositional noise while preserving cellular heterogeneity. LSMetacell addresses this by stabilizing library sizes during metacells aggregation, thereby enhancing the accuracy of downstream analyses such as Weighted Gene Co-expression Network Analysis (WGCNA). Applied to a postmortem Alzheimer's disease brain scRNA-seq dataset, LSMetacell revealed robust, cell type-specific co-expression modules enriched for disease-relevant pathways, outperforming the conventional metacells approach. Our work establishes a principled strategy for resolving compositional biases in scRNA-seq data, advancing the reliability of co-expression network inference in studying complex biological systems. This framework provides a generalizable solution for improving transcriptional analyses in single-cell studies.Single-cell RNA sequencing (scRNA-seq) deciphers cell type-specific co-expression networks to resolve biological functions but remains constrained by data sparsity and compositional biases. Conventional metacells construction strategies mitigate sparsity by aggregating transcriptionally similar cells but often neglect systematic biases introduced by compositional data. This problem leads to spurious co-expression correlations and obscuring biologically meaningful interactions. Through mathematical modeling and simulations, we demonstrate that uncontrolled library size variance in traditional metacells inflates false-positive correlations and distorts co-expression networks. Here, we present LSMetacell (Library Size-stabilized Metacells), a computational framework that explicitly stabilizes library sizes across metacells to reduce compositional noise while preserving cellular heterogeneity. LSMetacell addresses this by stabilizing library sizes during metacells aggregation, thereby enhancing the accuracy of downstream analyses such as Weighted Gene Co-expression Network Analysis (WGCNA). Applied to a postmortem Alzheimer's disease brain scRNA-seq dataset, LSMetacell revealed robust, cell type-specific co-expression modules enriched for disease-relevant pathways, outperforming the conventional metacells approach. Our work establishes a principled strategy for resolving compositional biases in scRNA-seq data, advancing the reliability of co-expression network inference in studying complex biological systems. This framework provides a generalizable solution for improving transcriptional analyses in single-cell studies.
Author Zhu, Haibin
Zhang, Tianjiao
Author_xml – sequence: 1
  givenname: Tianjiao
  surname: Zhang
  fullname: Zhang, Tianjiao
– sequence: 2
  givenname: Haibin
  orcidid: 0000-0001-8169-9703
  surname: Zhu
  fullname: Zhu, Haibin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41231963$$D View this record in MEDLINE/PubMed
BookMark eNpNkU9v1DAQxS1U1H_0GyCUI5csHjuJ4yOqKFRaiUt7tsbOpHjJ2oudCMqnx2GXipOfnn5-nvG7YmchBmLsLfANSAUfdnFJAafNwVm_AQ6y0-oVu4S2lbWSbX_2n75gVznvOC9Sd-fsogEhQXfyku223iZMz1X2v6nOM1o_FTVUe5rR0TTlysWQ57S42cdQUfiGwdHq1vTrkCjn1Q40_4zpe4Vloufsc-VDSQxPE9VrSDXgjG_Y6xGnTDen85o93n16uP1Sb79-vr_9uK2dVHyu-0aT1Y3ietCcO0H9KABch4oE8aGhbrDWAhC3NJKw2qqWo0IpVbnXgrxm98fcIeLOHJLfl_1MRG_-GjE9GUyzdxMZ0ajOjaOUbqSmbzVaDYPUDnqBIPhYst4fsw4p_lgoz2bv87oRBopLNlIo0FJ2fVPQdyd0sXsaXh7-99cFaI6ASzHnROMLAtyslZpTpWat1JwqlX8AT7uZpQ
Cites_doi 10.1038/s41467-020-18158-5
10.1038/s41467-024-50299-9
10.1186/1752-0509-1-24
10.1016/j.crmeth.2023.100498
10.1016/j.csbj.2022.07.018
10.1038/s41598-023-42708-8
10.1038/nmeth.1315
10.1111/j.2517-6161.1982.tb01195.x
10.1186/s13059-017-1382-0
10.1186/s12859-022-04861-1
10.1016/S1474-4422(18)30232-1
10.1038/s41590-023-01604-z
10.1093/bioinformatics/btm563
10.1186/s13059-022-02667-1
10.1186/s12974-022-02613-9
10.1038/s41586-023-05788-0
10.1186/1471-2105-9-559
10.1371/journal.pcbi.1001057
10.1186/s13059-019-1812-2
10.1038/nbt.4096
10.1073/pnas.2008762117
10.14348/molcells.2017.0011
10.1093/nar/gkg034
10.1002/dvdy.384
10.1186/s13195-017-0320-4
10.1089/omi.2011.0118
10.1038/s41592-019-0372-4
10.1186/s12864-024-10364-5
10.1186/s12964-021-00715-0
10.1007/s12017-024-08822-0
10.1016/j.neuron.2022.09.028
10.1038/s41587-023-01716-9
10.1038/s44320-024-00045-6
10.1038/s41586-019-1195-2
10.1186/s13024-022-00542-y
10.1016/S1474-4422(20)30412-9
10.1186/s13024-024-00706-y
10.1126/science.1073374
10.1038/s41467-025-56424-6
ContentType Journal Article
Copyright Copyright: © 2025 Zhang, Zhu. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Copyright_xml – notice: Copyright: © 2025 Zhang, Zhu. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOA
DOI 10.1371/journal.pcbi.1013697
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1553-7358
ExternalDocumentID oai_doaj_org_article_2476cff33cfe4859ab91d39c182a120f
41231963
10_1371_journal_pcbi_1013697
Genre Journal Article
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PV9
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
ADRAZ
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
M48
NPM
RIG
WOQ
7X8
ID FETCH-LOGICAL-c370t-849eb94709d900c2e8f211c6a7e2e0d4e6dbbb11e0befe2b9b750a7a337eb9513
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001615767900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1553-7358
1553-734X
IngestDate Mon Nov 24 19:21:09 EST 2025
Fri Nov 14 18:48:30 EST 2025
Fri Nov 21 01:40:58 EST 2025
Thu Nov 20 00:41:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Copyright: © 2025 Zhang, Zhu. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-849eb94709d900c2e8f211c6a7e2e0d4e6dbbb11e0befe2b9b750a7a337eb9513
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8169-9703
OpenAccessLink https://doaj.org/article/2476cff33cfe4859ab91d39c182a120f
PMID 41231963
PQID 3271933684
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_2476cff33cfe4859ab91d39c182a120f
proquest_miscellaneous_3271933684
pubmed_primary_41231963
crossref_primary_10_1371_journal_pcbi_1013697
PublicationCentury 2000
PublicationDate 2025-11-01
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2025
Publisher Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science (PLoS)
References C Feregrino (pcbi.1013697.ref006) 2022; 251
C Su (pcbi.1013697.ref010) 2022
BJ Aguilar (pcbi.1013697.ref021) 2017; 9
N Wang (pcbi.1013697.ref039) 2022; 110
Y Li (pcbi.1013697.ref032) 2022; 19
C von Mering (pcbi.1013697.ref036) 2003; 31
M Bilous (pcbi.1013697.ref019) 2022; 23
Y Li (pcbi.1013697.ref017) 2025; 16
JM Grayson (pcbi.1013697.ref028) 2023; 13
MA Skinnider (pcbi.1013697.ref009) 2019; 16
J Dong (pcbi.1013697.ref038) 2007; 1
W Su (pcbi.1013697.ref026) 2023; 24
S Aldridge (pcbi.1013697.ref004) 2020; 11
S Morabito (pcbi.1013697.ref007) 2023; 3
S-F Lau (pcbi.1013697.ref033) 2020; 117
E Ravasz (pcbi.1013697.ref034) 2002; 297
G Yu (pcbi.1013697.ref040) 2012; 16
FA Wolf (pcbi.1013697.ref013) 2018; 19
R-Y Li (pcbi.1013697.ref024) 2022; 17
Y Fan (pcbi.1013697.ref020) 2017; 40
S Xu (pcbi.1013697.ref022) 2024; 15
C Huang (pcbi.1013697.ref030) 2025; 27
P Langfelder (pcbi.1013697.ref037) 2011; 7
Y Baran (pcbi.1013697.ref016) 2019; 20
F Tang (pcbi.1013697.ref003) 2009; 6
H Mathys (pcbi.1013697.ref014) 2019; 570
R Cuevas-Diaz Duran (pcbi.1013697.ref011) 2024; 25
P Langfelder (pcbi.1013697.ref001) 2008; 9
O Ben-Kiki (pcbi.1013697.ref015) 2022; 23
P Langfelder (pcbi.1013697.ref035) 2008; 24
M Bilous (pcbi.1013697.ref005) 2024; 20
J Aitchison (pcbi.1013697.ref008) 1982; 44
SE Desale (pcbi.1013697.ref023) 2021; 19
S Persad (pcbi.1013697.ref018) 2023; 41
A Serrano-Pozo (pcbi.1013697.ref029) 2021; 20
T Zhang (pcbi.1013697.ref002) 2022; 20
A Butler (pcbi.1013697.ref012) 2018; 36
D Hu (pcbi.1013697.ref025) 2024; 19
X Chen (pcbi.1013697.ref027) 2023; 615
S Carmona (pcbi.1013697.ref031) 2018; 17
References_xml – volume: 11
  start-page: 4307
  issue: 1
  year: 2020
  ident: pcbi.1013697.ref004
  article-title: Single cell transcriptomics comes of age
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-18158-5
– volume: 15
  start-page: 6252
  issue: 1
  year: 2024
  ident: pcbi.1013697.ref022
  article-title: Spatially and temporally probing distinctive glycerophospholipid alterations in Alzheimer’s disease mouse brain via high-resolution ion mobility-enabled sn-position resolved lipidomics
  publication-title: Nat Commun
  doi: 10.1038/s41467-024-50299-9
– volume: 1
  start-page: 24
  year: 2007
  ident: pcbi.1013697.ref038
  article-title: Understanding network concepts in modules
  publication-title: BMC Syst Biol
  doi: 10.1186/1752-0509-1-24
– volume: 3
  start-page: 100498
  issue: 6
  year: 2023
  ident: pcbi.1013697.ref007
  article-title: hdWGCNA identifies co-expression networks in high-dimensional transcriptomics data
  publication-title: Cell Rep Methods
  doi: 10.1016/j.crmeth.2023.100498
– volume: 20
  start-page: 3851
  year: 2022
  ident: pcbi.1013697.ref002
  article-title: Gene expression data analysis using Hellinger correlation in weighted gene co-expression networks (WGCNA)
  publication-title: Comput Struct Biotechnol J
  doi: 10.1016/j.csbj.2022.07.018
– volume: 13
  start-page: 15779
  issue: 1
  year: 2023
  ident: pcbi.1013697.ref028
  article-title: T cell exhaustion is associated with cognitive status and amyloid accumulation in Alzheimer’s disease
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-42708-8
– volume: 6
  start-page: 377
  issue: 5
  year: 2009
  ident: pcbi.1013697.ref003
  article-title: mRNA-Seq whole-transcriptome analysis of a single cell
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1315
– volume: 44
  start-page: 139
  issue: 2
  year: 1982
  ident: pcbi.1013697.ref008
  article-title: The statistical analysis of compositional data
  publication-title: J R Stat Soc Ser B Stat Methodol
  doi: 10.1111/j.2517-6161.1982.tb01195.x
– volume: 19
  start-page: 15
  issue: 1
  year: 2018
  ident: pcbi.1013697.ref013
  article-title: SCANPY: large-scale single-cell gene expression data analysis
  publication-title: Genome Biol
  doi: 10.1186/s13059-017-1382-0
– volume: 23
  start-page: 336
  issue: 1
  year: 2022
  ident: pcbi.1013697.ref019
  article-title: Metacells untangle large and complex single-cell transcriptome networks
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-022-04861-1
– volume: 17
  start-page: 721
  issue: 8
  year: 2018
  ident: pcbi.1013697.ref031
  article-title: The role of TREM2 in Alzheimer’s disease and other neurodegenerative disorders
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(18)30232-1
– volume: 24
  start-page: 1735
  issue: 10
  year: 2023
  ident: pcbi.1013697.ref026
  article-title: CXCR6 orchestrates brain CD8+ T cell residency and limits mouse Alzheimer’s disease pathology
  publication-title: Nat Immunol
  doi: 10.1038/s41590-023-01604-z
– volume: 24
  start-page: 719
  issue: 5
  year: 2008
  ident: pcbi.1013697.ref035
  article-title: Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm563
– volume: 23
  start-page: 100
  issue: 1
  year: 2022
  ident: pcbi.1013697.ref015
  article-title: Metacell-2: a divide-and-conquer metacell algorithm for scalable scRNA-seq analysis
  publication-title: Genome Biol
  doi: 10.1186/s13059-022-02667-1
– volume: 19
  start-page: 248
  issue: 1
  year: 2022
  ident: pcbi.1013697.ref032
  article-title: Mitochondrial dysfunction in microglia: a novel perspective for pathogenesis of Alzheimer’s disease
  publication-title: J Neuroinflammation
  doi: 10.1186/s12974-022-02613-9
– volume: 615
  start-page: 668
  issue: 7953
  year: 2023
  ident: pcbi.1013697.ref027
  article-title: Microglia-mediated T cell infiltration drives neurodegeneration in tauopathy
  publication-title: Nature
  doi: 10.1038/s41586-023-05788-0
– volume: 9
  start-page: 559
  year: 2008
  ident: pcbi.1013697.ref001
  article-title: WGCNA: an R package for weighted correlation network analysis
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-9-559
– volume: 7
  issue: 1
  year: 2011
  ident: pcbi.1013697.ref037
  article-title: Is my network module preserved and reproducible?
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1001057
– volume: 20
  start-page: 206
  issue: 1
  year: 2019
  ident: pcbi.1013697.ref016
  article-title: MetaCell: analysis of single-cell RNA-seq data using K-nn graph partitions
  publication-title: Genome Biol
  doi: 10.1186/s13059-019-1812-2
– volume: 36
  start-page: 411
  issue: 5
  year: 2018
  ident: pcbi.1013697.ref012
  article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.4096
– volume: 117
  start-page: 25800
  issue: 41
  year: 2020
  ident: pcbi.1013697.ref033
  article-title: Single-nucleus transcriptome analysis reveals dysregulation of angiogenic endothelial cells and neuroprotective glia in Alzheimer’s disease
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.2008762117
– volume: 40
  start-page: 163
  issue: 3
  year: 2017
  ident: pcbi.1013697.ref020
  article-title: Signaling pathways controlling microglia chemotaxis
  publication-title: Mol Cells
  doi: 10.14348/molcells.2017.0011
– volume: 31
  start-page: 258
  issue: 1
  year: 2003
  ident: pcbi.1013697.ref036
  article-title: STRING: a database of predicted functional associations between proteins
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkg034
– volume: 251
  start-page: 1472
  issue: 9
  year: 2022
  ident: pcbi.1013697.ref006
  article-title: Assessing evolutionary and developmental transcriptome dynamics in homologous cell types
  publication-title: Dev Dyn
  doi: 10.1002/dvdy.384
– volume: 9
  start-page: 97
  issue: 1
  year: 2017
  ident: pcbi.1013697.ref021
  article-title: Rho GTPases as therapeutic targets in Alzheimer’s disease
  publication-title: Alzheimers Res Ther
  doi: 10.1186/s13195-017-0320-4
– volume: 16
  start-page: 284
  issue: 5
  year: 2012
  ident: pcbi.1013697.ref040
  article-title: clusterProfiler: an R package for comparing biological themes among gene clusters
  publication-title: OMICS
  doi: 10.1089/omi.2011.0118
– volume: 16
  start-page: 381
  issue: 5
  year: 2019
  ident: pcbi.1013697.ref009
  article-title: Evaluating measures of association for single-cell transcriptomics
  publication-title: Nat Methods
  doi: 10.1038/s41592-019-0372-4
– volume: 25
  start-page: 444
  issue: 1
  year: 2024
  ident: pcbi.1013697.ref011
  article-title: Data normalization for addressing the challenges in the analysis of single-cell transcriptomic datasets
  publication-title: BMC Genomics
  doi: 10.1186/s12864-024-10364-5
– year: 2022
  ident: pcbi.1013697.ref010
  article-title: Cell-type-specific co-expression inference from single cell RNA-sequencing data
  publication-title: bioRxiv
– volume: 19
  start-page: 28
  issue: 1
  year: 2021
  ident: pcbi.1013697.ref023
  article-title: Phosphoinositides signaling modulates microglial actin remodeling and phagocytosis in Alzheimer’s disease
  publication-title: Cell Commun Signal
  doi: 10.1186/s12964-021-00715-0
– volume: 27
  start-page: 6
  issue: 1
  year: 2025
  ident: pcbi.1013697.ref030
  article-title: From genes to metabolites: HSP90B1’s role in Alzheimer’s disease and potential for therapeutic intervention
  publication-title: Neuromolecular Med
  doi: 10.1007/s12017-024-08822-0
– volume: 110
  issue: 20
  year: 2022
  ident: pcbi.1013697.ref039
  article-title: Mapping brain gene coexpression in daytime transcriptomes unveils diurnal molecular networks and deciphers perturbation gene signatures
  publication-title: Neuron
  doi: 10.1016/j.neuron.2022.09.028
– volume: 41
  start-page: 1746
  issue: 12
  year: 2023
  ident: pcbi.1013697.ref018
  article-title: SEACells infers transcriptional and epigenomic cellular states from single-cell genomics data
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-023-01716-9
– volume: 20
  start-page: 744
  issue: 7
  year: 2024
  ident: pcbi.1013697.ref005
  article-title: Building and analyzing metacells in single-cell genomics data
  publication-title: Mol Syst Biol
  doi: 10.1038/s44320-024-00045-6
– volume: 570
  start-page: 332
  issue: 7761
  year: 2019
  ident: pcbi.1013697.ref014
  article-title: Single-cell transcriptomic analysis of Alzheimer’s disease
  publication-title: Nature
  doi: 10.1038/s41586-019-1195-2
– volume: 17
  start-page: 40
  issue: 1
  year: 2022
  ident: pcbi.1013697.ref024
  article-title: TREM2 in the pathogenesis of AD: a lipid metabolism regulator and potential metabolic therapeutic target
  publication-title: Mol Neurodegener
  doi: 10.1186/s13024-022-00542-y
– volume: 20
  start-page: 68
  issue: 1
  year: 2021
  ident: pcbi.1013697.ref029
  article-title: APOE and Alzheimer’s disease: advances in genetics, pathophysiology, and therapeutic approaches
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(20)30412-9
– volume: 19
  start-page: 16
  issue: 1
  year: 2024
  ident: pcbi.1013697.ref025
  article-title: Unraveling the dual nature of brain CD8+ T cells in Alzheimer’s disease
  publication-title: Mol Neurodegener
  doi: 10.1186/s13024-024-00706-y
– volume: 297
  start-page: 1551
  issue: 5586
  year: 2002
  ident: pcbi.1013697.ref034
  article-title: Hierarchical organization of modularity in metabolic networks
  publication-title: Science
  doi: 10.1126/science.1073374
– volume: 16
  start-page: 1205
  issue: 1
  year: 2025
  ident: pcbi.1013697.ref017
  article-title: MetaQ: fast, scalable and accurate metacell inference via single-cell quantization
  publication-title: Nat Commun
  doi: 10.1038/s41467-025-56424-6
SSID ssj0035896
Score 2.4739518
Snippet Single-cell RNA sequencing (scRNA-seq) deciphers cell type-specific co-expression networks to resolve biological functions but remains constrained by data...
SourceID doaj
proquest
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage e1013697
SubjectTerms Algorithms
Alzheimer Disease - genetics
Alzheimer Disease - metabolism
Brain - metabolism
Computational Biology - methods
Computer Simulation
Gene Expression Profiling - methods
Gene Library
Gene Regulatory Networks - genetics
Humans
RNA-Seq - methods
Sequence Analysis, RNA - methods
Single-Cell Analysis - methods
Single-Cell Analysis - statistics & numerical data
Title Library size-stabilized metacells construction enhances co-expression network analysis in single-cell data
URI https://www.ncbi.nlm.nih.gov/pubmed/41231963
https://www.proquest.com/docview/3271933684
https://doaj.org/article/2476cff33cfe4859ab91d39c182a120f
Volume 21
WOSCitedRecordID wos001615767900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: P5Z
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: M7P
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: K7-
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: 7X7
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: BENPR
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: PIMPY
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: FPL
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA66KngR346PIYLXuJ2ku9M5urKDog6NKIxemiRdwRHtWZxRdH-9VUlm3Yt48VKHkH5QX7oe6cpXjD3BDCDxfAnpAGjrphNOKS9CwMXg2og-NaZmE2a57FYr259r9UU1YZkeOCvuUNWmDTFqHSLUXWOdt3LUNmBc7KSqIlnfyth9MpVtsG661JmLmuIIo-tVOTSnjTwsGD09CX5NuatuifDpnFNK3P1_DziT41lcZ9dKxMif5Te9wS7AdJNdyT0kf91in8vJA75dn4LAWI-qXU9h5F9h52hbfsvD5g9NLIfpEwFNowJ-ljLYiU-5HJy7QlLC1xOnbYQvIOgmnCpJb7P3i-N3z1-I0kBBBG2qnehqC97WprKjraqgoIuY74XWGVBQjTW0o_deSqg8RFDeeowfnHFaG7yukfoOO5g2E9xjvHOq8hGttLeamlT7UUbtjXQN5msu6BkTew0OJ5knY0g_ywzmF1lRA2l8KBqfsSNS89lcYrlOA4j9ULAf_oX9jD3egzTgV0HqcBNsvm8HrQxGprrt6hm7m9E7e1SNzprszv3_8QoP2FVFHYHT6cSH7ADRhEfscvixW2-_zdlFszJJdnN26eh42b-dp4WKctG_RvnKiDnVm_Yo--Yjzupfvuk__AYSj_HS
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Library+size-stabilized+metacells+construction+enhances+co-expression+network+analysis+in+single-cell+data&rft.jtitle=PLoS+computational+biology&rft.au=Tianjiao+Zhang&rft.au=Haibin+Zhu&rft.date=2025-11-01&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.issn=1553-734X&rft.eissn=1553-7358&rft.volume=21&rft.issue=11&rft.spage=e1013697&rft_id=info:doi/10.1371%2Fjournal.pcbi.1013697&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2476cff33cfe4859ab91d39c182a120f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon