Lagrangian evaluations of viscous models for velocity gradient dynamics in non-stationary turbulence
•A novel methodology to evaluate existing models (the linear Lagrangian diffusion model (LLDM) and the recent fluid deformation closure model (RFDM)) of the viscous processes incumbent in the evolution equation of velocity gradients employed.•Unlike previous evaluations, these evaluations are perfor...
Uloženo v:
| Vydáno v: | The International journal of heat and fluid flow Ročník 78; s. 108429 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.08.2019
|
| Témata: | |
| ISSN: | 0142-727X, 1879-2278 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •A novel methodology to evaluate existing models (the linear Lagrangian diffusion model (LLDM) and the recent fluid deformation closure model (RFDM)) of the viscous processes incumbent in the evolution equation of velocity gradients employed.•Unlike previous evaluations, these evaluations are performed following identified fluid particles (Lagrangian evaluations) from direct numerical simulations. Evaluations are performed for both compressible and nearly incompressible non-stationary decaying turbulent flow fields.•LLDM grossly overestimates the magnitude of the viscous process in both incompressible and compressible flows.•Performance of RFDM in nearly incompressible flows and compressible flows at low Mach numbers is found to be good. However, as Mach number increases, the model performance deteriorates.•A plausible alternative approach is suggested to address the shortcomings identified in the LLD and the RFD models for compressible flows.
Simple autonomous dynamical models of velocity gradients are found to be useful in understanding the essential physics of non-linear turbulent processes. Such models can also be employed as closure models for the Lagrangian PDF methods of turbulence computations. The pressure Hessian and the viscous processes incumbent in the exact velocity gradient evolution equation are non-local in nature. Several models have been proposed for these processes. In this work, we focus specifically on two models meant for the incumbent viscous process: the linear Lagrangian diffusion model (LLDM) and the recent fluid deformation closure model (RFDM). Performance of both the models have indeed been examined earlier, but most evaluations have been restricted to statistical stationary flow fields. In this work, we subject these models to further scrutiny. Our evaluation procedure (i) uses direct numerical simulation data of decaying isotropic (non-stationary) turbulence, (ii) follows identified fluid particles (the so-called Lagrangian evolution), (iii) uses both compressible and nearly incompressible flow fields. In nearly incompressible regime, the RFD model is found to be satisfactory, while the LLDM model overestimates viscous effects at late times. In the compressible regime, both the models show inadequacies. For compressible flows, we propose an alternative modelling strategy which shows improvement over both LLD and RFD models. |
|---|---|
| AbstractList | •A novel methodology to evaluate existing models (the linear Lagrangian diffusion model (LLDM) and the recent fluid deformation closure model (RFDM)) of the viscous processes incumbent in the evolution equation of velocity gradients employed.•Unlike previous evaluations, these evaluations are performed following identified fluid particles (Lagrangian evaluations) from direct numerical simulations. Evaluations are performed for both compressible and nearly incompressible non-stationary decaying turbulent flow fields.•LLDM grossly overestimates the magnitude of the viscous process in both incompressible and compressible flows.•Performance of RFDM in nearly incompressible flows and compressible flows at low Mach numbers is found to be good. However, as Mach number increases, the model performance deteriorates.•A plausible alternative approach is suggested to address the shortcomings identified in the LLD and the RFD models for compressible flows.
Simple autonomous dynamical models of velocity gradients are found to be useful in understanding the essential physics of non-linear turbulent processes. Such models can also be employed as closure models for the Lagrangian PDF methods of turbulence computations. The pressure Hessian and the viscous processes incumbent in the exact velocity gradient evolution equation are non-local in nature. Several models have been proposed for these processes. In this work, we focus specifically on two models meant for the incumbent viscous process: the linear Lagrangian diffusion model (LLDM) and the recent fluid deformation closure model (RFDM). Performance of both the models have indeed been examined earlier, but most evaluations have been restricted to statistical stationary flow fields. In this work, we subject these models to further scrutiny. Our evaluation procedure (i) uses direct numerical simulation data of decaying isotropic (non-stationary) turbulence, (ii) follows identified fluid particles (the so-called Lagrangian evolution), (iii) uses both compressible and nearly incompressible flow fields. In nearly incompressible regime, the RFD model is found to be satisfactory, while the LLDM model overestimates viscous effects at late times. In the compressible regime, both the models show inadequacies. For compressible flows, we propose an alternative modelling strategy which shows improvement over both LLD and RFD models. |
| ArticleNumber | 108429 |
| Author | Parashar, Nishant Srinivasan, Balaji Sinha, Sawan S. |
| Author_xml | – sequence: 1 givenname: Nishant surname: Parashar fullname: Parashar, Nishant email: nishantparashar14@gmail.com organization: Department of Applied Mechanics, Indian Institute of Technology Delhi, New Delhi 110016, India – sequence: 2 givenname: Sawan S. surname: Sinha fullname: Sinha, Sawan S. email: sawan@am.iitd.ac.in organization: Department of Applied Mechanics, Indian Institute of Technology Delhi, New Delhi 110016, India – sequence: 3 givenname: Balaji surname: Srinivasan fullname: Srinivasan, Balaji email: balaji.srinivasan@gmail.com organization: Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India |
| BookMark | eNqNkD1PwzAURS1UJNrCf_DCmGInaRwPDKiCglSJBSQ2y_FHceTayHaC-u9xW6ZOnd7wdI_uPTMwcd4pAO4xWmCEm4d-YfpvxZO2g5Ha-t9FiTDNv7Yu6RWY4pbQoixJOwFThOuyICX5ugGzGHuEUINqMgVyw7eBu63hDqqR24En412EXsPRROGHCHdeKhuh9gGOynph0h7mjDTKJSj3ju-MiNA4mOsVMR0BPOxhGkI3WOWEugXXmtuo7v7vHHy-PH-sXovN-_pt9bQpREVQKojiqCUt5aohHcZYcNlSVNe4pjXHuGow6ahe4oo2le6okILkGZ2sqG7FUjTVHKxOXBF8jEFplsse-6TAjWUYsYM41rMzcewgjp3EZcrjGeUnmF1edHF-fcpna2o0KrAozEGDNEGJxKQ3F5L-ANLPmqE |
| CitedBy_id | crossref_primary_10_1017_jfm_2024_448 |
| Cites_doi | 10.1063/1.1355682 10.1063/1.4904869 10.1063/1.5009017 10.1017/jfm.2012.212 10.1103/PhysRevE.80.046702 10.1063/1.868323 10.1063/1.870101 10.1063/1.866456 10.1063/1.858295 10.1007/s00162-002-0084-7 10.1063/1.866513 10.1063/1.1804553 10.1063/1.3657066 10.1017/jfm.2015.235 10.1063/1.868216 10.1063/1.868530 10.1017/S0022112090003330 10.1103/PhysRevLett.91.214502 10.1017/S0022112091000204 10.1103/PhysRevLett.97.174501 10.1103/PhysRevE.94.013101 10.1017/S0022112004003283 10.1016/0021-9991(88)90022-8 10.1002/fld.4291 10.1063/1.858772 10.1063/1.3531744 10.1017/S0022112083002189 10.1063/1.869752 10.1063/1.2912513 10.1063/1.869152 10.1016/j.fluiddyn.2004.12.003 10.1063/1.857773 10.1016/0360-1285(85)90002-4 10.1063/1.857971 10.1016/j.jcp.2012.10.005 10.1017/jfm.2011.262 10.1006/jcph.2001.6790 10.1051/jphys:01982004306083700 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Inc. |
| Copyright_xml | – notice: 2019 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ijheatfluidflow.2019.108429 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1879-2278 |
| ExternalDocumentID | 10_1016_j_ijheatfluidflow_2019_108429 S0142727X19300530 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEWK ADEZE ADHUB ADIYS ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SPD SSG SST SSZ T5K TN5 UHS VH1 VOH WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c370t-7ea08789ae67b111cad890441494a113617b9f513963fb9cdc7006bd39f8c5c63 |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000478708700011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0142-727X |
| IngestDate | Tue Nov 18 22:16:00 EST 2025 Sat Nov 29 02:47:13 EST 2025 Fri Feb 23 02:27:42 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Lagrangian dynamics Homogenous turbulence Velocity gradient dynamics Turbulence modelling |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c370t-7ea08789ae67b111cad890441494a113617b9f513963fb9cdc7006bd39f8c5c63 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_ijheatfluidflow_2019_108429 crossref_primary_10_1016_j_ijheatfluidflow_2019_108429 elsevier_sciencedirect_doi_10_1016_j_ijheatfluidflow_2019_108429 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-08-01 |
| PublicationDateYYYYMMDD | 2019-08-01 |
| PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | The International journal of heat and fluid flow |
| PublicationYear | 2019 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Sarkar, Erlebacher, Hussaini, Kreiss (bib0030) 1991; 227 Danish, Suman, Srinivasan (bib0010) 2014; 26 Suman, Girimaji (bib0033) 2010; 11 Chertkov, Pumir, Shraiman (bib0005) 1999; 11 Xu (bib0039) 2001; 171 Cantwell, Coles (bib0004) 1983; 136 Liao, Peng, Luo (bib0017) 2009; 80 Kerimo, Girimaji (bib0015) 2007; 8 Pumir (bib0027) 1994; 6 O’Neill, Soria (bib0021) 2005; 36 Vaghefi, Madnia (bib0036) 2015; 774 Parashar, Sinha, Srinivasan, Manish (bib0023) 2017; 83 Chevillard, Roux, Lévêque, Mordant, Pinton, Arnéodo (bib0008) 2003; 91 Samtaney, Pullin, Kosovic (bib0029) 2001; 13 Danish, Sinha, Srinivasan (bib0009) 2016; 94 Cantwell (bib0003) 1992; 4 Yeung, Pope (bib0040) 1988; 79 Chevillard, Meneveau (bib0007) 2011; 23 Girimaji, Pope (bib0011) 1990; 2 Kumar, Girimaji, Kerimo (bib0016) 2013; 234 Martín, Ooi, Chong, Soria (bib0019) 1998; 10 Ashurst, Chen, Rogers (bib0001) 1987; 30 Ashurst, Kerstein, Kerr, Gibson (bib0002) 1987; 30 Girimaji, Pope (bib0012) 1990; 220 Girimaji, Speziale (bib0013) 1995; 7 Pope (bib0025) 1985; 11 Jeong, Girimaji (bib0014) 2003; 16 Wang, Lu (bib0038) 2012; 703 Suman, Girimaji (bib0035) 2012; 13 Ohkitani (bib0020) 1993; 5 da Silva, Pereira (bib0031) 2008; 20 Pirozzoli, Grasso (bib0024) 2004; 16 Chevillard, Meneveau (bib0006) 2006; 97 Ristorcelli, Blaisdell (bib0028) 1997; 9 Parashar, Sinha, Danish, Srinivasan (bib0022) 2017; 29 Vieillefosse (bib0037) 1982; 43 Pope (bib0026) 2011; 23 Soria, Sondergaard, Cantwell, Chong, Perry (bib0032) 1994; 6 Lüthi, Tsinober, Kinzelbach (bib0018) 2005; 528 Suman, Girimaji (bib0034) 2011; 683 Zeman (bib0041) 1991; 3 Cantwell (10.1016/j.ijheatfluidflow.2019.108429_bib0003) 1992; 4 Kerimo (10.1016/j.ijheatfluidflow.2019.108429_bib0015) 2007; 8 Jeong (10.1016/j.ijheatfluidflow.2019.108429_bib0014) 2003; 16 Vieillefosse (10.1016/j.ijheatfluidflow.2019.108429_bib0037) 1982; 43 Parashar (10.1016/j.ijheatfluidflow.2019.108429_bib0023) 2017; 83 Chevillard (10.1016/j.ijheatfluidflow.2019.108429_bib0006) 2006; 97 Soria (10.1016/j.ijheatfluidflow.2019.108429_bib0032) 1994; 6 Suman (10.1016/j.ijheatfluidflow.2019.108429_bib0033) 2010; 11 Girimaji (10.1016/j.ijheatfluidflow.2019.108429_bib0012) 1990; 220 Cantwell (10.1016/j.ijheatfluidflow.2019.108429_bib0004) 1983; 136 Wang (10.1016/j.ijheatfluidflow.2019.108429_bib0038) 2012; 703 Chertkov (10.1016/j.ijheatfluidflow.2019.108429_bib0005) 1999; 11 Pirozzoli (10.1016/j.ijheatfluidflow.2019.108429_bib0024) 2004; 16 Liao (10.1016/j.ijheatfluidflow.2019.108429_bib0017) 2009; 80 Ashurst (10.1016/j.ijheatfluidflow.2019.108429_bib0002) 1987; 30 Ristorcelli (10.1016/j.ijheatfluidflow.2019.108429_bib0028) 1997; 9 da Silva (10.1016/j.ijheatfluidflow.2019.108429_sbref0031) 2008; 20 Suman (10.1016/j.ijheatfluidflow.2019.108429_bib0035) 2012; 13 Suman (10.1016/j.ijheatfluidflow.2019.108429_bib0034) 2011; 683 Pope (10.1016/j.ijheatfluidflow.2019.108429_bib0026) 2011; 23 Yeung (10.1016/j.ijheatfluidflow.2019.108429_bib0040) 1988; 79 Ohkitani (10.1016/j.ijheatfluidflow.2019.108429_bib0020) 1993; 5 Girimaji (10.1016/j.ijheatfluidflow.2019.108429_bib0013) 1995; 7 Ashurst (10.1016/j.ijheatfluidflow.2019.108429_bib0001) 1987; 30 Lüthi (10.1016/j.ijheatfluidflow.2019.108429_bib0018) 2005; 528 Xu (10.1016/j.ijheatfluidflow.2019.108429_bib0039) 2001; 171 Chevillard (10.1016/j.ijheatfluidflow.2019.108429_bib0008) 2003; 91 Chevillard (10.1016/j.ijheatfluidflow.2019.108429_bib0007) 2011; 23 Parashar (10.1016/j.ijheatfluidflow.2019.108429_bib0022) 2017; 29 O’Neill (10.1016/j.ijheatfluidflow.2019.108429_bib0021) 2005; 36 Girimaji (10.1016/j.ijheatfluidflow.2019.108429_bib0011) 1990; 2 Martín (10.1016/j.ijheatfluidflow.2019.108429_bib0019) 1998; 10 Danish (10.1016/j.ijheatfluidflow.2019.108429_bib0010) 2014; 26 Kumar (10.1016/j.ijheatfluidflow.2019.108429_bib0016) 2013; 234 Zeman (10.1016/j.ijheatfluidflow.2019.108429_bib0041) 1991; 3 Sarkar (10.1016/j.ijheatfluidflow.2019.108429_bib0030) 1991; 227 Danish (10.1016/j.ijheatfluidflow.2019.108429_bib0009) 2016; 94 Pope (10.1016/j.ijheatfluidflow.2019.108429_bib0025) 1985; 11 Samtaney (10.1016/j.ijheatfluidflow.2019.108429_bib0029) 2001; 13 Vaghefi (10.1016/j.ijheatfluidflow.2019.108429_bib0036) 2015; 774 Pumir (10.1016/j.ijheatfluidflow.2019.108429_bib0027) 1994; 6 |
| References_xml | – volume: 234 start-page: 499 year: 2013 end-page: 523 ident: bib0016 article-title: WENO-enhanced gas-kinetic scheme for direct simulations of compressible transition and turbulence publication-title: J. Comput. Phys. – volume: 80 start-page: 046702 year: 2009 ident: bib0017 article-title: Gas-kinetic schemes for direct numerical simulations of compressible homogeneous turbulence publication-title: Phys. Rev. E – volume: 30 start-page: 2343 year: 1987 end-page: 2353 ident: bib0002 article-title: Alignment of vorticity and scalar gradient with strain rate in simulated navier–stokes turbulence publication-title: Phys. Fluids – volume: 23 start-page: 101704 year: 2011 ident: bib0007 article-title: Lagrangian time correlations of vorticity alignments in isotropic turbulence: Observations and model predictions publication-title: Phys. Fluids – volume: 30 start-page: 3293 year: 1987 end-page: 3294 ident: bib0001 article-title: Pressure gradient alignment with strain rate and scalar gradient in simulated navier–stokes turbulence publication-title: Phys. Fluids – volume: 774 year: 2015 ident: bib0036 article-title: Local flow topology and velocity gradient invariants in compressible turbulent mixing layer publication-title: J. Fluid Mech. – volume: 13 start-page: 1 year: 2012 end-page: 23 ident: bib0035 article-title: Velocity-gradient dynamics in compressible turbulence: influence of mach number and dilatation rate publication-title: J. Turbul. – volume: 3 start-page: 951 year: 1991 end-page: 955 ident: bib0041 article-title: On the decay of compressible isotropic turbulence publication-title: Phys. Fluids A – volume: 227 start-page: 473 year: 1991 end-page: 493 ident: bib0030 article-title: The analysis and modelling of dilatational terms in compressible turbulence publication-title: J. Fluid Mech. – volume: 83 start-page: 737 year: 2017 end-page: 754 ident: bib0023 article-title: Gpu-accelerated direct numerical simulations of decaying compressible turbulence employing a gkm-based solver publication-title: Int. J. Numer. Meth. Fluids – volume: 136 start-page: 321 year: 1983 end-page: 374 ident: bib0004 article-title: An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder publication-title: J. Fluid Mech. – volume: 43 start-page: 837 year: 1982 end-page: 842 ident: bib0037 article-title: Local interaction between vorticity and shear in a perfect incompressible fluid publication-title: J. Phys. – volume: 29 start-page: 105110 year: 2017 ident: bib0022 article-title: Lagrangian investigations of vorticity dynamics in compressible turbulence publication-title: Phys. Fluids – volume: 220 start-page: 427 year: 1990 end-page: 458 ident: bib0012 article-title: Material-element deformation in isotropic turbulence publication-title: J. Fluid Mech. – volume: 6 start-page: 2118 year: 1994 end-page: 2132 ident: bib0027 article-title: A numerical study of the mixing of a passive scalar in three dimensions in the presence of a mean gradient publication-title: Phys. Fluids – volume: 97 start-page: 174501 year: 2006 ident: bib0006 article-title: Lagrangian dynamics and statistical geometric structure of turbulence publication-title: Phys. Rev. Lett. – volume: 26 start-page: 126103 year: 2014 ident: bib0010 article-title: A direct numerical simulation-based investigation and modeling of pressure hessian effects on compressible velocity gradient dynamics publication-title: Phys. Fluids – volume: 11 start-page: 1 year: 2010 end-page: 24 ident: bib0033 article-title: Velocity gradient invariants and local flow-field topology in compressible turbulence publication-title: J. Turbul. – volume: 91 start-page: 214502 year: 2003 ident: bib0008 article-title: Lagrangian velocity statistics in turbulent flows: effects of dissipation publication-title: Phys. Rev. Lett. – volume: 36 start-page: 107 year: 2005 end-page: 120 ident: bib0021 article-title: The relationship between the topological structures in turbulent flow and the distribution of a passive scalar with an imposed mean gradient publication-title: Fluid Dyn. Res. – volume: 703 start-page: 255 year: 2012 end-page: 278 ident: bib0038 article-title: Flow topology in compressible turbulent boundary layer publication-title: J. Fluid Mech. – volume: 79 start-page: 373 year: 1988 end-page: 416 ident: bib0040 article-title: An algorithm for tracking fluid particles in numerical simulations of homogeneous turbulence publication-title: J. Comput. Phys. – volume: 171 start-page: 289 year: 2001 end-page: 335 ident: bib0039 article-title: A gas-kinetic BGK scheme for the navier–stokes equations and its connection with artificial dissipation and godunov method publication-title: J. Comput. Phys. – volume: 528 start-page: 87 year: 2005 end-page: 118 ident: bib0018 article-title: Lagrangian measurement of vorticity dynamics in turbulent flow publication-title: J. Fluid Mech. – volume: 94 start-page: 013101 year: 2016 ident: bib0009 article-title: Influence of compressibility on the lagrangian statistics of vorticity–strain-rate interactions publication-title: Phys. Rev. E – volume: 8 start-page: 1 year: 2007 end-page: 16 ident: bib0015 article-title: Boltzmann–BGK approach to simulating weakly compressible 3D turbulence: comparison between lattice Boltzmann and gas kinetic methods publication-title: J. Turbul. – volume: 16 start-page: 421 year: 2003 end-page: 432 ident: bib0014 article-title: Velocity-gradient dynamics in turbulence: Effect of viscosity and forcing publication-title: Theor. Comp. Fluid Dyn. – volume: 23 start-page: 011301 year: 2011 ident: bib0026 article-title: Simple models of turbulent flows publication-title: Phys. Fluids – volume: 20 year: 2008 ident: bib0031 article-title: Invariants of the velocity-gradient, rate-of-strain, and rate-of-rotation tensors across the turbulent/nonturbulent interface in jets publication-title: Phys. Fluids – volume: 10 start-page: 2336 year: 1998 end-page: 2346 ident: bib0019 article-title: Dynamics of the velocity gradient tensor invariants in isotropic turbulence publication-title: Phys. Fluids – volume: 5 start-page: 2570 year: 1993 end-page: 2572 ident: bib0020 article-title: Eigenvalue problems in three-dimensional euler flows publication-title: Phys. Fluids A – volume: 4 start-page: 782 year: 1992 end-page: 793 ident: bib0003 article-title: Exact solution of a restricted euler equation for the velocity gradient tensor publication-title: Phys. Fluids A – volume: 11 start-page: 2394 year: 1999 end-page: 2410 ident: bib0005 article-title: Lagrangian tetrad dynamics and the phenomenology of turbulence publication-title: Phys. Fluids – volume: 11 start-page: 119 year: 1985 end-page: 192 ident: bib0025 article-title: PDF Methods for turbulent reactive flows publication-title: Prog. Energy Combust. Sci. – volume: 16 start-page: 4386 year: 2004 end-page: 4407 ident: bib0024 article-title: Direct numerical simulations of isotropic compressible turbulence: influence of compressibility on dynamics and structures publication-title: Phys. Fluids – volume: 6 start-page: 871 year: 1994 end-page: 884 ident: bib0032 article-title: A study of the fine-scale motions of incompressible time-developing mixing layers publication-title: Phys. Fluids – volume: 2 start-page: 242 year: 1990 end-page: 256 ident: bib0011 article-title: A diffusion model for velocity gradients in turbulence publication-title: Phys. Fluids A – volume: 7 start-page: 1438 year: 1995 end-page: 1446 ident: bib0013 article-title: A modified restricted euler equation for turbulent flows with mean velocity gradients publication-title: Phys. Fluids – volume: 9 start-page: 4 year: 1997 end-page: 6 ident: bib0028 article-title: Consistent initial conditions for the DNS of compressible turbulence publication-title: Phys. Fluids – volume: 683 start-page: 289 year: 2011 end-page: 319 ident: bib0034 article-title: Dynamical model for velocity-gradient evolution in compressible turbulence publication-title: J. Fluid Mech. – volume: 13 start-page: 1415 year: 2001 end-page: 1430 ident: bib0029 article-title: Direct numerical simulation of decaying compressible turbulence and shocklet statistics publication-title: Phys. Fluids – volume: 13 start-page: 1415 issue: 5 year: 2001 ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0029 article-title: Direct numerical simulation of decaying compressible turbulence and shocklet statistics publication-title: Phys. Fluids doi: 10.1063/1.1355682 – volume: 26 start-page: 126103 issue: 12 year: 2014 ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0010 article-title: A direct numerical simulation-based investigation and modeling of pressure hessian effects on compressible velocity gradient dynamics publication-title: Phys. Fluids doi: 10.1063/1.4904869 – volume: 29 start-page: 105110 issue: 10 year: 2017 ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0022 article-title: Lagrangian investigations of vorticity dynamics in compressible turbulence publication-title: Phys. Fluids doi: 10.1063/1.5009017 – volume: 703 start-page: 255 year: 2012 ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0038 article-title: Flow topology in compressible turbulent boundary layer publication-title: J. Fluid Mech. doi: 10.1017/jfm.2012.212 – volume: 80 start-page: 046702 issue: 4 year: 2009 ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0017 article-title: Gas-kinetic schemes for direct numerical simulations of compressible homogeneous turbulence publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.80.046702 – volume: 6 start-page: 871 issue: 2 year: 1994 ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0032 article-title: A study of the fine-scale motions of incompressible time-developing mixing layers publication-title: Phys. Fluids doi: 10.1063/1.868323 – volume: 13 start-page: 1 issue: 8 year: 2012 ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0035 article-title: Velocity-gradient dynamics in compressible turbulence: influence of mach number and dilatation rate publication-title: J. Turbul. – volume: 11 start-page: 2394 issue: 8 year: 1999 ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0005 article-title: Lagrangian tetrad dynamics and the phenomenology of turbulence publication-title: Phys. Fluids doi: 10.1063/1.870101 – volume: 30 start-page: 3293 issue: 10 year: 1987 ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0001 article-title: Pressure gradient alignment with strain rate and scalar gradient in simulated navier–stokes turbulence publication-title: Phys. Fluids doi: 10.1063/1.866456 – volume: 4 start-page: 782 issue: 4 year: 1992 ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0003 article-title: Exact solution of a restricted euler equation for the velocity gradient tensor publication-title: Phys. Fluids A doi: 10.1063/1.858295 – volume: 16 start-page: 421 issue: 6 year: 2003 ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0014 article-title: Velocity-gradient dynamics in turbulence: Effect of viscosity and forcing publication-title: Theor. Comp. Fluid Dyn. doi: 10.1007/s00162-002-0084-7 – volume: 30 start-page: 2343 issue: 8 year: 1987 ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0002 article-title: Alignment of vorticity and scalar gradient with strain rate in simulated navier–stokes turbulence publication-title: Phys. Fluids doi: 10.1063/1.866513 – volume: 16 start-page: 4386 issue: 12 year: 2004 ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0024 article-title: Direct numerical simulations of isotropic compressible turbulence: influence of compressibility on dynamics and structures publication-title: Phys. Fluids doi: 10.1063/1.1804553 – volume: 23 start-page: 101704 issue: 10 year: 2011 ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0007 article-title: Lagrangian time correlations of vorticity alignments in isotropic turbulence: Observations and model predictions publication-title: Phys. Fluids doi: 10.1063/1.3657066 – volume: 774 year: 2015 ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0036 article-title: Local flow topology and velocity gradient invariants in compressible turbulent mixing layer publication-title: J. Fluid Mech. doi: 10.1017/jfm.2015.235 – volume: 8 start-page: 1 issue: 46 year: 2007 ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0015 article-title: Boltzmann–BGK approach to simulating weakly compressible 3D turbulence: comparison between lattice Boltzmann and gas kinetic methods publication-title: J. Turbul. – volume: 6 start-page: 2118 issue: 6 year: 1994 ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0027 article-title: A numerical study of the mixing of a passive scalar in three dimensions in the presence of a mean gradient publication-title: Phys. Fluids doi: 10.1063/1.868216 – volume: 7 start-page: 1438 issue: 6 year: 1995 ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0013 article-title: A modified restricted euler equation for turbulent flows with mean velocity gradients publication-title: Phys. Fluids doi: 10.1063/1.868530 – volume: 220 start-page: 427 year: 1990 ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0012 article-title: Material-element deformation in isotropic turbulence publication-title: J. Fluid Mech. doi: 10.1017/S0022112090003330 – volume: 11 start-page: 1 issue: 2 year: 2010 ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0033 article-title: Velocity gradient invariants and local flow-field topology in compressible turbulence publication-title: J. Turbul. – volume: 91 start-page: 214502 issue: 21 year: 2003 ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0008 article-title: Lagrangian velocity statistics in turbulent flows: effects of dissipation publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.91.214502 – volume: 227 start-page: 473 year: 1991 ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0030 article-title: The analysis and modelling of dilatational terms in compressible turbulence publication-title: J. Fluid Mech. doi: 10.1017/S0022112091000204 – volume: 97 start-page: 174501 issue: 17 year: 2006 ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0006 article-title: Lagrangian dynamics and statistical geometric structure of turbulence publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.174501 – volume: 94 start-page: 013101 issue: 1 year: 2016 ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0009 article-title: Influence of compressibility on the lagrangian statistics of vorticity–strain-rate interactions publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.94.013101 – volume: 528 start-page: 87 year: 2005 ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0018 article-title: Lagrangian measurement of vorticity dynamics in turbulent flow publication-title: J. Fluid Mech. doi: 10.1017/S0022112004003283 – volume: 79 start-page: 373 issue: 2 year: 1988 ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0040 article-title: An algorithm for tracking fluid particles in numerical simulations of homogeneous turbulence publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(88)90022-8 – volume: 83 start-page: 737 issue: 10 year: 2017 ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0023 article-title: Gpu-accelerated direct numerical simulations of decaying compressible turbulence employing a gkm-based solver publication-title: Int. J. Numer. Meth. Fluids doi: 10.1002/fld.4291 – volume: 5 start-page: 2570 issue: 10 year: 1993 ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0020 article-title: Eigenvalue problems in three-dimensional euler flows publication-title: Phys. Fluids A doi: 10.1063/1.858772 – volume: 23 start-page: 011301 issue: 1 year: 2011 ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0026 article-title: Simple models of turbulent flows publication-title: Phys. Fluids doi: 10.1063/1.3531744 – volume: 136 start-page: 321 year: 1983 ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0004 article-title: An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder publication-title: J. Fluid Mech. doi: 10.1017/S0022112083002189 – volume: 10 start-page: 2336 year: 1998 ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0019 article-title: Dynamics of the velocity gradient tensor invariants in isotropic turbulence publication-title: Phys. Fluids doi: 10.1063/1.869752 – volume: 20 issue: 5 year: 2008 ident: 10.1016/j.ijheatfluidflow.2019.108429_sbref0031 article-title: Invariants of the velocity-gradient, rate-of-strain, and rate-of-rotation tensors across the turbulent/nonturbulent interface in jets publication-title: Phys. Fluids doi: 10.1063/1.2912513 – volume: 9 start-page: 4 issue: 1 year: 1997 ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0028 article-title: Consistent initial conditions for the DNS of compressible turbulence publication-title: Phys. Fluids doi: 10.1063/1.869152 – volume: 36 start-page: 107 issue: 3 year: 2005 ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0021 article-title: The relationship between the topological structures in turbulent flow and the distribution of a passive scalar with an imposed mean gradient publication-title: Fluid Dyn. Res. doi: 10.1016/j.fluiddyn.2004.12.003 – volume: 2 start-page: 242 issue: 2 year: 1990 ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0011 article-title: A diffusion model for velocity gradients in turbulence publication-title: Phys. Fluids A doi: 10.1063/1.857773 – volume: 11 start-page: 119 issue: 2 year: 1985 ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0025 article-title: PDF Methods for turbulent reactive flows publication-title: Prog. Energy Combust. Sci. doi: 10.1016/0360-1285(85)90002-4 – volume: 3 start-page: 951 issue: 5 year: 1991 ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0041 article-title: On the decay of compressible isotropic turbulence publication-title: Phys. Fluids A doi: 10.1063/1.857971 – volume: 234 start-page: 499 year: 2013 ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0016 article-title: WENO-enhanced gas-kinetic scheme for direct simulations of compressible transition and turbulence publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2012.10.005 – volume: 683 start-page: 289 year: 2011 ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0034 article-title: Dynamical model for velocity-gradient evolution in compressible turbulence publication-title: J. Fluid Mech. doi: 10.1017/jfm.2011.262 – volume: 171 start-page: 289 issue: 1 year: 2001 ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0039 article-title: A gas-kinetic BGK scheme for the navier–stokes equations and its connection with artificial dissipation and godunov method publication-title: J. Comput. Phys. doi: 10.1006/jcph.2001.6790 – volume: 43 start-page: 837 issue: 6 year: 1982 ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0037 article-title: Local interaction between vorticity and shear in a perfect incompressible fluid publication-title: J. Phys. doi: 10.1051/jphys:01982004306083700 |
| SSID | ssj0006047 |
| Score | 2.2594047 |
| Snippet | •A novel methodology to evaluate existing models (the linear Lagrangian diffusion model (LLDM) and the recent fluid deformation closure model (RFDM)) of the... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 108429 |
| SubjectTerms | Homogenous turbulence Lagrangian dynamics Turbulence modelling Velocity gradient dynamics |
| Title | Lagrangian evaluations of viscous models for velocity gradient dynamics in non-stationary turbulence |
| URI | https://dx.doi.org/10.1016/j.ijheatfluidflow.2019.108429 |
| Volume | 78 |
| WOSCitedRecordID | wos000478708700011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1879-2278 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006047 issn: 0142-727X databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKhhA88DFAG1_yAzxNmZzEiWOJBwYaAoQqpBWpb5HjOCNVlU5N2-2v4G_mLnY-CggVIV6iNpXtOvfL3dn-3R0hL7kfBCzW0kuKmHtgoUIvK2LmGc0zP5dhFGd5U2xCjMfJdCq_jEbf21iYzVxUVXJ9LS__q6jhHggbQ2f_Qtxdp3ADPoPQ4Qpih-tOgv-sLsD-XOCL26fybggbm7LWyHhtqt80eRiOkTGk0RGHNsj9Wh3ntkR9Q5OtFpVX27N6JNeBdcrWTZDS0KWddPTLdl9xkI0CVX1zPlHM1yVeF_05hFqq-pvld4-xBnTPwDkvK3sOda6uUP-cdD_gedNG1XbX9q2aq1k53LfAUKlkuG_RBdRs8T1hwQYOfyCm1jxZnZwI6WHE7lBp22-_6H-7FTE7KWc4v2ZqODOk8EmkU3K3vbKdYhsZbgGOCt4saiV2g-wHIpKgJfdPP55NP3W2PWbcBuC7v3mLvOoZg38Y9Pdez8CTmdwnd90ShJ5a6DwgI1MdkHtuOUKdsq8PyJ1BrsqHJO9xRQe4oouCOlxRiysKuKItrmiLK9riipYV3cYV7XH1iHx9fzZ598FzJTo8HQq28oRRLBGJVCYWGZhNrfJEMnCxueQKywX5IpNFBMuMOCwyqXMt4CFmeSiLREc6Dh-TPRjTHBJqgkxKBQbEZ4oHPlcwgtDMJBE3jBl1RF63jzDVLn89llGZpy1RcZb-JIEUJZBaCRyRuGt-aRO57NrwTSuv1Hml1ttMAXS7dfHk37t4Sm73L9Ezsrdars1zclNvVmW9fOFg-gNEmcNr |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lagrangian+evaluations+of+viscous+models+for+velocity+gradient+dynamics+in+non-stationary+turbulence&rft.jtitle=The+International+journal+of+heat+and+fluid+flow&rft.au=Parashar%2C+Nishant&rft.au=Sinha%2C+Sawan+S.&rft.au=Srinivasan%2C+Balaji&rft.date=2019-08-01&rft.pub=Elsevier+Inc&rft.issn=0142-727X&rft.eissn=1879-2278&rft.volume=78&rft_id=info:doi/10.1016%2Fj.ijheatfluidflow.2019.108429&rft.externalDocID=S0142727X19300530 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-727X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-727X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-727X&client=summon |