Computational fluid dynamics modeling of spatial atomic layer deposition on microgroove substrates
•The effect of microgroove structure on the fluid dynamics and film conformality in spatial atomic layer deposition is investigated.•Microgroove structure hinders the precursor inflow and purging gas outflow, leading to non-uniformity of precursor distribution.•Both growth per cycle and film conform...
Uloženo v:
| Vydáno v: | International journal of heat and mass transfer Ročník 181; s. 121854 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Oxford
Elsevier Ltd
01.12.2021
Elsevier BV |
| Témata: | |
| ISSN: | 0017-9310, 1879-2189 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •The effect of microgroove structure on the fluid dynamics and film conformality in spatial atomic layer deposition is investigated.•Microgroove structure hinders the precursor inflow and purging gas outflow, leading to non-uniformity of precursor distribution.•Both growth per cycle and film conformality decrease as substrate moves faster, but increase slightly with higher carrier gas flow rate.•By optimizing carrier gas flow rate and substrate velocity, the precursor utilization is increased by over two times to obtain a 100% conformal film.
Spatial atomic layer deposition (ALD) is a promising high-throughput technique capable of producing ultrathin films on large substrates. Compared to flat wafers, deposition on substrates with microstructures has a wider range of applications such as photovoltaic cells, electronics, flexible displays, etc. However, spatial ALD on microstructure substrates is a complex and strong-coupled process of fluid flow, heat and mass transfer, as well as chemical reactions. The fluid dynamics and the precursor distribution in spatial ALD are of great importance to obtain conformal growth with high throughput. In this study, a two-dimensional model coupling computational fluid dynamics with chemical kinetics is established to quantitatively explore the effect of microgroove structures on the fluid dynamics, precursor distribution and film conformality in an atmospheric spatial ALD system. Slip boundary condition is adopted to model the slip flow regime in the micro-gap between the injector and the substrate surface, and dynamic layering method is implemented to simulate an entire ALD cycle with the in-line movement of the substrate. Results show that while the flow field is very smooth with a flat substrate, vortices always exist in the micro-gap with microgroove substrates. Due to the angle differences between the flow direction and the vertical microstructure surface, the inflow and outflow of precursors and purging gas are prevented at the microgroove corners. A relatively lower moving speed of the substrate is beneficial for the saturated film growth and better film conformality. Increasing the carrier gas flow rate can effectively reduce the non-uniformity and non-conformality of the film, but the precursor utilization also decreases. Compared with the nonoptimal conditions, within a moderate range of carrier gas flow rate and substrate speed, the precursor utilization and film conformality have been improved. Focusing on the effect of the micro-scale features of the substrate, this study is a valuable step in extending spatial ALD for ultrathin films on miniature devices.
[Display omitted] |
|---|---|
| AbstractList | •The effect of microgroove structure on the fluid dynamics and film conformality in spatial atomic layer deposition is investigated.•Microgroove structure hinders the precursor inflow and purging gas outflow, leading to non-uniformity of precursor distribution.•Both growth per cycle and film conformality decrease as substrate moves faster, but increase slightly with higher carrier gas flow rate.•By optimizing carrier gas flow rate and substrate velocity, the precursor utilization is increased by over two times to obtain a 100% conformal film.
Spatial atomic layer deposition (ALD) is a promising high-throughput technique capable of producing ultrathin films on large substrates. Compared to flat wafers, deposition on substrates with microstructures has a wider range of applications such as photovoltaic cells, electronics, flexible displays, etc. However, spatial ALD on microstructure substrates is a complex and strong-coupled process of fluid flow, heat and mass transfer, as well as chemical reactions. The fluid dynamics and the precursor distribution in spatial ALD are of great importance to obtain conformal growth with high throughput. In this study, a two-dimensional model coupling computational fluid dynamics with chemical kinetics is established to quantitatively explore the effect of microgroove structures on the fluid dynamics, precursor distribution and film conformality in an atmospheric spatial ALD system. Slip boundary condition is adopted to model the slip flow regime in the micro-gap between the injector and the substrate surface, and dynamic layering method is implemented to simulate an entire ALD cycle with the in-line movement of the substrate. Results show that while the flow field is very smooth with a flat substrate, vortices always exist in the micro-gap with microgroove substrates. Due to the angle differences between the flow direction and the vertical microstructure surface, the inflow and outflow of precursors and purging gas are prevented at the microgroove corners. A relatively lower moving speed of the substrate is beneficial for the saturated film growth and better film conformality. Increasing the carrier gas flow rate can effectively reduce the non-uniformity and non-conformality of the film, but the precursor utilization also decreases. Compared with the nonoptimal conditions, within a moderate range of carrier gas flow rate and substrate speed, the precursor utilization and film conformality have been improved. Focusing on the effect of the micro-scale features of the substrate, this study is a valuable step in extending spatial ALD for ultrathin films on miniature devices.
[Display omitted] Spatial atomic layer deposition (ALD) is a promising high-throughput technique capable of producing ultrathin films on large substrates. Compared to flat wafers, deposition on substrates with microstructures has a wider range of applications such as photovoltaic cells, electronics, flexible displays, etc. However, spatial ALD on microstructure substrates is a complex and strong-coupled process of fluid flow, heat and mass transfer, as well as chemical reactions. The fluid dynamics and the precursor distribution in spatial ALD are of great importance to obtain conformal growth with high throughput. In this study, a two-dimensional model coupling computational fluid dynamics with chemical kinetics is established to quantitatively explore the effect of microgroove structures on the fluid dynamics, precursor distribution and film conformality in an atmospheric spatial ALD system. Slip boundary condition is adopted to model the slip flow regime in the micro-gap between the injector and the substrate surface, and dynamic layering method is implemented to simulate an entire ALD cycle with the in-line movement of the substrate. Results show that while the flow field is very smooth with a flat substrate, vortices always exist in the micro-gap with microgroove substrates. Due to the angle differences between the flow direction and the vertical microstructure surface, the inflow and outflow of precursors and purging gas are prevented at the microgroove corners. A relatively lower moving speed of the substrate is beneficial for the saturated film growth and better film conformality. Increasing the carrier gas flow rate can effectively reduce the non-uniformity and non-conformality of the film, but the precursor utilization also decreases. Compared with the nonoptimal conditions, within a moderate range of carrier gas flow rate and substrate speed, the precursor utilization and film conformality have been improved. Focusing on the effect of the micro-scale features of the substrate, this study is a valuable step in extending spatial ALD for ultrathin films on miniature devices. |
| ArticleNumber | 121854 |
| Author | Chen, Rong Li, Zoushuang Li, Xiaobo Cao, Kun |
| Author_xml | – sequence: 1 givenname: Zoushuang surname: Li fullname: Li, Zoushuang organization: State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China – sequence: 2 givenname: Kun surname: Cao fullname: Cao, Kun email: kuncao@hust.edu.cn organization: State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China – sequence: 3 givenname: Xiaobo surname: Li fullname: Li, Xiaobo organization: School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China – sequence: 4 givenname: Rong surname: Chen fullname: Chen, Rong email: rongchen@mail.hust.edu.cn organization: State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China |
| BookMark | eNqVkE9PwyAYxomZidv0O5B48dIKbSnjplmcf7LEi54JBTpp2lKBLtm3l6ae9KIJCXl5H355nmcFFr3tNQA3GKUY4fK2SU3zoUXohPfBid7X2qUZynCKM7whxRlY4g1lSRzYAiwRwjRhOUYXYOV9M42oKJeg2tpuGIMIxvaihXU7GgXVqRedkR52VunW9Adoa-iHKIoSEWzcwVactINKD9ab6TOMJ747e3DWHjX0YzX5CtpfgvNatF5ffd9r8L57eNs-JfvXx-ft_T6ROUUhoUyVm6IuyhqVuMooYYQoQvOsJFRIlWeIMoEkKXBRk0wQgRQjmFDGRCXVRuVrcD1zB2c_R-0Db-zoYirPsxKVU3iSR9VuVkWr3jtdc2nm-NGtaTlGfOqXN_x3v3zql8_9RtDdD9DgTCfc6T-IlxmhYy1HE7deGt1LrYzTMnBlzd9hX7loqjg |
| CitedBy_id | crossref_primary_10_1016_j_jallcom_2025_183864 crossref_primary_10_1016_j_partic_2025_05_024 crossref_primary_10_1088_1361_6528_ad28d6 crossref_primary_10_1002_admt_202301728 crossref_primary_10_1016_j_cej_2025_164236 crossref_primary_10_3390_coatings13030558 crossref_primary_10_1007_s11431_022_2052_y crossref_primary_10_1109_TSM_2023_3267024 crossref_primary_10_1016_j_petsci_2024_12_012 crossref_primary_10_1116_6_0004367 crossref_primary_10_1016_j_cej_2025_159629 crossref_primary_10_1016_j_compchemeng_2022_107861 crossref_primary_10_1016_j_jece_2025_119101 crossref_primary_10_1016_j_cej_2022_140174 crossref_primary_10_1016_j_cej_2023_147486 |
| Cites_doi | 10.1116/1.4937728 10.1016/j.ces.2021.116447 10.1149/09803.0137ecst 10.1021/acs.jpcc.9b08176 10.1016/j.cej.2020.126234 10.1116/1.4756692 10.1116/1.5022077 10.1116/1.4902086 10.1116/1.3667113 10.1063/1.4979822 10.1016/j.ijheatmasstransfer.2016.01.034 10.1007/s10404-012-1012-9 10.1017/S0022112001004128 10.1021/acs.chemmater.7b03478 10.3390/coatings9010005 10.1116/1.4728205 10.1021/cr900056b 10.1116/1.4964848 10.1080/14686996.2019.1599694 10.1115/1.4005063 10.1109/JDT.2009.2022770 10.1016/j.cej.2011.03.097 10.1021/acs.chemmater.9b04647 10.1016/j.ces.2020.115513 10.1116/1.5040457 10.1063/1.5060967 10.1016/j.ijheatmasstransfer.2019.118642 10.1016/j.applthermaleng.2016.07.039 10.1116/1.4932564 10.1016/j.cep.2019.107771 10.1039/D0CP03358H 10.1016/j.ijheatmasstransfer.2017.05.087 10.1021/acsaem.8b01905 10.1016/j.ijheatmasstransfer.2015.05.079 10.1016/j.mtchem.2018.11.013 10.1088/2631-7990/ab83e0 10.1116/1.3670745 10.1016/S0017-9310(01)00070-9 10.1007/s00542-018-4124-7 10.1116/1.4973350 10.1116/1.5093620 10.1016/j.ijheatmasstransfer.2014.07.079 10.1021/acsenergylett.9b00249 10.1016/j.icheatmasstransfer.2009.09.006 10.1115/1.4034475 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Dec 2021 |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Dec 2021 |
| DBID | AAYXX CITATION 7TB 8FD FR3 H8D KR7 L7M |
| DOI | 10.1016/j.ijheatmasstransfer.2021.121854 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1879-2189 |
| ExternalDocumentID | 10_1016_j_ijheatmasstransfer_2021_121854 S0017931021009595 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABDMP ABFNM ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACKIV ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SSG SSR SST SSZ T5K T9H TN5 VOH WUQ XPP ZMT ZY4 ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7TB 8FD AGCQF FR3 H8D KR7 L7M |
| ID | FETCH-LOGICAL-c370t-79d684f46f061b275955d5732657acd32079a0c5414f52a5a0d9515799abcd8d3 |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000706121000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0017-9310 |
| IngestDate | Wed Aug 13 06:22:36 EDT 2025 Tue Nov 18 21:36:22 EST 2025 Sat Nov 29 06:56:43 EST 2025 Fri Feb 23 02:41:05 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Film conformality Dynamic mesh method Microgroove structures Computational fluid dynamics Spatial ALD |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c370t-79d684f46f061b275955d5732657acd32079a0c5414f52a5a0d9515799abcd8d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2606931053 |
| PQPubID | 2045464 |
| ParticipantIDs | proquest_journals_2606931053 crossref_citationtrail_10_1016_j_ijheatmasstransfer_2021_121854 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121854 elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2021_121854 |
| PublicationCentury | 2000 |
| PublicationDate | December 2021 2021-12-00 20211201 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | International journal of heat and mass transfer |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Mousa, Ovental, Brozena, Oldham, Parsons (bib0019) 2018; 36 Bayareh, Ashani, Usefian (bib0044) 2020; 147 Brinkmann, Gahlmann, Riedl (bib0012) 2020 Pan, Guan, Jen, Yuan (bib0047) 2016; 138 Nguyen, Resende, Jiménez, Deschanvres, Carroy, Muñoz, Bellet, Muñoz-Rojas (bib0020) 2017; 9 Moitzheim, Balder, Ritasalo, Ek, Poodt, Unnikrishnan, De Gendt, Vereecken (bib0037) 2019; 2 Poodt, Knaapen, Illiberi, Roozeboom, van Asten (bib0015) 2011; 30 Cong, Li, Cao, Feng, Chen (bib0026) 2020; 217 Asundi, Raiford, Bent (bib0017) 2019; 4 Shojaeian, Dibaji (bib0043) 2010; 37 Zhang, Meng, Wei (bib0041) 2012; 13 Arts, Utriainen, Puurunen, Kessels, Knoops (bib0039) 2019; 123 Li, Xiong, Yang, Cao, Chen (bib0016) 2019 Pan (bib0011) 2021; 234 Moitzheim, Balder, Poodt, Unnikrishnan, De Gendt, Vereecken (bib0021) 2017; 29 Levy, Nelson, Freeman (bib0006) 2009; 5 Shaeri, Jen, Yuan (bib0048) 2014 Yim, Ylivaara, Ylilammi, Korpelainen, Haimi, Verkama (bib0032) 2020; 22 Sharma, Hall, George (bib0022) 2015; 33 Shaeri, Jen, Yuan, Behnia (bib0049) 2015; 89 Mittal, Madanan, Goldstein (bib0031) 2017; 113 Poodt, Mameli, Schulpen, (Erwin) Kessels, Roozeboom (bib0034) 2017; 35 Cremers, Puurunen, Dendooven (bib0033) 2019; 6 Adachi, Uehara (bib0030) 2001; 44 Colin (bib0040) 2012; 134 George (bib0001) 2010; 110 Oladipo, Coetzee, Olubambi, Jen (bib0018) 2020; 153 Masse de la Huerta, Nguyen, Dedulle, Bellet, Jiménez, Muñoz-Rojas (bib0036) 2018; 9 Poodt, Cameron, Dickey, George, Kuznetsov, Parsons, Roozeboom, Sundaram, Vermeer (bib0008) 2012; 30 Jia, Song, Liu, Wang (bib0028) 2019; 25 Maydannik, Kääriäinen, Cameron (bib0027) 2011; 171 Pan (bib0042) 2019; 144 Chen, Li, Cai, Cao, Lee (bib0003) 2020; 2 Pan, Jen, Yuan (bib0009) 2016; 96 Fluent (bib0050) 2013 Oviroh, Akbarzadeh, Pan, Coetzee, Jen (bib0002) 2019; 20 Li, Li, Cao, Chen (bib0029) 2020; 98 Illiberi, Frijters, Ruth, Bremaud, Poodt, Roozeboom, Bolt (bib0013) 2018; 36 Deng, He, Duan, Chen, Shan (bib0035) 2016; 34 Wenbin Cao, Li (bib0045) 2013; 35 Sharma, Routkevitch, Varaksa, George (bib0051) 2016; 34 Cao, Cai, Chen (bib0004) 2020; 32 Muñoz-Rojas, Maindron, Esteve, Piallat, Kools, Decams (bib0005) 2019; 12 Nguyen, Sekkat, Jiménez, Muñoz, Bellet, Muñoz-rojas (bib0010) 2021; 403 Wang, Chen, Gao (bib0023) 2016; 107 Dingemans, Kessels (bib0014) 2012; 30 Arkilic, Breuer, Schmidt (bib0046) 2001; 437 Wang, Li, Lin, Shan, Chen (bib0007) 2017 Journal, Physics, Scientific, Company, Alfred, Coetzee, Jen, Bhamjee, Lu, Science, Park, Africa, Physics (bib0024) 2019; 33 Arts, Vandalon, Puurunen, Utriainen, Gao, (Erwin) Kessels, Knoops (bib0038) 2019; 37 Duan, Zhu, Deng, Li, Shan, Fang, Feng, Chen (bib0025) 2017; 35 Poodt, van Lieshout, Illiberi, Knaapen, Roozeboom, van Asten (bib0052) 2013; 31 Li (10.1016/j.ijheatmasstransfer.2021.121854_bib0016) 2019 Wang (10.1016/j.ijheatmasstransfer.2021.121854_bib0023) 2016; 107 Shaeri (10.1016/j.ijheatmasstransfer.2021.121854_bib0048) 2014 Moitzheim (10.1016/j.ijheatmasstransfer.2021.121854_bib0037) 2019; 2 Asundi (10.1016/j.ijheatmasstransfer.2021.121854_bib0017) 2019; 4 Shaeri (10.1016/j.ijheatmasstransfer.2021.121854_bib0049) 2015; 89 George (10.1016/j.ijheatmasstransfer.2021.121854_bib0001) 2010; 110 Pan (10.1016/j.ijheatmasstransfer.2021.121854_bib0011) 2021; 234 Cremers (10.1016/j.ijheatmasstransfer.2021.121854_bib0033) 2019; 6 Brinkmann (10.1016/j.ijheatmasstransfer.2021.121854_bib0012) 2020 Pan (10.1016/j.ijheatmasstransfer.2021.121854_bib0047) 2016; 138 Fluent (10.1016/j.ijheatmasstransfer.2021.121854_bib0050) 2013 Oladipo (10.1016/j.ijheatmasstransfer.2021.121854_bib0018) 2020; 153 Cong (10.1016/j.ijheatmasstransfer.2021.121854_bib0026) 2020; 217 Li (10.1016/j.ijheatmasstransfer.2021.121854_bib0029) 2020; 98 Deng (10.1016/j.ijheatmasstransfer.2021.121854_bib0035) 2016; 34 Pan (10.1016/j.ijheatmasstransfer.2021.121854_bib0042) 2019; 144 Colin (10.1016/j.ijheatmasstransfer.2021.121854_bib0040) 2012; 134 Wang (10.1016/j.ijheatmasstransfer.2021.121854_bib0007) 2017 Nguyen (10.1016/j.ijheatmasstransfer.2021.121854_bib0010) 2021; 403 Mousa (10.1016/j.ijheatmasstransfer.2021.121854_bib0019) 2018; 36 Poodt (10.1016/j.ijheatmasstransfer.2021.121854_bib0052) 2013; 31 Poodt (10.1016/j.ijheatmasstransfer.2021.121854_bib0008) 2012; 30 Sharma (10.1016/j.ijheatmasstransfer.2021.121854_bib0051) 2016; 34 Moitzheim (10.1016/j.ijheatmasstransfer.2021.121854_bib0021) 2017; 29 Arts (10.1016/j.ijheatmasstransfer.2021.121854_bib0039) 2019; 123 Chen (10.1016/j.ijheatmasstransfer.2021.121854_bib0003) 2020; 2 Mittal (10.1016/j.ijheatmasstransfer.2021.121854_bib0031) 2017; 113 Maydannik (10.1016/j.ijheatmasstransfer.2021.121854_bib0027) 2011; 171 Jia (10.1016/j.ijheatmasstransfer.2021.121854_bib0028) 2019; 25 Poodt (10.1016/j.ijheatmasstransfer.2021.121854_bib0034) 2017; 35 Bayareh (10.1016/j.ijheatmasstransfer.2021.121854_bib0044) 2020; 147 Nguyen (10.1016/j.ijheatmasstransfer.2021.121854_bib0020) 2017; 9 Zhang (10.1016/j.ijheatmasstransfer.2021.121854_bib0041) 2012; 13 Cao (10.1016/j.ijheatmasstransfer.2021.121854_bib0004) 2020; 32 Sharma (10.1016/j.ijheatmasstransfer.2021.121854_bib0022) 2015; 33 Adachi (10.1016/j.ijheatmasstransfer.2021.121854_bib0030) 2001; 44 Arts (10.1016/j.ijheatmasstransfer.2021.121854_bib0038) 2019; 37 Poodt (10.1016/j.ijheatmasstransfer.2021.121854_bib0015) 2011; 30 Shojaeian (10.1016/j.ijheatmasstransfer.2021.121854_bib0043) 2010; 37 Masse de la Huerta (10.1016/j.ijheatmasstransfer.2021.121854_bib0036) 2018; 9 Wenbin Cao (10.1016/j.ijheatmasstransfer.2021.121854_bib0045) 2013; 35 Muñoz-Rojas (10.1016/j.ijheatmasstransfer.2021.121854_bib0005) 2019; 12 Arkilic (10.1016/j.ijheatmasstransfer.2021.121854_bib0046) 2001; 437 Illiberi (10.1016/j.ijheatmasstransfer.2021.121854_bib0013) 2018; 36 Dingemans (10.1016/j.ijheatmasstransfer.2021.121854_bib0014) 2012; 30 Levy (10.1016/j.ijheatmasstransfer.2021.121854_bib0006) 2009; 5 Pan (10.1016/j.ijheatmasstransfer.2021.121854_bib0009) 2016; 96 Oviroh (10.1016/j.ijheatmasstransfer.2021.121854_bib0002) 2019; 20 Duan (10.1016/j.ijheatmasstransfer.2021.121854_bib0025) 2017; 35 Journal (10.1016/j.ijheatmasstransfer.2021.121854_bib0024) 2019; 33 Yim (10.1016/j.ijheatmasstransfer.2021.121854_bib0032) 2020; 22 |
| References_xml | – volume: 98 start-page: 137 year: 2020 end-page: 143 ident: bib0029 article-title: Effect of microgroove structures on the fluid dynamics and film conformality in spatial atomic layer deposition of Al publication-title: ECS Trans. – year: 2014 ident: bib0048 article-title: Improving atomic layer deposition process through reactor scale simulation publication-title: Int. J. Heat Mass Transf. – volume: 2 year: 2020 ident: bib0003 article-title: Atomic level deposition to extend Moore's law and beyond publication-title: Int. J. Extrem. Manuf. – volume: 89 start-page: 468 year: 2015 end-page: 481 ident: bib0049 article-title: Investigating atomic layer deposition characteristics in multi-outlet viscous flow reactors through reactor scale simulations publication-title: Int. J. Heat Mass Transf. – volume: 35 year: 2017 ident: bib0034 article-title: Effect of reactor pressure on the conformal coating inside porous substrates by atomic layer deposition publication-title: J. Vac. Sci. Technol. A Vac. Surf. Films – volume: 30 start-page: 01A142 year: 2011 ident: bib0015 article-title: Low temperature and roll-to-roll spatial atomic layer deposition for flexible electronics publication-title: J. Vac. Sci. Technol. A Vac. Surf. Films – volume: 36 year: 2018 ident: bib0019 article-title: Modeling and experimental demonstration of high-throughput flow-through spatial atomic layer deposition of Al publication-title: J. Vac. Sci. Technol. A – volume: 31 start-page: 01A108 year: 2013 ident: bib0052 article-title: On the kinetics of spatial atomic layer deposition publication-title: J. Vac. Sci. Technol. A Vac. Surf. Films – start-page: 1 year: 2019 end-page: 20 ident: bib0016 article-title: Thin film encapsulation for the organic light-emitting diodes display via atomic layer deposition publication-title: J. Mater. Res. – volume: 20 start-page: 465 year: 2019 end-page: 496 ident: bib0002 article-title: New development of atomic layer deposition: processes, methods and applications publication-title: Sci. Technol. Adv. Mater. – volume: 217 year: 2020 ident: bib0026 article-title: Transient analysis and process optimization of the spatial atomic layer deposition using the dynamic mesh method publication-title: Chem. Eng. Sci. – volume: 33 start-page: 1 year: 2019 end-page: 7 ident: bib0024 article-title: The mechanistic effect over the substrate in a square type atomic layer deposition reactor publication-title: Int. J. Mod. Phys. B – start-page: 88 year: 2017 ident: bib0007 article-title: Modular injector integrated linear apparatus with motion profile optimization for spatial atomic layer deposition publication-title: Rev. Sci. Instrum. – volume: 153 year: 2020 ident: bib0018 article-title: Operating pressure influences over micro trenches in exposure time introduced atomic layer deposition publication-title: Int. J. Heat Mass Transf. – volume: 6 year: 2019 ident: bib0033 article-title: Conformality in atomic layer deposition: current status overview of analysis and modeling publication-title: Appl. Phys. Rev. – start-page: 4 year: 2020 ident: bib0012 article-title: Atomic layer deposition of functional layers in planar perovskite solar cells publication-title: Sol. RRL – volume: 30 year: 2012 ident: bib0008 article-title: Spatial atomic layer deposition: a route towards further industrialization of atomic layer deposition publication-title: J. Vac. Sci. Technol. A Vac. Surf. Films – volume: 12 start-page: 96 year: 2019 end-page: 120 ident: bib0005 article-title: Speeding up the unique assets of atomic layer deposition publication-title: Mater. Today Chem. – volume: 29 start-page: 10007 year: 2017 end-page: 10018 ident: bib0021 article-title: Chlorine doping of amorphous TiO publication-title: Chem. Mater. – volume: 37 start-page: 324 year: 2010 end-page: 329 ident: bib0043 article-title: Three-dimensional numerical simulation of the slip flow through triangular microchannels publication-title: Int. Commun. Heat Mass Transf. – volume: 96 start-page: 189 year: 2016 end-page: 198 ident: bib0009 article-title: Effects of gap size, temperature and pumping pressure on the fluid dynamics and chemical kinetics of in-line spatial atomic layer deposition publication-title: Int. J. Heat Mass Transf. – volume: 144 year: 2019 ident: bib0042 article-title: Numerical study on the effectiveness of precursor isolation using N publication-title: Int. J. Heat Mass Transf. – volume: 34 start-page: 01A108 year: 2016 ident: bib0035 article-title: Mechanistic modeling study on process optimization and precursor utilization with atmospheric spatial atomic layer deposition publication-title: J. Vac. Sci. Technol. A Vac. Surf. Films – volume: 147 start-page: 1 year: 2020 end-page: 19 ident: bib0044 article-title: Active and passive micromixers: a comprehensive review publication-title: Chem. Eng. Process. Process Intensif. – volume: 37 year: 2019 ident: bib0038 article-title: Sticking probabilities of H publication-title: J. Vac. Sci. Technol. A – volume: 30 year: 2012 ident: bib0014 article-title: Status and prospects of Al publication-title: J. Vac. Sci. Technol. A Vac. Surf. Films – volume: 22 start-page: 23107 year: 2020 end-page: 23120 ident: bib0032 article-title: Saturation profile based conformality analysis for atomic layer deposition : aluminum oxide in lateral high-aspect-ratio channels publication-title: Phys. Chem. Chem. Phys. – volume: 403 start-page: 1 year: 2021 end-page: 8 ident: bib0010 article-title: Impact of precursor exposure in spatial atomic layer deposition on process efficiency and film properties publication-title: Chem. Eng. J. – volume: 123 start-page: 27030 year: 2019 end-page: 27035 ident: bib0039 article-title: Film conformality and extracted recombination probabilities of O atoms during plasma-assisted atomic layer deposition of SiO publication-title: J. Phys. Chem. C – volume: 36 year: 2018 ident: bib0013 article-title: Atmospheric spatial atomic layer deposition of ZnOS buffer layers for flexible Cu(In,Ga)Se publication-title: J. Vac. Sci. Technol. A – volume: 2 start-page: 1774 year: 2019 end-page: 1783 ident: bib0037 article-title: Toward 3D thin-film batteries: optimal current-collector design and scalable fabrication of TiO publication-title: ACS Appl. Energy Mater. – volume: 35 start-page: 01B102 year: 2017 ident: bib0025 article-title: Mechanistic modeling study of atomic layer deposition process optimization in a fluidized bed reactor publication-title: J. Vac. Sci. Technol. A Vac. Surf. Films – volume: 9 start-page: 5 year: 2018 ident: bib0036 article-title: Influence of the geometric parameters on the deposition mode in spatial atomic layer deposition: a novel approach to area-selective deposition publication-title: Coatings – start-page: 33 year: 2013 ident: bib0050 article-title: ANSYS Fluent Theory Guide 15.0 – volume: 9 year: 2017 ident: bib0020 article-title: Deposition of ZnO based thin films by atmospheric pressure spatial atomic layer deposition for application in solar cells publication-title: J. Renew. Sustain. Energy – volume: 107 start-page: 870 year: 2016 end-page: 879 ident: bib0023 article-title: Influence of geometric parameters on flow and heat transfer performance of micro-channel heat sinks publication-title: Appl. Therm. Eng. – volume: 33 start-page: 01A132 year: 2015 ident: bib0022 article-title: Spatial atomic layer deposition on flexible substrates using a modular rotating cylinder reactor publication-title: J. Vac. Sci. Technol. A Vac. Surf. Films – volume: 34 start-page: 01A146 year: 2016 ident: bib0051 article-title: Spatial atomic layer deposition on flexible porous substrates: ZnO on anodic aluminum oxide films and Al publication-title: J. Vac. Sci. Technol. A Vac. Surf. Films – volume: 234 year: 2021 ident: bib0011 article-title: Density functional theory (DFT)-enhanced computational fluid dynamics modeling of substrate movement and chemical deposition process in spatial atomic layer deposition publication-title: Chem. Eng. Sci. – volume: 35 start-page: 12 year: 2013 end-page: 18 ident: bib0045 article-title: Convergence analysis and application of the slip boundary conditions publication-title: J. Natl. Univ. Def. Technol. – volume: 13 start-page: 845 year: 2012 end-page: 882 ident: bib0041 article-title: A review on slip models for gas microflows publication-title: Microfluid. Nanofluid. – volume: 44 start-page: 4333 year: 2001 end-page: 4343 ident: bib0030 article-title: Correlation between heat transfer and pressure drop in channels with periodically grooved parts publication-title: Int. J. Heat Mass Transf. – volume: 5 start-page: 484 year: 2009 end-page: 494 ident: bib0006 article-title: Oxide electronics by spatial atomic layer deposition publication-title: J. Disp. Technol. – volume: 4 start-page: 908 year: 2019 end-page: 925 ident: bib0017 article-title: Opportunities for atomic layer deposition in emerging energy technologies publication-title: ACS Energy Lett. – volume: 134 start-page: 1 year: 2012 end-page: 13 ident: bib0040 article-title: Gas microflows in the slip flow regime: a critical review on convective heat transfer publication-title: J. Heat Transf. – volume: 110 start-page: 111 year: 2010 end-page: 131 ident: bib0001 article-title: Atomic layer deposition: an overview publication-title: Chem. Rev. – volume: 138 start-page: 1 year: 2016 end-page: 9 ident: bib0047 article-title: Atomic layer deposition process modeling and experimental investigation for sustainable manufacturing of nano thin films publication-title: J. Manuf. Sci. Eng. Trans. ASME – volume: 25 start-page: 2385 year: 2019 end-page: 2397 ident: bib0028 article-title: Effect of wall roughness on performance of microchannel applied in microfluidic device publication-title: Microsyst. Technol. – volume: 171 start-page: 345 year: 2011 end-page: 349 ident: bib0027 article-title: An atomic layer deposition process for moving flexible substrates publication-title: Chem. Eng. J. – volume: 437 start-page: 29 year: 2001 end-page: 43 ident: bib0046 article-title: Mass flow and tangential momentum accomodation in silicon micromachined channels publication-title: J. Fluid Mech. – volume: 32 start-page: 2195 year: 2020 end-page: 2207 ident: bib0004 article-title: Inherently selective atomic layer deposition and applications publication-title: Chem. Mater. – volume: 113 start-page: 411 year: 2017 end-page: 422 ident: bib0031 article-title: The heat/mass transfer analogy for a backward facing step publication-title: Int. J. Heat Mass Transf. – volume: 34 start-page: 01A146 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0051 article-title: Spatial atomic layer deposition on flexible porous substrates: ZnO on anodic aluminum oxide films and Al2O3 on Li ion battery electrodes publication-title: J. Vac. Sci. Technol. A Vac. Surf. Films doi: 10.1116/1.4937728 – volume: 234 year: 2021 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0011 article-title: Density functional theory (DFT)-enhanced computational fluid dynamics modeling of substrate movement and chemical deposition process in spatial atomic layer deposition publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2021.116447 – start-page: 33 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0050 – volume: 98 start-page: 137 year: 2020 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0029 article-title: Effect of microgroove structures on the fluid dynamics and film conformality in spatial atomic layer deposition of Al2O3 publication-title: ECS Trans. doi: 10.1149/09803.0137ecst – volume: 123 start-page: 27030 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0039 article-title: Film conformality and extracted recombination probabilities of O atoms during plasma-assisted atomic layer deposition of SiO2, TiO2, Al2O3, and HfO2 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b08176 – volume: 403 start-page: 1 year: 2021 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0010 article-title: Impact of precursor exposure in spatial atomic layer deposition on process efficiency and film properties publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126234 – volume: 31 start-page: 01A108 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0052 article-title: On the kinetics of spatial atomic layer deposition publication-title: J. Vac. Sci. Technol. A Vac. Surf. Films doi: 10.1116/1.4756692 – volume: 36 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0019 article-title: Modeling and experimental demonstration of high-throughput flow-through spatial atomic layer deposition of Al2O3 coatings on textiles at atmospheric pressure publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.5022077 – volume: 33 start-page: 01A132 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0022 article-title: Spatial atomic layer deposition on flexible substrates using a modular rotating cylinder reactor publication-title: J. Vac. Sci. Technol. A Vac. Surf. Films doi: 10.1116/1.4902086 – volume: 30 start-page: 01A142 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0015 article-title: Low temperature and roll-to-roll spatial atomic layer deposition for flexible electronics publication-title: J. Vac. Sci. Technol. A Vac. Surf. Films doi: 10.1116/1.3667113 – volume: 9 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0020 article-title: Deposition of ZnO based thin films by atmospheric pressure spatial atomic layer deposition for application in solar cells publication-title: J. Renew. Sustain. Energy doi: 10.1063/1.4979822 – volume: 96 start-page: 189 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0009 article-title: Effects of gap size, temperature and pumping pressure on the fluid dynamics and chemical kinetics of in-line spatial atomic layer deposition publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.01.034 – volume: 13 start-page: 845 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0041 article-title: A review on slip models for gas microflows publication-title: Microfluid. Nanofluid. doi: 10.1007/s10404-012-1012-9 – volume: 437 start-page: 29 year: 2001 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0046 article-title: Mass flow and tangential momentum accomodation in silicon micromachined channels publication-title: J. Fluid Mech. doi: 10.1017/S0022112001004128 – volume: 29 start-page: 10007 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0021 article-title: Chlorine doping of amorphous TiO2 for increased capacity and faster Li+-Ion storage publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b03478 – volume: 9 start-page: 5 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0036 article-title: Influence of the geometric parameters on the deposition mode in spatial atomic layer deposition: a novel approach to area-selective deposition publication-title: Coatings doi: 10.3390/coatings9010005 – volume: 30 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0014 article-title: Status and prospects of Al2O3 -based surface passivation schemes for silicon solar cells publication-title: J. Vac. Sci. Technol. A Vac. Surf. Films doi: 10.1116/1.4728205 – volume: 110 start-page: 111 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0001 article-title: Atomic layer deposition: an overview publication-title: Chem. Rev. doi: 10.1021/cr900056b – volume: 35 start-page: 01B102 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0025 article-title: Mechanistic modeling study of atomic layer deposition process optimization in a fluidized bed reactor publication-title: J. Vac. Sci. Technol. A Vac. Surf. Films doi: 10.1116/1.4964848 – volume: 20 start-page: 465 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0002 article-title: New development of atomic layer deposition: processes, methods and applications publication-title: Sci. Technol. Adv. Mater. doi: 10.1080/14686996.2019.1599694 – volume: 134 start-page: 1 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0040 article-title: Gas microflows in the slip flow regime: a critical review on convective heat transfer publication-title: J. Heat Transf. doi: 10.1115/1.4005063 – volume: 5 start-page: 484 year: 2009 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0006 article-title: Oxide electronics by spatial atomic layer deposition publication-title: J. Disp. Technol. doi: 10.1109/JDT.2009.2022770 – volume: 171 start-page: 345 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0027 article-title: An atomic layer deposition process for moving flexible substrates publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2011.03.097 – volume: 32 start-page: 2195 year: 2020 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0004 article-title: Inherently selective atomic layer deposition and applications publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b04647 – volume: 217 year: 2020 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0026 article-title: Transient analysis and process optimization of the spatial atomic layer deposition using the dynamic mesh method publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2020.115513 – start-page: 4 year: 2020 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0012 article-title: Atomic layer deposition of functional layers in planar perovskite solar cells publication-title: Sol. RRL – volume: 36 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0013 article-title: Atmospheric spatial atomic layer deposition of ZnOS buffer layers for flexible Cu(In,Ga)Se2 solar cells publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.5040457 – volume: 6 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0033 article-title: Conformality in atomic layer deposition: current status overview of analysis and modeling publication-title: Appl. Phys. Rev. doi: 10.1063/1.5060967 – volume: 144 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0042 article-title: Numerical study on the effectiveness of precursor isolation using N2 as gas barrier in spatial atomic layer deposition publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2019.118642 – volume: 35 start-page: 12 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0045 article-title: Convergence analysis and application of the slip boundary conditions publication-title: J. Natl. Univ. Def. Technol. – volume: 107 start-page: 870 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0023 article-title: Influence of geometric parameters on flow and heat transfer performance of micro-channel heat sinks publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.07.039 – volume: 34 start-page: 01A108 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0035 article-title: Mechanistic modeling study on process optimization and precursor utilization with atmospheric spatial atomic layer deposition publication-title: J. Vac. Sci. Technol. A Vac. Surf. Films doi: 10.1116/1.4932564 – volume: 147 start-page: 1 year: 2020 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0044 article-title: Active and passive micromixers: a comprehensive review publication-title: Chem. Eng. Process. Process Intensif. doi: 10.1016/j.cep.2019.107771 – start-page: 1 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0016 article-title: Thin film encapsulation for the organic light-emitting diodes display via atomic layer deposition publication-title: J. Mater. Res. – volume: 22 start-page: 23107 year: 2020 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0032 article-title: Saturation profile based conformality analysis for atomic layer deposition : aluminum oxide in lateral high-aspect-ratio channels publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D0CP03358H – start-page: 88 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0007 article-title: Modular injector integrated linear apparatus with motion profile optimization for spatial atomic layer deposition publication-title: Rev. Sci. Instrum. – volume: 113 start-page: 411 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0031 article-title: The heat/mass transfer analogy for a backward facing step publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.05.087 – volume: 2 start-page: 1774 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0037 article-title: Toward 3D thin-film batteries: optimal current-collector design and scalable fabrication of TiO2 thin-film electrodes publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b01905 – volume: 89 start-page: 468 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0049 article-title: Investigating atomic layer deposition characteristics in multi-outlet viscous flow reactors through reactor scale simulations publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2015.05.079 – volume: 12 start-page: 96 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0005 article-title: Speeding up the unique assets of atomic layer deposition publication-title: Mater. Today Chem. doi: 10.1016/j.mtchem.2018.11.013 – volume: 33 start-page: 1 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0024 article-title: The mechanistic effect over the substrate in a square type atomic layer deposition reactor publication-title: Int. J. Mod. Phys. B – volume: 2 year: 2020 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0003 article-title: Atomic level deposition to extend Moore's law and beyond publication-title: Int. J. Extrem. Manuf. doi: 10.1088/2631-7990/ab83e0 – volume: 30 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0008 article-title: Spatial atomic layer deposition: a route towards further industrialization of atomic layer deposition publication-title: J. Vac. Sci. Technol. A Vac. Surf. Films doi: 10.1116/1.3670745 – volume: 44 start-page: 4333 year: 2001 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0030 article-title: Correlation between heat transfer and pressure drop in channels with periodically grooved parts publication-title: Int. J. Heat Mass Transf. doi: 10.1016/S0017-9310(01)00070-9 – volume: 25 start-page: 2385 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0028 article-title: Effect of wall roughness on performance of microchannel applied in microfluidic device publication-title: Microsyst. Technol. doi: 10.1007/s00542-018-4124-7 – volume: 35 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0034 article-title: Effect of reactor pressure on the conformal coating inside porous substrates by atomic layer deposition publication-title: J. Vac. Sci. Technol. A Vac. Surf. Films doi: 10.1116/1.4973350 – volume: 37 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0038 article-title: Sticking probabilities of H2O and Al(CH3)3 during atomic layer deposition of Al2O3 extracted from their impact on film conformality publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.5093620 – year: 2014 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0048 article-title: Improving atomic layer deposition process through reactor scale simulation publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2014.07.079 – volume: 153 year: 2020 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0018 article-title: Operating pressure influences over micro trenches in exposure time introduced atomic layer deposition publication-title: Int. J. Heat Mass Transf. – volume: 4 start-page: 908 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0017 article-title: Opportunities for atomic layer deposition in emerging energy technologies publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b00249 – volume: 37 start-page: 324 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0043 article-title: Three-dimensional numerical simulation of the slip flow through triangular microchannels publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2009.09.006 – volume: 138 start-page: 1 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0047 article-title: Atomic layer deposition process modeling and experimental investigation for sustainable manufacturing of nano thin films publication-title: J. Manuf. Sci. Eng. Trans. ASME doi: 10.1115/1.4034475 |
| SSID | ssj0017046 |
| Score | 2.4701202 |
| Snippet | •The effect of microgroove structure on the fluid dynamics and film conformality in spatial atomic layer deposition is investigated.•Microgroove structure... Spatial atomic layer deposition (ALD) is a promising high-throughput technique capable of producing ultrathin films on large substrates. Compared to flat... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 121854 |
| SubjectTerms | Atmospheric models Atomic layer epitaxy Boundary conditions Carrier gases Chemical reactions Computational fluid dynamics Dynamic mesh method Film conformality Film growth Flow velocity Fluid dynamics Fluid flow Gas flow Mass transfer Microgroove structures Microstructure Nonuniformity Photovoltaic cells Precursors Purging Reaction kinetics Slip flow Spatial ALD Substrates Thin films Two dimensional models |
| Title | Computational fluid dynamics modeling of spatial atomic layer deposition on microgroove substrates |
| URI | https://dx.doi.org/10.1016/j.ijheatmasstransfer.2021.121854 https://www.proquest.com/docview/2606931053 |
| Volume | 181 |
| WOSCitedRecordID | wos000706121000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2189 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017046 issn: 0017-9310 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKB4gXxFUMBvIDQkhVpjSp4_gJTVMnLlVBqJsqXizHTqBVl5SlrcY_4mdyfGvaARN9QIqiKG2s2OfL8Wf78zkIvRShgpE0EUHB8l7Q6woRiJjKIJY0jqnII2FUlWcDOhym4zH71Gr99HthVjNalunlJZv_V1PDPTC23jq7g7nXhcINuAajwxnMDud_MrzN0-Dn-IrZcqI6yuadd4lvnNC51mJqHSpgoXcmd2bih8kW7mVcehnhXMv1vgK5XuWdGlyMCWVbbxLa7RnFjTgU2smblYlzoOc6EwXw40YJPDAigi_Vsv62FK7zNCshZub2w7Lc_uN4IqqsaqQI1ld-rtyTbtYi6l5RgDTbac42vTP0mCx2MtfcOuSUsgBoCNv22N0Nn9v9Y09gJyWmh5Oprq-uqq_poX4fHVUjteGrt4NwDz_yk9PBgI_649Gr-fdA5yfT6_guWcsNtBfBECtqo72jd_3x-_WKFQ3tpjBfh9vodaMlvP4l_kaJrpADw3hG99BdN1TBRxZi91ErLx-gW0YyLOuHKNsCGjZAwx5o2AMNVwV2QMMWaNgADTdAw3BsAA03QHuETk_6o-O3gcvYEciYhouAMpWkvaKXFEATM2goRogiFIYIhAqp4iikTIRSp54vSCQIeApg-IQyJjKpUhU_Ru2yKvMnCGdEZQmJhaLgRNI8Y5prESWpSnqZkNk-euMbjUsXzl5nVZlxr1uc8t-bnetm57bZ9xFblzC3oV12ePbY24k7qmopKAf87VDKgTcxdx9ozaMkTDSASPz0-p-foTvNl3WA2ouLZf4c3ZSrxaS-eOHw-Qvk38vk |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+fluid+dynamics+modeling+of+spatial+atomic+layer+deposition+on+microgroove+substrates&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Li%2C+Zoushuang&rft.au=Cao%2C+Kun&rft.au=Li%2C+Xiaobo&rft.au=Chen%2C+Rong&rft.date=2021-12-01&rft.pub=Elsevier+BV&rft.issn=0017-9310&rft.eissn=1879-2189&rft.volume=181&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2021.121854&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon |