Lagrangian evaluations of viscous models for velocity gradient dynamics in non-stationary turbulence

•A novel methodology to evaluate existing models (the linear Lagrangian diffusion model (LLDM) and the recent fluid deformation closure model (RFDM)) of the viscous processes incumbent in the evolution equation of velocity gradients employed.•Unlike previous evaluations, these evaluations are perfor...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The International journal of heat and fluid flow Ročník 78; s. 108429
Hlavní autoři: Parashar, Nishant, Sinha, Sawan S., Srinivasan, Balaji
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.08.2019
Témata:
ISSN:0142-727X, 1879-2278
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •A novel methodology to evaluate existing models (the linear Lagrangian diffusion model (LLDM) and the recent fluid deformation closure model (RFDM)) of the viscous processes incumbent in the evolution equation of velocity gradients employed.•Unlike previous evaluations, these evaluations are performed following identified fluid particles (Lagrangian evaluations) from direct numerical simulations. Evaluations are performed for both compressible and nearly incompressible non-stationary decaying turbulent flow fields.•LLDM grossly overestimates the magnitude of the viscous process in both incompressible and compressible flows.•Performance of RFDM in nearly incompressible flows and compressible flows at low Mach numbers is found to be good. However, as Mach number increases, the model performance deteriorates.•A plausible alternative approach is suggested to address the shortcomings identified in the LLD and the RFD models for compressible flows. Simple autonomous dynamical models of velocity gradients are found to be useful in understanding the essential physics of non-linear turbulent processes. Such models can also be employed as closure models for the Lagrangian PDF methods of turbulence computations. The pressure Hessian and the viscous processes incumbent in the exact velocity gradient evolution equation are non-local in nature. Several models have been proposed for these processes. In this work, we focus specifically on two models meant for the incumbent viscous process: the linear Lagrangian diffusion model (LLDM) and the recent fluid deformation closure model (RFDM). Performance of both the models have indeed been examined earlier, but most evaluations have been restricted to statistical stationary flow fields. In this work, we subject these models to further scrutiny. Our evaluation procedure (i) uses direct numerical simulation data of decaying isotropic (non-stationary) turbulence, (ii) follows identified fluid particles (the so-called Lagrangian evolution), (iii) uses both compressible and nearly incompressible flow fields. In nearly incompressible regime, the RFD model is found to be satisfactory, while the LLDM model overestimates viscous effects at late times. In the compressible regime, both the models show inadequacies. For compressible flows, we propose an alternative modelling strategy which shows improvement over both LLD and RFD models.
AbstractList •A novel methodology to evaluate existing models (the linear Lagrangian diffusion model (LLDM) and the recent fluid deformation closure model (RFDM)) of the viscous processes incumbent in the evolution equation of velocity gradients employed.•Unlike previous evaluations, these evaluations are performed following identified fluid particles (Lagrangian evaluations) from direct numerical simulations. Evaluations are performed for both compressible and nearly incompressible non-stationary decaying turbulent flow fields.•LLDM grossly overestimates the magnitude of the viscous process in both incompressible and compressible flows.•Performance of RFDM in nearly incompressible flows and compressible flows at low Mach numbers is found to be good. However, as Mach number increases, the model performance deteriorates.•A plausible alternative approach is suggested to address the shortcomings identified in the LLD and the RFD models for compressible flows. Simple autonomous dynamical models of velocity gradients are found to be useful in understanding the essential physics of non-linear turbulent processes. Such models can also be employed as closure models for the Lagrangian PDF methods of turbulence computations. The pressure Hessian and the viscous processes incumbent in the exact velocity gradient evolution equation are non-local in nature. Several models have been proposed for these processes. In this work, we focus specifically on two models meant for the incumbent viscous process: the linear Lagrangian diffusion model (LLDM) and the recent fluid deformation closure model (RFDM). Performance of both the models have indeed been examined earlier, but most evaluations have been restricted to statistical stationary flow fields. In this work, we subject these models to further scrutiny. Our evaluation procedure (i) uses direct numerical simulation data of decaying isotropic (non-stationary) turbulence, (ii) follows identified fluid particles (the so-called Lagrangian evolution), (iii) uses both compressible and nearly incompressible flow fields. In nearly incompressible regime, the RFD model is found to be satisfactory, while the LLDM model overestimates viscous effects at late times. In the compressible regime, both the models show inadequacies. For compressible flows, we propose an alternative modelling strategy which shows improvement over both LLD and RFD models.
ArticleNumber 108429
Author Parashar, Nishant
Srinivasan, Balaji
Sinha, Sawan S.
Author_xml – sequence: 1
  givenname: Nishant
  surname: Parashar
  fullname: Parashar, Nishant
  email: nishantparashar14@gmail.com
  organization: Department of Applied Mechanics, Indian Institute of Technology Delhi, New Delhi 110016, India
– sequence: 2
  givenname: Sawan S.
  surname: Sinha
  fullname: Sinha, Sawan S.
  email: sawan@am.iitd.ac.in
  organization: Department of Applied Mechanics, Indian Institute of Technology Delhi, New Delhi 110016, India
– sequence: 3
  givenname: Balaji
  surname: Srinivasan
  fullname: Srinivasan, Balaji
  email: balaji.srinivasan@gmail.com
  organization: Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
BookMark eNqNkD1PwzAURS1UJNrCf_DCmGInaRwPDKiCglSJBSQ2y_FHceTayHaC-u9xW6ZOnd7wdI_uPTMwcd4pAO4xWmCEm4d-YfpvxZO2g5Ha-t9FiTDNv7Yu6RWY4pbQoixJOwFThOuyICX5ugGzGHuEUINqMgVyw7eBu63hDqqR24En412EXsPRROGHCHdeKhuh9gGOynph0h7mjDTKJSj3ju-MiNA4mOsVMR0BPOxhGkI3WOWEugXXmtuo7v7vHHy-PH-sXovN-_pt9bQpREVQKojiqCUt5aohHcZYcNlSVNe4pjXHuGow6ahe4oo2le6okILkGZ2sqG7FUjTVHKxOXBF8jEFplsse-6TAjWUYsYM41rMzcewgjp3EZcrjGeUnmF1edHF-fcpna2o0KrAozEGDNEGJxKQ3F5L-ANLPmqE
CitedBy_id crossref_primary_10_1017_jfm_2024_448
Cites_doi 10.1063/1.1355682
10.1063/1.4904869
10.1063/1.5009017
10.1017/jfm.2012.212
10.1103/PhysRevE.80.046702
10.1063/1.868323
10.1063/1.870101
10.1063/1.866456
10.1063/1.858295
10.1007/s00162-002-0084-7
10.1063/1.866513
10.1063/1.1804553
10.1063/1.3657066
10.1017/jfm.2015.235
10.1063/1.868216
10.1063/1.868530
10.1017/S0022112090003330
10.1103/PhysRevLett.91.214502
10.1017/S0022112091000204
10.1103/PhysRevLett.97.174501
10.1103/PhysRevE.94.013101
10.1017/S0022112004003283
10.1016/0021-9991(88)90022-8
10.1002/fld.4291
10.1063/1.858772
10.1063/1.3531744
10.1017/S0022112083002189
10.1063/1.869752
10.1063/1.2912513
10.1063/1.869152
10.1016/j.fluiddyn.2004.12.003
10.1063/1.857773
10.1016/0360-1285(85)90002-4
10.1063/1.857971
10.1016/j.jcp.2012.10.005
10.1017/jfm.2011.262
10.1006/jcph.2001.6790
10.1051/jphys:01982004306083700
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright_xml – notice: 2019 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ijheatfluidflow.2019.108429
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-2278
ExternalDocumentID 10_1016_j_ijheatfluidflow_2019_108429
S0142727X19300530
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADHUB
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SSG
SST
SSZ
T5K
TN5
UHS
VH1
VOH
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c370t-7ea08789ae67b111cad890441494a113617b9f513963fb9cdc7006bd39f8c5c63
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000478708700011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0142-727X
IngestDate Tue Nov 18 22:16:00 EST 2025
Sat Nov 29 02:47:13 EST 2025
Fri Feb 23 02:27:42 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Lagrangian dynamics
Homogenous turbulence
Velocity gradient dynamics
Turbulence modelling
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c370t-7ea08789ae67b111cad890441494a113617b9f513963fb9cdc7006bd39f8c5c63
ParticipantIDs crossref_citationtrail_10_1016_j_ijheatfluidflow_2019_108429
crossref_primary_10_1016_j_ijheatfluidflow_2019_108429
elsevier_sciencedirect_doi_10_1016_j_ijheatfluidflow_2019_108429
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationTitle The International journal of heat and fluid flow
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Sarkar, Erlebacher, Hussaini, Kreiss (bib0030) 1991; 227
Danish, Suman, Srinivasan (bib0010) 2014; 26
Suman, Girimaji (bib0033) 2010; 11
Chertkov, Pumir, Shraiman (bib0005) 1999; 11
Xu (bib0039) 2001; 171
Cantwell, Coles (bib0004) 1983; 136
Liao, Peng, Luo (bib0017) 2009; 80
Kerimo, Girimaji (bib0015) 2007; 8
Pumir (bib0027) 1994; 6
O’Neill, Soria (bib0021) 2005; 36
Vaghefi, Madnia (bib0036) 2015; 774
Parashar, Sinha, Srinivasan, Manish (bib0023) 2017; 83
Chevillard, Roux, Lévêque, Mordant, Pinton, Arnéodo (bib0008) 2003; 91
Samtaney, Pullin, Kosovic (bib0029) 2001; 13
Danish, Sinha, Srinivasan (bib0009) 2016; 94
Cantwell (bib0003) 1992; 4
Yeung, Pope (bib0040) 1988; 79
Chevillard, Meneveau (bib0007) 2011; 23
Girimaji, Pope (bib0011) 1990; 2
Kumar, Girimaji, Kerimo (bib0016) 2013; 234
Martín, Ooi, Chong, Soria (bib0019) 1998; 10
Ashurst, Chen, Rogers (bib0001) 1987; 30
Ashurst, Kerstein, Kerr, Gibson (bib0002) 1987; 30
Girimaji, Pope (bib0012) 1990; 220
Girimaji, Speziale (bib0013) 1995; 7
Pope (bib0025) 1985; 11
Jeong, Girimaji (bib0014) 2003; 16
Wang, Lu (bib0038) 2012; 703
Suman, Girimaji (bib0035) 2012; 13
Ohkitani (bib0020) 1993; 5
da Silva, Pereira (bib0031) 2008; 20
Pirozzoli, Grasso (bib0024) 2004; 16
Chevillard, Meneveau (bib0006) 2006; 97
Ristorcelli, Blaisdell (bib0028) 1997; 9
Parashar, Sinha, Danish, Srinivasan (bib0022) 2017; 29
Vieillefosse (bib0037) 1982; 43
Pope (bib0026) 2011; 23
Soria, Sondergaard, Cantwell, Chong, Perry (bib0032) 1994; 6
Lüthi, Tsinober, Kinzelbach (bib0018) 2005; 528
Suman, Girimaji (bib0034) 2011; 683
Zeman (bib0041) 1991; 3
Cantwell (10.1016/j.ijheatfluidflow.2019.108429_bib0003) 1992; 4
Kerimo (10.1016/j.ijheatfluidflow.2019.108429_bib0015) 2007; 8
Jeong (10.1016/j.ijheatfluidflow.2019.108429_bib0014) 2003; 16
Vieillefosse (10.1016/j.ijheatfluidflow.2019.108429_bib0037) 1982; 43
Parashar (10.1016/j.ijheatfluidflow.2019.108429_bib0023) 2017; 83
Chevillard (10.1016/j.ijheatfluidflow.2019.108429_bib0006) 2006; 97
Soria (10.1016/j.ijheatfluidflow.2019.108429_bib0032) 1994; 6
Suman (10.1016/j.ijheatfluidflow.2019.108429_bib0033) 2010; 11
Girimaji (10.1016/j.ijheatfluidflow.2019.108429_bib0012) 1990; 220
Cantwell (10.1016/j.ijheatfluidflow.2019.108429_bib0004) 1983; 136
Wang (10.1016/j.ijheatfluidflow.2019.108429_bib0038) 2012; 703
Chertkov (10.1016/j.ijheatfluidflow.2019.108429_bib0005) 1999; 11
Pirozzoli (10.1016/j.ijheatfluidflow.2019.108429_bib0024) 2004; 16
Liao (10.1016/j.ijheatfluidflow.2019.108429_bib0017) 2009; 80
Ashurst (10.1016/j.ijheatfluidflow.2019.108429_bib0002) 1987; 30
Ristorcelli (10.1016/j.ijheatfluidflow.2019.108429_bib0028) 1997; 9
da Silva (10.1016/j.ijheatfluidflow.2019.108429_sbref0031) 2008; 20
Suman (10.1016/j.ijheatfluidflow.2019.108429_bib0035) 2012; 13
Suman (10.1016/j.ijheatfluidflow.2019.108429_bib0034) 2011; 683
Pope (10.1016/j.ijheatfluidflow.2019.108429_bib0026) 2011; 23
Yeung (10.1016/j.ijheatfluidflow.2019.108429_bib0040) 1988; 79
Ohkitani (10.1016/j.ijheatfluidflow.2019.108429_bib0020) 1993; 5
Girimaji (10.1016/j.ijheatfluidflow.2019.108429_bib0013) 1995; 7
Ashurst (10.1016/j.ijheatfluidflow.2019.108429_bib0001) 1987; 30
Lüthi (10.1016/j.ijheatfluidflow.2019.108429_bib0018) 2005; 528
Xu (10.1016/j.ijheatfluidflow.2019.108429_bib0039) 2001; 171
Chevillard (10.1016/j.ijheatfluidflow.2019.108429_bib0008) 2003; 91
Chevillard (10.1016/j.ijheatfluidflow.2019.108429_bib0007) 2011; 23
Parashar (10.1016/j.ijheatfluidflow.2019.108429_bib0022) 2017; 29
O’Neill (10.1016/j.ijheatfluidflow.2019.108429_bib0021) 2005; 36
Girimaji (10.1016/j.ijheatfluidflow.2019.108429_bib0011) 1990; 2
Martín (10.1016/j.ijheatfluidflow.2019.108429_bib0019) 1998; 10
Danish (10.1016/j.ijheatfluidflow.2019.108429_bib0010) 2014; 26
Kumar (10.1016/j.ijheatfluidflow.2019.108429_bib0016) 2013; 234
Zeman (10.1016/j.ijheatfluidflow.2019.108429_bib0041) 1991; 3
Sarkar (10.1016/j.ijheatfluidflow.2019.108429_bib0030) 1991; 227
Danish (10.1016/j.ijheatfluidflow.2019.108429_bib0009) 2016; 94
Pope (10.1016/j.ijheatfluidflow.2019.108429_bib0025) 1985; 11
Samtaney (10.1016/j.ijheatfluidflow.2019.108429_bib0029) 2001; 13
Vaghefi (10.1016/j.ijheatfluidflow.2019.108429_bib0036) 2015; 774
Pumir (10.1016/j.ijheatfluidflow.2019.108429_bib0027) 1994; 6
References_xml – volume: 234
  start-page: 499
  year: 2013
  end-page: 523
  ident: bib0016
  article-title: WENO-enhanced gas-kinetic scheme for direct simulations of compressible transition and turbulence
  publication-title: J. Comput. Phys.
– volume: 80
  start-page: 046702
  year: 2009
  ident: bib0017
  article-title: Gas-kinetic schemes for direct numerical simulations of compressible homogeneous turbulence
  publication-title: Phys. Rev. E
– volume: 30
  start-page: 2343
  year: 1987
  end-page: 2353
  ident: bib0002
  article-title: Alignment of vorticity and scalar gradient with strain rate in simulated navier–stokes turbulence
  publication-title: Phys. Fluids
– volume: 23
  start-page: 101704
  year: 2011
  ident: bib0007
  article-title: Lagrangian time correlations of vorticity alignments in isotropic turbulence: Observations and model predictions
  publication-title: Phys. Fluids
– volume: 30
  start-page: 3293
  year: 1987
  end-page: 3294
  ident: bib0001
  article-title: Pressure gradient alignment with strain rate and scalar gradient in simulated navier–stokes turbulence
  publication-title: Phys. Fluids
– volume: 774
  year: 2015
  ident: bib0036
  article-title: Local flow topology and velocity gradient invariants in compressible turbulent mixing layer
  publication-title: J. Fluid Mech.
– volume: 13
  start-page: 1
  year: 2012
  end-page: 23
  ident: bib0035
  article-title: Velocity-gradient dynamics in compressible turbulence: influence of mach number and dilatation rate
  publication-title: J. Turbul.
– volume: 3
  start-page: 951
  year: 1991
  end-page: 955
  ident: bib0041
  article-title: On the decay of compressible isotropic turbulence
  publication-title: Phys. Fluids A
– volume: 227
  start-page: 473
  year: 1991
  end-page: 493
  ident: bib0030
  article-title: The analysis and modelling of dilatational terms in compressible turbulence
  publication-title: J. Fluid Mech.
– volume: 83
  start-page: 737
  year: 2017
  end-page: 754
  ident: bib0023
  article-title: Gpu-accelerated direct numerical simulations of decaying compressible turbulence employing a gkm-based solver
  publication-title: Int. J. Numer. Meth. Fluids
– volume: 136
  start-page: 321
  year: 1983
  end-page: 374
  ident: bib0004
  article-title: An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder
  publication-title: J. Fluid Mech.
– volume: 43
  start-page: 837
  year: 1982
  end-page: 842
  ident: bib0037
  article-title: Local interaction between vorticity and shear in a perfect incompressible fluid
  publication-title: J. Phys.
– volume: 29
  start-page: 105110
  year: 2017
  ident: bib0022
  article-title: Lagrangian investigations of vorticity dynamics in compressible turbulence
  publication-title: Phys. Fluids
– volume: 220
  start-page: 427
  year: 1990
  end-page: 458
  ident: bib0012
  article-title: Material-element deformation in isotropic turbulence
  publication-title: J. Fluid Mech.
– volume: 6
  start-page: 2118
  year: 1994
  end-page: 2132
  ident: bib0027
  article-title: A numerical study of the mixing of a passive scalar in three dimensions in the presence of a mean gradient
  publication-title: Phys. Fluids
– volume: 97
  start-page: 174501
  year: 2006
  ident: bib0006
  article-title: Lagrangian dynamics and statistical geometric structure of turbulence
  publication-title: Phys. Rev. Lett.
– volume: 26
  start-page: 126103
  year: 2014
  ident: bib0010
  article-title: A direct numerical simulation-based investigation and modeling of pressure hessian effects on compressible velocity gradient dynamics
  publication-title: Phys. Fluids
– volume: 11
  start-page: 1
  year: 2010
  end-page: 24
  ident: bib0033
  article-title: Velocity gradient invariants and local flow-field topology in compressible turbulence
  publication-title: J. Turbul.
– volume: 91
  start-page: 214502
  year: 2003
  ident: bib0008
  article-title: Lagrangian velocity statistics in turbulent flows: effects of dissipation
  publication-title: Phys. Rev. Lett.
– volume: 36
  start-page: 107
  year: 2005
  end-page: 120
  ident: bib0021
  article-title: The relationship between the topological structures in turbulent flow and the distribution of a passive scalar with an imposed mean gradient
  publication-title: Fluid Dyn. Res.
– volume: 703
  start-page: 255
  year: 2012
  end-page: 278
  ident: bib0038
  article-title: Flow topology in compressible turbulent boundary layer
  publication-title: J. Fluid Mech.
– volume: 79
  start-page: 373
  year: 1988
  end-page: 416
  ident: bib0040
  article-title: An algorithm for tracking fluid particles in numerical simulations of homogeneous turbulence
  publication-title: J. Comput. Phys.
– volume: 171
  start-page: 289
  year: 2001
  end-page: 335
  ident: bib0039
  article-title: A gas-kinetic BGK scheme for the navier–stokes equations and its connection with artificial dissipation and godunov method
  publication-title: J. Comput. Phys.
– volume: 528
  start-page: 87
  year: 2005
  end-page: 118
  ident: bib0018
  article-title: Lagrangian measurement of vorticity dynamics in turbulent flow
  publication-title: J. Fluid Mech.
– volume: 94
  start-page: 013101
  year: 2016
  ident: bib0009
  article-title: Influence of compressibility on the lagrangian statistics of vorticity–strain-rate interactions
  publication-title: Phys. Rev. E
– volume: 8
  start-page: 1
  year: 2007
  end-page: 16
  ident: bib0015
  article-title: Boltzmann–BGK approach to simulating weakly compressible 3D turbulence: comparison between lattice Boltzmann and gas kinetic methods
  publication-title: J. Turbul.
– volume: 16
  start-page: 421
  year: 2003
  end-page: 432
  ident: bib0014
  article-title: Velocity-gradient dynamics in turbulence: Effect of viscosity and forcing
  publication-title: Theor. Comp. Fluid Dyn.
– volume: 23
  start-page: 011301
  year: 2011
  ident: bib0026
  article-title: Simple models of turbulent flows
  publication-title: Phys. Fluids
– volume: 20
  year: 2008
  ident: bib0031
  article-title: Invariants of the velocity-gradient, rate-of-strain, and rate-of-rotation tensors across the turbulent/nonturbulent interface in jets
  publication-title: Phys. Fluids
– volume: 10
  start-page: 2336
  year: 1998
  end-page: 2346
  ident: bib0019
  article-title: Dynamics of the velocity gradient tensor invariants in isotropic turbulence
  publication-title: Phys. Fluids
– volume: 5
  start-page: 2570
  year: 1993
  end-page: 2572
  ident: bib0020
  article-title: Eigenvalue problems in three-dimensional euler flows
  publication-title: Phys. Fluids A
– volume: 4
  start-page: 782
  year: 1992
  end-page: 793
  ident: bib0003
  article-title: Exact solution of a restricted euler equation for the velocity gradient tensor
  publication-title: Phys. Fluids A
– volume: 11
  start-page: 2394
  year: 1999
  end-page: 2410
  ident: bib0005
  article-title: Lagrangian tetrad dynamics and the phenomenology of turbulence
  publication-title: Phys. Fluids
– volume: 11
  start-page: 119
  year: 1985
  end-page: 192
  ident: bib0025
  article-title: PDF Methods for turbulent reactive flows
  publication-title: Prog. Energy Combust. Sci.
– volume: 16
  start-page: 4386
  year: 2004
  end-page: 4407
  ident: bib0024
  article-title: Direct numerical simulations of isotropic compressible turbulence: influence of compressibility on dynamics and structures
  publication-title: Phys. Fluids
– volume: 6
  start-page: 871
  year: 1994
  end-page: 884
  ident: bib0032
  article-title: A study of the fine-scale motions of incompressible time-developing mixing layers
  publication-title: Phys. Fluids
– volume: 2
  start-page: 242
  year: 1990
  end-page: 256
  ident: bib0011
  article-title: A diffusion model for velocity gradients in turbulence
  publication-title: Phys. Fluids A
– volume: 7
  start-page: 1438
  year: 1995
  end-page: 1446
  ident: bib0013
  article-title: A modified restricted euler equation for turbulent flows with mean velocity gradients
  publication-title: Phys. Fluids
– volume: 9
  start-page: 4
  year: 1997
  end-page: 6
  ident: bib0028
  article-title: Consistent initial conditions for the DNS of compressible turbulence
  publication-title: Phys. Fluids
– volume: 683
  start-page: 289
  year: 2011
  end-page: 319
  ident: bib0034
  article-title: Dynamical model for velocity-gradient evolution in compressible turbulence
  publication-title: J. Fluid Mech.
– volume: 13
  start-page: 1415
  year: 2001
  end-page: 1430
  ident: bib0029
  article-title: Direct numerical simulation of decaying compressible turbulence and shocklet statistics
  publication-title: Phys. Fluids
– volume: 13
  start-page: 1415
  issue: 5
  year: 2001
  ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0029
  article-title: Direct numerical simulation of decaying compressible turbulence and shocklet statistics
  publication-title: Phys. Fluids
  doi: 10.1063/1.1355682
– volume: 26
  start-page: 126103
  issue: 12
  year: 2014
  ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0010
  article-title: A direct numerical simulation-based investigation and modeling of pressure hessian effects on compressible velocity gradient dynamics
  publication-title: Phys. Fluids
  doi: 10.1063/1.4904869
– volume: 29
  start-page: 105110
  issue: 10
  year: 2017
  ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0022
  article-title: Lagrangian investigations of vorticity dynamics in compressible turbulence
  publication-title: Phys. Fluids
  doi: 10.1063/1.5009017
– volume: 703
  start-page: 255
  year: 2012
  ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0038
  article-title: Flow topology in compressible turbulent boundary layer
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2012.212
– volume: 80
  start-page: 046702
  issue: 4
  year: 2009
  ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0017
  article-title: Gas-kinetic schemes for direct numerical simulations of compressible homogeneous turbulence
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.80.046702
– volume: 6
  start-page: 871
  issue: 2
  year: 1994
  ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0032
  article-title: A study of the fine-scale motions of incompressible time-developing mixing layers
  publication-title: Phys. Fluids
  doi: 10.1063/1.868323
– volume: 13
  start-page: 1
  issue: 8
  year: 2012
  ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0035
  article-title: Velocity-gradient dynamics in compressible turbulence: influence of mach number and dilatation rate
  publication-title: J. Turbul.
– volume: 11
  start-page: 2394
  issue: 8
  year: 1999
  ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0005
  article-title: Lagrangian tetrad dynamics and the phenomenology of turbulence
  publication-title: Phys. Fluids
  doi: 10.1063/1.870101
– volume: 30
  start-page: 3293
  issue: 10
  year: 1987
  ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0001
  article-title: Pressure gradient alignment with strain rate and scalar gradient in simulated navier–stokes turbulence
  publication-title: Phys. Fluids
  doi: 10.1063/1.866456
– volume: 4
  start-page: 782
  issue: 4
  year: 1992
  ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0003
  article-title: Exact solution of a restricted euler equation for the velocity gradient tensor
  publication-title: Phys. Fluids A
  doi: 10.1063/1.858295
– volume: 16
  start-page: 421
  issue: 6
  year: 2003
  ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0014
  article-title: Velocity-gradient dynamics in turbulence: Effect of viscosity and forcing
  publication-title: Theor. Comp. Fluid Dyn.
  doi: 10.1007/s00162-002-0084-7
– volume: 30
  start-page: 2343
  issue: 8
  year: 1987
  ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0002
  article-title: Alignment of vorticity and scalar gradient with strain rate in simulated navier–stokes turbulence
  publication-title: Phys. Fluids
  doi: 10.1063/1.866513
– volume: 16
  start-page: 4386
  issue: 12
  year: 2004
  ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0024
  article-title: Direct numerical simulations of isotropic compressible turbulence: influence of compressibility on dynamics and structures
  publication-title: Phys. Fluids
  doi: 10.1063/1.1804553
– volume: 23
  start-page: 101704
  issue: 10
  year: 2011
  ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0007
  article-title: Lagrangian time correlations of vorticity alignments in isotropic turbulence: Observations and model predictions
  publication-title: Phys. Fluids
  doi: 10.1063/1.3657066
– volume: 774
  year: 2015
  ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0036
  article-title: Local flow topology and velocity gradient invariants in compressible turbulent mixing layer
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2015.235
– volume: 8
  start-page: 1
  issue: 46
  year: 2007
  ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0015
  article-title: Boltzmann–BGK approach to simulating weakly compressible 3D turbulence: comparison between lattice Boltzmann and gas kinetic methods
  publication-title: J. Turbul.
– volume: 6
  start-page: 2118
  issue: 6
  year: 1994
  ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0027
  article-title: A numerical study of the mixing of a passive scalar in three dimensions in the presence of a mean gradient
  publication-title: Phys. Fluids
  doi: 10.1063/1.868216
– volume: 7
  start-page: 1438
  issue: 6
  year: 1995
  ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0013
  article-title: A modified restricted euler equation for turbulent flows with mean velocity gradients
  publication-title: Phys. Fluids
  doi: 10.1063/1.868530
– volume: 220
  start-page: 427
  year: 1990
  ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0012
  article-title: Material-element deformation in isotropic turbulence
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112090003330
– volume: 11
  start-page: 1
  issue: 2
  year: 2010
  ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0033
  article-title: Velocity gradient invariants and local flow-field topology in compressible turbulence
  publication-title: J. Turbul.
– volume: 91
  start-page: 214502
  issue: 21
  year: 2003
  ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0008
  article-title: Lagrangian velocity statistics in turbulent flows: effects of dissipation
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.91.214502
– volume: 227
  start-page: 473
  year: 1991
  ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0030
  article-title: The analysis and modelling of dilatational terms in compressible turbulence
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112091000204
– volume: 97
  start-page: 174501
  issue: 17
  year: 2006
  ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0006
  article-title: Lagrangian dynamics and statistical geometric structure of turbulence
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.174501
– volume: 94
  start-page: 013101
  issue: 1
  year: 2016
  ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0009
  article-title: Influence of compressibility on the lagrangian statistics of vorticity–strain-rate interactions
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.94.013101
– volume: 528
  start-page: 87
  year: 2005
  ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0018
  article-title: Lagrangian measurement of vorticity dynamics in turbulent flow
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112004003283
– volume: 79
  start-page: 373
  issue: 2
  year: 1988
  ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0040
  article-title: An algorithm for tracking fluid particles in numerical simulations of homogeneous turbulence
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(88)90022-8
– volume: 83
  start-page: 737
  issue: 10
  year: 2017
  ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0023
  article-title: Gpu-accelerated direct numerical simulations of decaying compressible turbulence employing a gkm-based solver
  publication-title: Int. J. Numer. Meth. Fluids
  doi: 10.1002/fld.4291
– volume: 5
  start-page: 2570
  issue: 10
  year: 1993
  ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0020
  article-title: Eigenvalue problems in three-dimensional euler flows
  publication-title: Phys. Fluids A
  doi: 10.1063/1.858772
– volume: 23
  start-page: 011301
  issue: 1
  year: 2011
  ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0026
  article-title: Simple models of turbulent flows
  publication-title: Phys. Fluids
  doi: 10.1063/1.3531744
– volume: 136
  start-page: 321
  year: 1983
  ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0004
  article-title: An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112083002189
– volume: 10
  start-page: 2336
  year: 1998
  ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0019
  article-title: Dynamics of the velocity gradient tensor invariants in isotropic turbulence
  publication-title: Phys. Fluids
  doi: 10.1063/1.869752
– volume: 20
  issue: 5
  year: 2008
  ident: 10.1016/j.ijheatfluidflow.2019.108429_sbref0031
  article-title: Invariants of the velocity-gradient, rate-of-strain, and rate-of-rotation tensors across the turbulent/nonturbulent interface in jets
  publication-title: Phys. Fluids
  doi: 10.1063/1.2912513
– volume: 9
  start-page: 4
  issue: 1
  year: 1997
  ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0028
  article-title: Consistent initial conditions for the DNS of compressible turbulence
  publication-title: Phys. Fluids
  doi: 10.1063/1.869152
– volume: 36
  start-page: 107
  issue: 3
  year: 2005
  ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0021
  article-title: The relationship between the topological structures in turbulent flow and the distribution of a passive scalar with an imposed mean gradient
  publication-title: Fluid Dyn. Res.
  doi: 10.1016/j.fluiddyn.2004.12.003
– volume: 2
  start-page: 242
  issue: 2
  year: 1990
  ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0011
  article-title: A diffusion model for velocity gradients in turbulence
  publication-title: Phys. Fluids A
  doi: 10.1063/1.857773
– volume: 11
  start-page: 119
  issue: 2
  year: 1985
  ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0025
  article-title: PDF Methods for turbulent reactive flows
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/0360-1285(85)90002-4
– volume: 3
  start-page: 951
  issue: 5
  year: 1991
  ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0041
  article-title: On the decay of compressible isotropic turbulence
  publication-title: Phys. Fluids A
  doi: 10.1063/1.857971
– volume: 234
  start-page: 499
  year: 2013
  ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0016
  article-title: WENO-enhanced gas-kinetic scheme for direct simulations of compressible transition and turbulence
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2012.10.005
– volume: 683
  start-page: 289
  year: 2011
  ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0034
  article-title: Dynamical model for velocity-gradient evolution in compressible turbulence
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2011.262
– volume: 171
  start-page: 289
  issue: 1
  year: 2001
  ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0039
  article-title: A gas-kinetic BGK scheme for the navier–stokes equations and its connection with artificial dissipation and godunov method
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2001.6790
– volume: 43
  start-page: 837
  issue: 6
  year: 1982
  ident: 10.1016/j.ijheatfluidflow.2019.108429_bib0037
  article-title: Local interaction between vorticity and shear in a perfect incompressible fluid
  publication-title: J. Phys.
  doi: 10.1051/jphys:01982004306083700
SSID ssj0006047
Score 2.2594047
Snippet •A novel methodology to evaluate existing models (the linear Lagrangian diffusion model (LLDM) and the recent fluid deformation closure model (RFDM)) of the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108429
SubjectTerms Homogenous turbulence
Lagrangian dynamics
Turbulence modelling
Velocity gradient dynamics
Title Lagrangian evaluations of viscous models for velocity gradient dynamics in non-stationary turbulence
URI https://dx.doi.org/10.1016/j.ijheatfluidflow.2019.108429
Volume 78
WOSCitedRecordID wos000478708700011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1879-2278
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006047
  issn: 0142-727X
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKhhA88DFAG1_yAzxNmZzEiWOJBwYaAoQqpBWpb5HjOCNVlU5N2-2v4G_mLnY-CggVIV6iNpXtOvfL3dn-3R0hL7kfBCzW0kuKmHtgoUIvK2LmGc0zP5dhFGd5U2xCjMfJdCq_jEbf21iYzVxUVXJ9LS__q6jhHggbQ2f_Qtxdp3ADPoPQ4Qpih-tOgv-sLsD-XOCL26fybggbm7LWyHhtqt80eRiOkTGk0RGHNsj9Wh3ntkR9Q5OtFpVX27N6JNeBdcrWTZDS0KWddPTLdl9xkI0CVX1zPlHM1yVeF_05hFqq-pvld4-xBnTPwDkvK3sOda6uUP-cdD_gedNG1XbX9q2aq1k53LfAUKlkuG_RBdRs8T1hwQYOfyCm1jxZnZwI6WHE7lBp22-_6H-7FTE7KWc4v2ZqODOk8EmkU3K3vbKdYhsZbgGOCt4saiV2g-wHIpKgJfdPP55NP3W2PWbcBuC7v3mLvOoZg38Y9Pdez8CTmdwnd90ShJ5a6DwgI1MdkHtuOUKdsq8PyJ1BrsqHJO9xRQe4oouCOlxRiysKuKItrmiLK9riipYV3cYV7XH1iHx9fzZ598FzJTo8HQq28oRRLBGJVCYWGZhNrfJEMnCxueQKywX5IpNFBMuMOCwyqXMt4CFmeSiLREc6Dh-TPRjTHBJqgkxKBQbEZ4oHPlcwgtDMJBE3jBl1RF63jzDVLn89llGZpy1RcZb-JIEUJZBaCRyRuGt-aRO57NrwTSuv1Hml1ttMAXS7dfHk37t4Sm73L9Ezsrdars1zclNvVmW9fOFg-gNEmcNr
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lagrangian+evaluations+of+viscous+models+for+velocity+gradient+dynamics+in+non-stationary+turbulence&rft.jtitle=The+International+journal+of+heat+and+fluid+flow&rft.au=Parashar%2C+Nishant&rft.au=Sinha%2C+Sawan+S.&rft.au=Srinivasan%2C+Balaji&rft.date=2019-08-01&rft.pub=Elsevier+Inc&rft.issn=0142-727X&rft.eissn=1879-2278&rft.volume=78&rft_id=info:doi/10.1016%2Fj.ijheatfluidflow.2019.108429&rft.externalDocID=S0142727X19300530
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-727X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-727X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-727X&client=summon