Computational fluid dynamics modeling of spatial atomic layer deposition on microgroove substrates

•The effect of microgroove structure on the fluid dynamics and film conformality in spatial atomic layer deposition is investigated.•Microgroove structure hinders the precursor inflow and purging gas outflow, leading to non-uniformity of precursor distribution.•Both growth per cycle and film conform...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of heat and mass transfer Ročník 181; s. 121854
Hlavní autoři: Li, Zoushuang, Cao, Kun, Li, Xiaobo, Chen, Rong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Elsevier Ltd 01.12.2021
Elsevier BV
Témata:
ISSN:0017-9310, 1879-2189
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •The effect of microgroove structure on the fluid dynamics and film conformality in spatial atomic layer deposition is investigated.•Microgroove structure hinders the precursor inflow and purging gas outflow, leading to non-uniformity of precursor distribution.•Both growth per cycle and film conformality decrease as substrate moves faster, but increase slightly with higher carrier gas flow rate.•By optimizing carrier gas flow rate and substrate velocity, the precursor utilization is increased by over two times to obtain a 100% conformal film. Spatial atomic layer deposition (ALD) is a promising high-throughput technique capable of producing ultrathin films on large substrates. Compared to flat wafers, deposition on substrates with microstructures has a wider range of applications such as photovoltaic cells, electronics, flexible displays, etc. However, spatial ALD on microstructure substrates is a complex and strong-coupled process of fluid flow, heat and mass transfer, as well as chemical reactions. The fluid dynamics and the precursor distribution in spatial ALD are of great importance to obtain conformal growth with high throughput. In this study, a two-dimensional model coupling computational fluid dynamics with chemical kinetics is established to quantitatively explore the effect of microgroove structures on the fluid dynamics, precursor distribution and film conformality in an atmospheric spatial ALD system. Slip boundary condition is adopted to model the slip flow regime in the micro-gap between the injector and the substrate surface, and dynamic layering method is implemented to simulate an entire ALD cycle with the in-line movement of the substrate. Results show that while the flow field is very smooth with a flat substrate, vortices always exist in the micro-gap with microgroove substrates. Due to the angle differences between the flow direction and the vertical microstructure surface, the inflow and outflow of precursors and purging gas are prevented at the microgroove corners. A relatively lower moving speed of the substrate is beneficial for the saturated film growth and better film conformality. Increasing the carrier gas flow rate can effectively reduce the non-uniformity and non-conformality of the film, but the precursor utilization also decreases. Compared with the nonoptimal conditions, within a moderate range of carrier gas flow rate and substrate speed, the precursor utilization and film conformality have been improved. Focusing on the effect of the micro-scale features of the substrate, this study is a valuable step in extending spatial ALD for ultrathin films on miniature devices. [Display omitted]
AbstractList •The effect of microgroove structure on the fluid dynamics and film conformality in spatial atomic layer deposition is investigated.•Microgroove structure hinders the precursor inflow and purging gas outflow, leading to non-uniformity of precursor distribution.•Both growth per cycle and film conformality decrease as substrate moves faster, but increase slightly with higher carrier gas flow rate.•By optimizing carrier gas flow rate and substrate velocity, the precursor utilization is increased by over two times to obtain a 100% conformal film. Spatial atomic layer deposition (ALD) is a promising high-throughput technique capable of producing ultrathin films on large substrates. Compared to flat wafers, deposition on substrates with microstructures has a wider range of applications such as photovoltaic cells, electronics, flexible displays, etc. However, spatial ALD on microstructure substrates is a complex and strong-coupled process of fluid flow, heat and mass transfer, as well as chemical reactions. The fluid dynamics and the precursor distribution in spatial ALD are of great importance to obtain conformal growth with high throughput. In this study, a two-dimensional model coupling computational fluid dynamics with chemical kinetics is established to quantitatively explore the effect of microgroove structures on the fluid dynamics, precursor distribution and film conformality in an atmospheric spatial ALD system. Slip boundary condition is adopted to model the slip flow regime in the micro-gap between the injector and the substrate surface, and dynamic layering method is implemented to simulate an entire ALD cycle with the in-line movement of the substrate. Results show that while the flow field is very smooth with a flat substrate, vortices always exist in the micro-gap with microgroove substrates. Due to the angle differences between the flow direction and the vertical microstructure surface, the inflow and outflow of precursors and purging gas are prevented at the microgroove corners. A relatively lower moving speed of the substrate is beneficial for the saturated film growth and better film conformality. Increasing the carrier gas flow rate can effectively reduce the non-uniformity and non-conformality of the film, but the precursor utilization also decreases. Compared with the nonoptimal conditions, within a moderate range of carrier gas flow rate and substrate speed, the precursor utilization and film conformality have been improved. Focusing on the effect of the micro-scale features of the substrate, this study is a valuable step in extending spatial ALD for ultrathin films on miniature devices. [Display omitted]
Spatial atomic layer deposition (ALD) is a promising high-throughput technique capable of producing ultrathin films on large substrates. Compared to flat wafers, deposition on substrates with microstructures has a wider range of applications such as photovoltaic cells, electronics, flexible displays, etc. However, spatial ALD on microstructure substrates is a complex and strong-coupled process of fluid flow, heat and mass transfer, as well as chemical reactions. The fluid dynamics and the precursor distribution in spatial ALD are of great importance to obtain conformal growth with high throughput. In this study, a two-dimensional model coupling computational fluid dynamics with chemical kinetics is established to quantitatively explore the effect of microgroove structures on the fluid dynamics, precursor distribution and film conformality in an atmospheric spatial ALD system. Slip boundary condition is adopted to model the slip flow regime in the micro-gap between the injector and the substrate surface, and dynamic layering method is implemented to simulate an entire ALD cycle with the in-line movement of the substrate. Results show that while the flow field is very smooth with a flat substrate, vortices always exist in the micro-gap with microgroove substrates. Due to the angle differences between the flow direction and the vertical microstructure surface, the inflow and outflow of precursors and purging gas are prevented at the microgroove corners. A relatively lower moving speed of the substrate is beneficial for the saturated film growth and better film conformality. Increasing the carrier gas flow rate can effectively reduce the non-uniformity and non-conformality of the film, but the precursor utilization also decreases. Compared with the nonoptimal conditions, within a moderate range of carrier gas flow rate and substrate speed, the precursor utilization and film conformality have been improved. Focusing on the effect of the micro-scale features of the substrate, this study is a valuable step in extending spatial ALD for ultrathin films on miniature devices.
ArticleNumber 121854
Author Chen, Rong
Li, Zoushuang
Li, Xiaobo
Cao, Kun
Author_xml – sequence: 1
  givenname: Zoushuang
  surname: Li
  fullname: Li, Zoushuang
  organization: State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
– sequence: 2
  givenname: Kun
  surname: Cao
  fullname: Cao, Kun
  email: kuncao@hust.edu.cn
  organization: State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
– sequence: 3
  givenname: Xiaobo
  surname: Li
  fullname: Li, Xiaobo
  organization: School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
– sequence: 4
  givenname: Rong
  surname: Chen
  fullname: Chen, Rong
  email: rongchen@mail.hust.edu.cn
  organization: State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
BookMark eNqVkE9PwyAYxomZidv0O5B48dIKbSnjplmcf7LEi54JBTpp2lKBLtm3l6ae9KIJCXl5H355nmcFFr3tNQA3GKUY4fK2SU3zoUXohPfBid7X2qUZynCKM7whxRlY4g1lSRzYAiwRwjRhOUYXYOV9M42oKJeg2tpuGIMIxvaihXU7GgXVqRedkR52VunW9Adoa-iHKIoSEWzcwVactINKD9ab6TOMJ747e3DWHjX0YzX5CtpfgvNatF5ffd9r8L57eNs-JfvXx-ft_T6ROUUhoUyVm6IuyhqVuMooYYQoQvOsJFRIlWeIMoEkKXBRk0wQgRQjmFDGRCXVRuVrcD1zB2c_R-0Db-zoYirPsxKVU3iSR9VuVkWr3jtdc2nm-NGtaTlGfOqXN_x3v3zql8_9RtDdD9DgTCfc6T-IlxmhYy1HE7deGt1LrYzTMnBlzd9hX7loqjg
CitedBy_id crossref_primary_10_1016_j_jallcom_2025_183864
crossref_primary_10_1016_j_partic_2025_05_024
crossref_primary_10_1088_1361_6528_ad28d6
crossref_primary_10_1002_admt_202301728
crossref_primary_10_1016_j_cej_2025_164236
crossref_primary_10_3390_coatings13030558
crossref_primary_10_1007_s11431_022_2052_y
crossref_primary_10_1109_TSM_2023_3267024
crossref_primary_10_1016_j_petsci_2024_12_012
crossref_primary_10_1116_6_0004367
crossref_primary_10_1016_j_cej_2025_159629
crossref_primary_10_1016_j_compchemeng_2022_107861
crossref_primary_10_1016_j_jece_2025_119101
crossref_primary_10_1016_j_cej_2022_140174
crossref_primary_10_1016_j_cej_2023_147486
Cites_doi 10.1116/1.4937728
10.1016/j.ces.2021.116447
10.1149/09803.0137ecst
10.1021/acs.jpcc.9b08176
10.1016/j.cej.2020.126234
10.1116/1.4756692
10.1116/1.5022077
10.1116/1.4902086
10.1116/1.3667113
10.1063/1.4979822
10.1016/j.ijheatmasstransfer.2016.01.034
10.1007/s10404-012-1012-9
10.1017/S0022112001004128
10.1021/acs.chemmater.7b03478
10.3390/coatings9010005
10.1116/1.4728205
10.1021/cr900056b
10.1116/1.4964848
10.1080/14686996.2019.1599694
10.1115/1.4005063
10.1109/JDT.2009.2022770
10.1016/j.cej.2011.03.097
10.1021/acs.chemmater.9b04647
10.1016/j.ces.2020.115513
10.1116/1.5040457
10.1063/1.5060967
10.1016/j.ijheatmasstransfer.2019.118642
10.1016/j.applthermaleng.2016.07.039
10.1116/1.4932564
10.1016/j.cep.2019.107771
10.1039/D0CP03358H
10.1016/j.ijheatmasstransfer.2017.05.087
10.1021/acsaem.8b01905
10.1016/j.ijheatmasstransfer.2015.05.079
10.1016/j.mtchem.2018.11.013
10.1088/2631-7990/ab83e0
10.1116/1.3670745
10.1016/S0017-9310(01)00070-9
10.1007/s00542-018-4124-7
10.1116/1.4973350
10.1116/1.5093620
10.1016/j.ijheatmasstransfer.2014.07.079
10.1021/acsenergylett.9b00249
10.1016/j.icheatmasstransfer.2009.09.006
10.1115/1.4034475
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Dec 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Dec 2021
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.ijheatmasstransfer.2021.121854
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2189
ExternalDocumentID 10_1016_j_ijheatmasstransfer_2021_121854
S0017931021009595
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDMP
ABFNM
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7TB
8FD
AGCQF
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c370t-79d684f46f061b275955d5732657acd32079a0c5414f52a5a0d9515799abcd8d3
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000706121000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0017-9310
IngestDate Wed Aug 13 06:22:36 EDT 2025
Tue Nov 18 21:36:22 EST 2025
Sat Nov 29 06:56:43 EST 2025
Fri Feb 23 02:41:05 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Film conformality
Dynamic mesh method
Microgroove structures
Computational fluid dynamics
Spatial ALD
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c370t-79d684f46f061b275955d5732657acd32079a0c5414f52a5a0d9515799abcd8d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2606931053
PQPubID 2045464
ParticipantIDs proquest_journals_2606931053
crossref_citationtrail_10_1016_j_ijheatmasstransfer_2021_121854
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121854
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2021_121854
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of heat and mass transfer
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Mousa, Ovental, Brozena, Oldham, Parsons (bib0019) 2018; 36
Bayareh, Ashani, Usefian (bib0044) 2020; 147
Brinkmann, Gahlmann, Riedl (bib0012) 2020
Pan, Guan, Jen, Yuan (bib0047) 2016; 138
Nguyen, Resende, Jiménez, Deschanvres, Carroy, Muñoz, Bellet, Muñoz-Rojas (bib0020) 2017; 9
Moitzheim, Balder, Ritasalo, Ek, Poodt, Unnikrishnan, De Gendt, Vereecken (bib0037) 2019; 2
Poodt, Knaapen, Illiberi, Roozeboom, van Asten (bib0015) 2011; 30
Cong, Li, Cao, Feng, Chen (bib0026) 2020; 217
Asundi, Raiford, Bent (bib0017) 2019; 4
Shojaeian, Dibaji (bib0043) 2010; 37
Zhang, Meng, Wei (bib0041) 2012; 13
Arts, Utriainen, Puurunen, Kessels, Knoops (bib0039) 2019; 123
Li, Xiong, Yang, Cao, Chen (bib0016) 2019
Pan (bib0011) 2021; 234
Moitzheim, Balder, Poodt, Unnikrishnan, De Gendt, Vereecken (bib0021) 2017; 29
Levy, Nelson, Freeman (bib0006) 2009; 5
Shaeri, Jen, Yuan (bib0048) 2014
Yim, Ylivaara, Ylilammi, Korpelainen, Haimi, Verkama (bib0032) 2020; 22
Sharma, Hall, George (bib0022) 2015; 33
Shaeri, Jen, Yuan, Behnia (bib0049) 2015; 89
Mittal, Madanan, Goldstein (bib0031) 2017; 113
Poodt, Mameli, Schulpen, (Erwin) Kessels, Roozeboom (bib0034) 2017; 35
Cremers, Puurunen, Dendooven (bib0033) 2019; 6
Adachi, Uehara (bib0030) 2001; 44
Colin (bib0040) 2012; 134
George (bib0001) 2010; 110
Oladipo, Coetzee, Olubambi, Jen (bib0018) 2020; 153
Masse de la Huerta, Nguyen, Dedulle, Bellet, Jiménez, Muñoz-Rojas (bib0036) 2018; 9
Poodt, Cameron, Dickey, George, Kuznetsov, Parsons, Roozeboom, Sundaram, Vermeer (bib0008) 2012; 30
Jia, Song, Liu, Wang (bib0028) 2019; 25
Maydannik, Kääriäinen, Cameron (bib0027) 2011; 171
Pan (bib0042) 2019; 144
Chen, Li, Cai, Cao, Lee (bib0003) 2020; 2
Pan, Jen, Yuan (bib0009) 2016; 96
Fluent (bib0050) 2013
Oviroh, Akbarzadeh, Pan, Coetzee, Jen (bib0002) 2019; 20
Li, Li, Cao, Chen (bib0029) 2020; 98
Illiberi, Frijters, Ruth, Bremaud, Poodt, Roozeboom, Bolt (bib0013) 2018; 36
Deng, He, Duan, Chen, Shan (bib0035) 2016; 34
Wenbin Cao, Li (bib0045) 2013; 35
Sharma, Routkevitch, Varaksa, George (bib0051) 2016; 34
Cao, Cai, Chen (bib0004) 2020; 32
Muñoz-Rojas, Maindron, Esteve, Piallat, Kools, Decams (bib0005) 2019; 12
Nguyen, Sekkat, Jiménez, Muñoz, Bellet, Muñoz-rojas (bib0010) 2021; 403
Wang, Chen, Gao (bib0023) 2016; 107
Dingemans, Kessels (bib0014) 2012; 30
Arkilic, Breuer, Schmidt (bib0046) 2001; 437
Wang, Li, Lin, Shan, Chen (bib0007) 2017
Journal, Physics, Scientific, Company, Alfred, Coetzee, Jen, Bhamjee, Lu, Science, Park, Africa, Physics (bib0024) 2019; 33
Arts, Vandalon, Puurunen, Utriainen, Gao, (Erwin) Kessels, Knoops (bib0038) 2019; 37
Duan, Zhu, Deng, Li, Shan, Fang, Feng, Chen (bib0025) 2017; 35
Poodt, van Lieshout, Illiberi, Knaapen, Roozeboom, van Asten (bib0052) 2013; 31
Li (10.1016/j.ijheatmasstransfer.2021.121854_bib0016) 2019
Wang (10.1016/j.ijheatmasstransfer.2021.121854_bib0023) 2016; 107
Shaeri (10.1016/j.ijheatmasstransfer.2021.121854_bib0048) 2014
Moitzheim (10.1016/j.ijheatmasstransfer.2021.121854_bib0037) 2019; 2
Asundi (10.1016/j.ijheatmasstransfer.2021.121854_bib0017) 2019; 4
Shaeri (10.1016/j.ijheatmasstransfer.2021.121854_bib0049) 2015; 89
George (10.1016/j.ijheatmasstransfer.2021.121854_bib0001) 2010; 110
Pan (10.1016/j.ijheatmasstransfer.2021.121854_bib0011) 2021; 234
Cremers (10.1016/j.ijheatmasstransfer.2021.121854_bib0033) 2019; 6
Brinkmann (10.1016/j.ijheatmasstransfer.2021.121854_bib0012) 2020
Pan (10.1016/j.ijheatmasstransfer.2021.121854_bib0047) 2016; 138
Fluent (10.1016/j.ijheatmasstransfer.2021.121854_bib0050) 2013
Oladipo (10.1016/j.ijheatmasstransfer.2021.121854_bib0018) 2020; 153
Cong (10.1016/j.ijheatmasstransfer.2021.121854_bib0026) 2020; 217
Li (10.1016/j.ijheatmasstransfer.2021.121854_bib0029) 2020; 98
Deng (10.1016/j.ijheatmasstransfer.2021.121854_bib0035) 2016; 34
Pan (10.1016/j.ijheatmasstransfer.2021.121854_bib0042) 2019; 144
Colin (10.1016/j.ijheatmasstransfer.2021.121854_bib0040) 2012; 134
Wang (10.1016/j.ijheatmasstransfer.2021.121854_bib0007) 2017
Nguyen (10.1016/j.ijheatmasstransfer.2021.121854_bib0010) 2021; 403
Mousa (10.1016/j.ijheatmasstransfer.2021.121854_bib0019) 2018; 36
Poodt (10.1016/j.ijheatmasstransfer.2021.121854_bib0052) 2013; 31
Poodt (10.1016/j.ijheatmasstransfer.2021.121854_bib0008) 2012; 30
Sharma (10.1016/j.ijheatmasstransfer.2021.121854_bib0051) 2016; 34
Moitzheim (10.1016/j.ijheatmasstransfer.2021.121854_bib0021) 2017; 29
Arts (10.1016/j.ijheatmasstransfer.2021.121854_bib0039) 2019; 123
Chen (10.1016/j.ijheatmasstransfer.2021.121854_bib0003) 2020; 2
Mittal (10.1016/j.ijheatmasstransfer.2021.121854_bib0031) 2017; 113
Maydannik (10.1016/j.ijheatmasstransfer.2021.121854_bib0027) 2011; 171
Jia (10.1016/j.ijheatmasstransfer.2021.121854_bib0028) 2019; 25
Poodt (10.1016/j.ijheatmasstransfer.2021.121854_bib0034) 2017; 35
Bayareh (10.1016/j.ijheatmasstransfer.2021.121854_bib0044) 2020; 147
Nguyen (10.1016/j.ijheatmasstransfer.2021.121854_bib0020) 2017; 9
Zhang (10.1016/j.ijheatmasstransfer.2021.121854_bib0041) 2012; 13
Cao (10.1016/j.ijheatmasstransfer.2021.121854_bib0004) 2020; 32
Sharma (10.1016/j.ijheatmasstransfer.2021.121854_bib0022) 2015; 33
Adachi (10.1016/j.ijheatmasstransfer.2021.121854_bib0030) 2001; 44
Arts (10.1016/j.ijheatmasstransfer.2021.121854_bib0038) 2019; 37
Poodt (10.1016/j.ijheatmasstransfer.2021.121854_bib0015) 2011; 30
Shojaeian (10.1016/j.ijheatmasstransfer.2021.121854_bib0043) 2010; 37
Masse de la Huerta (10.1016/j.ijheatmasstransfer.2021.121854_bib0036) 2018; 9
Wenbin Cao (10.1016/j.ijheatmasstransfer.2021.121854_bib0045) 2013; 35
Muñoz-Rojas (10.1016/j.ijheatmasstransfer.2021.121854_bib0005) 2019; 12
Arkilic (10.1016/j.ijheatmasstransfer.2021.121854_bib0046) 2001; 437
Illiberi (10.1016/j.ijheatmasstransfer.2021.121854_bib0013) 2018; 36
Dingemans (10.1016/j.ijheatmasstransfer.2021.121854_bib0014) 2012; 30
Levy (10.1016/j.ijheatmasstransfer.2021.121854_bib0006) 2009; 5
Pan (10.1016/j.ijheatmasstransfer.2021.121854_bib0009) 2016; 96
Oviroh (10.1016/j.ijheatmasstransfer.2021.121854_bib0002) 2019; 20
Duan (10.1016/j.ijheatmasstransfer.2021.121854_bib0025) 2017; 35
Journal (10.1016/j.ijheatmasstransfer.2021.121854_bib0024) 2019; 33
Yim (10.1016/j.ijheatmasstransfer.2021.121854_bib0032) 2020; 22
References_xml – volume: 98
  start-page: 137
  year: 2020
  end-page: 143
  ident: bib0029
  article-title: Effect of microgroove structures on the fluid dynamics and film conformality in spatial atomic layer deposition of Al
  publication-title: ECS Trans.
– year: 2014
  ident: bib0048
  article-title: Improving atomic layer deposition process through reactor scale simulation
  publication-title: Int. J. Heat Mass Transf.
– volume: 2
  year: 2020
  ident: bib0003
  article-title: Atomic level deposition to extend Moore's law and beyond
  publication-title: Int. J. Extrem. Manuf.
– volume: 89
  start-page: 468
  year: 2015
  end-page: 481
  ident: bib0049
  article-title: Investigating atomic layer deposition characteristics in multi-outlet viscous flow reactors through reactor scale simulations
  publication-title: Int. J. Heat Mass Transf.
– volume: 35
  year: 2017
  ident: bib0034
  article-title: Effect of reactor pressure on the conformal coating inside porous substrates by atomic layer deposition
  publication-title: J. Vac. Sci. Technol. A Vac. Surf. Films
– volume: 30
  start-page: 01A142
  year: 2011
  ident: bib0015
  article-title: Low temperature and roll-to-roll spatial atomic layer deposition for flexible electronics
  publication-title: J. Vac. Sci. Technol. A Vac. Surf. Films
– volume: 36
  year: 2018
  ident: bib0019
  article-title: Modeling and experimental demonstration of high-throughput flow-through spatial atomic layer deposition of Al
  publication-title: J. Vac. Sci. Technol. A
– volume: 31
  start-page: 01A108
  year: 2013
  ident: bib0052
  article-title: On the kinetics of spatial atomic layer deposition
  publication-title: J. Vac. Sci. Technol. A Vac. Surf. Films
– start-page: 1
  year: 2019
  end-page: 20
  ident: bib0016
  article-title: Thin film encapsulation for the organic light-emitting diodes display via atomic layer deposition
  publication-title: J. Mater. Res.
– volume: 20
  start-page: 465
  year: 2019
  end-page: 496
  ident: bib0002
  article-title: New development of atomic layer deposition: processes, methods and applications
  publication-title: Sci. Technol. Adv. Mater.
– volume: 217
  year: 2020
  ident: bib0026
  article-title: Transient analysis and process optimization of the spatial atomic layer deposition using the dynamic mesh method
  publication-title: Chem. Eng. Sci.
– volume: 33
  start-page: 1
  year: 2019
  end-page: 7
  ident: bib0024
  article-title: The mechanistic effect over the substrate in a square type atomic layer deposition reactor
  publication-title: Int. J. Mod. Phys. B
– start-page: 88
  year: 2017
  ident: bib0007
  article-title: Modular injector integrated linear apparatus with motion profile optimization for spatial atomic layer deposition
  publication-title: Rev. Sci. Instrum.
– volume: 153
  year: 2020
  ident: bib0018
  article-title: Operating pressure influences over micro trenches in exposure time introduced atomic layer deposition
  publication-title: Int. J. Heat Mass Transf.
– volume: 6
  year: 2019
  ident: bib0033
  article-title: Conformality in atomic layer deposition: current status overview of analysis and modeling
  publication-title: Appl. Phys. Rev.
– start-page: 4
  year: 2020
  ident: bib0012
  article-title: Atomic layer deposition of functional layers in planar perovskite solar cells
  publication-title: Sol. RRL
– volume: 30
  year: 2012
  ident: bib0008
  article-title: Spatial atomic layer deposition: a route towards further industrialization of atomic layer deposition
  publication-title: J. Vac. Sci. Technol. A Vac. Surf. Films
– volume: 12
  start-page: 96
  year: 2019
  end-page: 120
  ident: bib0005
  article-title: Speeding up the unique assets of atomic layer deposition
  publication-title: Mater. Today Chem.
– volume: 29
  start-page: 10007
  year: 2017
  end-page: 10018
  ident: bib0021
  article-title: Chlorine doping of amorphous TiO
  publication-title: Chem. Mater.
– volume: 37
  start-page: 324
  year: 2010
  end-page: 329
  ident: bib0043
  article-title: Three-dimensional numerical simulation of the slip flow through triangular microchannels
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 96
  start-page: 189
  year: 2016
  end-page: 198
  ident: bib0009
  article-title: Effects of gap size, temperature and pumping pressure on the fluid dynamics and chemical kinetics of in-line spatial atomic layer deposition
  publication-title: Int. J. Heat Mass Transf.
– volume: 144
  year: 2019
  ident: bib0042
  article-title: Numerical study on the effectiveness of precursor isolation using N
  publication-title: Int. J. Heat Mass Transf.
– volume: 34
  start-page: 01A108
  year: 2016
  ident: bib0035
  article-title: Mechanistic modeling study on process optimization and precursor utilization with atmospheric spatial atomic layer deposition
  publication-title: J. Vac. Sci. Technol. A Vac. Surf. Films
– volume: 147
  start-page: 1
  year: 2020
  end-page: 19
  ident: bib0044
  article-title: Active and passive micromixers: a comprehensive review
  publication-title: Chem. Eng. Process. Process Intensif.
– volume: 37
  year: 2019
  ident: bib0038
  article-title: Sticking probabilities of H
  publication-title: J. Vac. Sci. Technol. A
– volume: 30
  year: 2012
  ident: bib0014
  article-title: Status and prospects of Al
  publication-title: J. Vac. Sci. Technol. A Vac. Surf. Films
– volume: 22
  start-page: 23107
  year: 2020
  end-page: 23120
  ident: bib0032
  article-title: Saturation profile based conformality analysis for atomic layer deposition : aluminum oxide in lateral high-aspect-ratio channels
  publication-title: Phys. Chem. Chem. Phys.
– volume: 403
  start-page: 1
  year: 2021
  end-page: 8
  ident: bib0010
  article-title: Impact of precursor exposure in spatial atomic layer deposition on process efficiency and film properties
  publication-title: Chem. Eng. J.
– volume: 123
  start-page: 27030
  year: 2019
  end-page: 27035
  ident: bib0039
  article-title: Film conformality and extracted recombination probabilities of O atoms during plasma-assisted atomic layer deposition of SiO
  publication-title: J. Phys. Chem. C
– volume: 36
  year: 2018
  ident: bib0013
  article-title: Atmospheric spatial atomic layer deposition of ZnOS buffer layers for flexible Cu(In,Ga)Se
  publication-title: J. Vac. Sci. Technol. A
– volume: 2
  start-page: 1774
  year: 2019
  end-page: 1783
  ident: bib0037
  article-title: Toward 3D thin-film batteries: optimal current-collector design and scalable fabrication of TiO
  publication-title: ACS Appl. Energy Mater.
– volume: 35
  start-page: 01B102
  year: 2017
  ident: bib0025
  article-title: Mechanistic modeling study of atomic layer deposition process optimization in a fluidized bed reactor
  publication-title: J. Vac. Sci. Technol. A Vac. Surf. Films
– volume: 9
  start-page: 5
  year: 2018
  ident: bib0036
  article-title: Influence of the geometric parameters on the deposition mode in spatial atomic layer deposition: a novel approach to area-selective deposition
  publication-title: Coatings
– start-page: 33
  year: 2013
  ident: bib0050
  article-title: ANSYS Fluent Theory Guide 15.0
– volume: 9
  year: 2017
  ident: bib0020
  article-title: Deposition of ZnO based thin films by atmospheric pressure spatial atomic layer deposition for application in solar cells
  publication-title: J. Renew. Sustain. Energy
– volume: 107
  start-page: 870
  year: 2016
  end-page: 879
  ident: bib0023
  article-title: Influence of geometric parameters on flow and heat transfer performance of micro-channel heat sinks
  publication-title: Appl. Therm. Eng.
– volume: 33
  start-page: 01A132
  year: 2015
  ident: bib0022
  article-title: Spatial atomic layer deposition on flexible substrates using a modular rotating cylinder reactor
  publication-title: J. Vac. Sci. Technol. A Vac. Surf. Films
– volume: 34
  start-page: 01A146
  year: 2016
  ident: bib0051
  article-title: Spatial atomic layer deposition on flexible porous substrates: ZnO on anodic aluminum oxide films and Al
  publication-title: J. Vac. Sci. Technol. A Vac. Surf. Films
– volume: 234
  year: 2021
  ident: bib0011
  article-title: Density functional theory (DFT)-enhanced computational fluid dynamics modeling of substrate movement and chemical deposition process in spatial atomic layer deposition
  publication-title: Chem. Eng. Sci.
– volume: 35
  start-page: 12
  year: 2013
  end-page: 18
  ident: bib0045
  article-title: Convergence analysis and application of the slip boundary conditions
  publication-title: J. Natl. Univ. Def. Technol.
– volume: 13
  start-page: 845
  year: 2012
  end-page: 882
  ident: bib0041
  article-title: A review on slip models for gas microflows
  publication-title: Microfluid. Nanofluid.
– volume: 44
  start-page: 4333
  year: 2001
  end-page: 4343
  ident: bib0030
  article-title: Correlation between heat transfer and pressure drop in channels with periodically grooved parts
  publication-title: Int. J. Heat Mass Transf.
– volume: 5
  start-page: 484
  year: 2009
  end-page: 494
  ident: bib0006
  article-title: Oxide electronics by spatial atomic layer deposition
  publication-title: J. Disp. Technol.
– volume: 4
  start-page: 908
  year: 2019
  end-page: 925
  ident: bib0017
  article-title: Opportunities for atomic layer deposition in emerging energy technologies
  publication-title: ACS Energy Lett.
– volume: 134
  start-page: 1
  year: 2012
  end-page: 13
  ident: bib0040
  article-title: Gas microflows in the slip flow regime: a critical review on convective heat transfer
  publication-title: J. Heat Transf.
– volume: 110
  start-page: 111
  year: 2010
  end-page: 131
  ident: bib0001
  article-title: Atomic layer deposition: an overview
  publication-title: Chem. Rev.
– volume: 138
  start-page: 1
  year: 2016
  end-page: 9
  ident: bib0047
  article-title: Atomic layer deposition process modeling and experimental investigation for sustainable manufacturing of nano thin films
  publication-title: J. Manuf. Sci. Eng. Trans. ASME
– volume: 25
  start-page: 2385
  year: 2019
  end-page: 2397
  ident: bib0028
  article-title: Effect of wall roughness on performance of microchannel applied in microfluidic device
  publication-title: Microsyst. Technol.
– volume: 171
  start-page: 345
  year: 2011
  end-page: 349
  ident: bib0027
  article-title: An atomic layer deposition process for moving flexible substrates
  publication-title: Chem. Eng. J.
– volume: 437
  start-page: 29
  year: 2001
  end-page: 43
  ident: bib0046
  article-title: Mass flow and tangential momentum accomodation in silicon micromachined channels
  publication-title: J. Fluid Mech.
– volume: 32
  start-page: 2195
  year: 2020
  end-page: 2207
  ident: bib0004
  article-title: Inherently selective atomic layer deposition and applications
  publication-title: Chem. Mater.
– volume: 113
  start-page: 411
  year: 2017
  end-page: 422
  ident: bib0031
  article-title: The heat/mass transfer analogy for a backward facing step
  publication-title: Int. J. Heat Mass Transf.
– volume: 34
  start-page: 01A146
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0051
  article-title: Spatial atomic layer deposition on flexible porous substrates: ZnO on anodic aluminum oxide films and Al2O3 on Li ion battery electrodes
  publication-title: J. Vac. Sci. Technol. A Vac. Surf. Films
  doi: 10.1116/1.4937728
– volume: 234
  year: 2021
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0011
  article-title: Density functional theory (DFT)-enhanced computational fluid dynamics modeling of substrate movement and chemical deposition process in spatial atomic layer deposition
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2021.116447
– start-page: 33
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0050
– volume: 98
  start-page: 137
  year: 2020
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0029
  article-title: Effect of microgroove structures on the fluid dynamics and film conformality in spatial atomic layer deposition of Al2O3
  publication-title: ECS Trans.
  doi: 10.1149/09803.0137ecst
– volume: 123
  start-page: 27030
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0039
  article-title: Film conformality and extracted recombination probabilities of O atoms during plasma-assisted atomic layer deposition of SiO2, TiO2, Al2O3, and HfO2
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b08176
– volume: 403
  start-page: 1
  year: 2021
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0010
  article-title: Impact of precursor exposure in spatial atomic layer deposition on process efficiency and film properties
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126234
– volume: 31
  start-page: 01A108
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0052
  article-title: On the kinetics of spatial atomic layer deposition
  publication-title: J. Vac. Sci. Technol. A Vac. Surf. Films
  doi: 10.1116/1.4756692
– volume: 36
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0019
  article-title: Modeling and experimental demonstration of high-throughput flow-through spatial atomic layer deposition of Al2O3 coatings on textiles at atmospheric pressure
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/1.5022077
– volume: 33
  start-page: 01A132
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0022
  article-title: Spatial atomic layer deposition on flexible substrates using a modular rotating cylinder reactor
  publication-title: J. Vac. Sci. Technol. A Vac. Surf. Films
  doi: 10.1116/1.4902086
– volume: 30
  start-page: 01A142
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0015
  article-title: Low temperature and roll-to-roll spatial atomic layer deposition for flexible electronics
  publication-title: J. Vac. Sci. Technol. A Vac. Surf. Films
  doi: 10.1116/1.3667113
– volume: 9
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0020
  article-title: Deposition of ZnO based thin films by atmospheric pressure spatial atomic layer deposition for application in solar cells
  publication-title: J. Renew. Sustain. Energy
  doi: 10.1063/1.4979822
– volume: 96
  start-page: 189
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0009
  article-title: Effects of gap size, temperature and pumping pressure on the fluid dynamics and chemical kinetics of in-line spatial atomic layer deposition
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.01.034
– volume: 13
  start-page: 845
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0041
  article-title: A review on slip models for gas microflows
  publication-title: Microfluid. Nanofluid.
  doi: 10.1007/s10404-012-1012-9
– volume: 437
  start-page: 29
  year: 2001
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0046
  article-title: Mass flow and tangential momentum accomodation in silicon micromachined channels
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112001004128
– volume: 29
  start-page: 10007
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0021
  article-title: Chlorine doping of amorphous TiO2 for increased capacity and faster Li+-Ion storage
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b03478
– volume: 9
  start-page: 5
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0036
  article-title: Influence of the geometric parameters on the deposition mode in spatial atomic layer deposition: a novel approach to area-selective deposition
  publication-title: Coatings
  doi: 10.3390/coatings9010005
– volume: 30
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0014
  article-title: Status and prospects of Al2O3 -based surface passivation schemes for silicon solar cells
  publication-title: J. Vac. Sci. Technol. A Vac. Surf. Films
  doi: 10.1116/1.4728205
– volume: 110
  start-page: 111
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0001
  article-title: Atomic layer deposition: an overview
  publication-title: Chem. Rev.
  doi: 10.1021/cr900056b
– volume: 35
  start-page: 01B102
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0025
  article-title: Mechanistic modeling study of atomic layer deposition process optimization in a fluidized bed reactor
  publication-title: J. Vac. Sci. Technol. A Vac. Surf. Films
  doi: 10.1116/1.4964848
– volume: 20
  start-page: 465
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0002
  article-title: New development of atomic layer deposition: processes, methods and applications
  publication-title: Sci. Technol. Adv. Mater.
  doi: 10.1080/14686996.2019.1599694
– volume: 134
  start-page: 1
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0040
  article-title: Gas microflows in the slip flow regime: a critical review on convective heat transfer
  publication-title: J. Heat Transf.
  doi: 10.1115/1.4005063
– volume: 5
  start-page: 484
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0006
  article-title: Oxide electronics by spatial atomic layer deposition
  publication-title: J. Disp. Technol.
  doi: 10.1109/JDT.2009.2022770
– volume: 171
  start-page: 345
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0027
  article-title: An atomic layer deposition process for moving flexible substrates
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2011.03.097
– volume: 32
  start-page: 2195
  year: 2020
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0004
  article-title: Inherently selective atomic layer deposition and applications
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b04647
– volume: 217
  year: 2020
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0026
  article-title: Transient analysis and process optimization of the spatial atomic layer deposition using the dynamic mesh method
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2020.115513
– start-page: 4
  year: 2020
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0012
  article-title: Atomic layer deposition of functional layers in planar perovskite solar cells
  publication-title: Sol. RRL
– volume: 36
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0013
  article-title: Atmospheric spatial atomic layer deposition of ZnOS buffer layers for flexible Cu(In,Ga)Se2 solar cells
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/1.5040457
– volume: 6
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0033
  article-title: Conformality in atomic layer deposition: current status overview of analysis and modeling
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.5060967
– volume: 144
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0042
  article-title: Numerical study on the effectiveness of precursor isolation using N2 as gas barrier in spatial atomic layer deposition
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.118642
– volume: 35
  start-page: 12
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0045
  article-title: Convergence analysis and application of the slip boundary conditions
  publication-title: J. Natl. Univ. Def. Technol.
– volume: 107
  start-page: 870
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0023
  article-title: Influence of geometric parameters on flow and heat transfer performance of micro-channel heat sinks
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.07.039
– volume: 34
  start-page: 01A108
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0035
  article-title: Mechanistic modeling study on process optimization and precursor utilization with atmospheric spatial atomic layer deposition
  publication-title: J. Vac. Sci. Technol. A Vac. Surf. Films
  doi: 10.1116/1.4932564
– volume: 147
  start-page: 1
  year: 2020
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0044
  article-title: Active and passive micromixers: a comprehensive review
  publication-title: Chem. Eng. Process. Process Intensif.
  doi: 10.1016/j.cep.2019.107771
– start-page: 1
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0016
  article-title: Thin film encapsulation for the organic light-emitting diodes display via atomic layer deposition
  publication-title: J. Mater. Res.
– volume: 22
  start-page: 23107
  year: 2020
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0032
  article-title: Saturation profile based conformality analysis for atomic layer deposition : aluminum oxide in lateral high-aspect-ratio channels
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D0CP03358H
– start-page: 88
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0007
  article-title: Modular injector integrated linear apparatus with motion profile optimization for spatial atomic layer deposition
  publication-title: Rev. Sci. Instrum.
– volume: 113
  start-page: 411
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0031
  article-title: The heat/mass transfer analogy for a backward facing step
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.05.087
– volume: 2
  start-page: 1774
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0037
  article-title: Toward 3D thin-film batteries: optimal current-collector design and scalable fabrication of TiO2 thin-film electrodes
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b01905
– volume: 89
  start-page: 468
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0049
  article-title: Investigating atomic layer deposition characteristics in multi-outlet viscous flow reactors through reactor scale simulations
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2015.05.079
– volume: 12
  start-page: 96
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0005
  article-title: Speeding up the unique assets of atomic layer deposition
  publication-title: Mater. Today Chem.
  doi: 10.1016/j.mtchem.2018.11.013
– volume: 33
  start-page: 1
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0024
  article-title: The mechanistic effect over the substrate in a square type atomic layer deposition reactor
  publication-title: Int. J. Mod. Phys. B
– volume: 2
  year: 2020
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0003
  article-title: Atomic level deposition to extend Moore's law and beyond
  publication-title: Int. J. Extrem. Manuf.
  doi: 10.1088/2631-7990/ab83e0
– volume: 30
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0008
  article-title: Spatial atomic layer deposition: a route towards further industrialization of atomic layer deposition
  publication-title: J. Vac. Sci. Technol. A Vac. Surf. Films
  doi: 10.1116/1.3670745
– volume: 44
  start-page: 4333
  year: 2001
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0030
  article-title: Correlation between heat transfer and pressure drop in channels with periodically grooved parts
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(01)00070-9
– volume: 25
  start-page: 2385
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0028
  article-title: Effect of wall roughness on performance of microchannel applied in microfluidic device
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-018-4124-7
– volume: 35
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0034
  article-title: Effect of reactor pressure on the conformal coating inside porous substrates by atomic layer deposition
  publication-title: J. Vac. Sci. Technol. A Vac. Surf. Films
  doi: 10.1116/1.4973350
– volume: 37
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0038
  article-title: Sticking probabilities of H2O and Al(CH3)3 during atomic layer deposition of Al2O3 extracted from their impact on film conformality
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/1.5093620
– year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0048
  article-title: Improving atomic layer deposition process through reactor scale simulation
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2014.07.079
– volume: 153
  year: 2020
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0018
  article-title: Operating pressure influences over micro trenches in exposure time introduced atomic layer deposition
  publication-title: Int. J. Heat Mass Transf.
– volume: 4
  start-page: 908
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0017
  article-title: Opportunities for atomic layer deposition in emerging energy technologies
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b00249
– volume: 37
  start-page: 324
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0043
  article-title: Three-dimensional numerical simulation of the slip flow through triangular microchannels
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2009.09.006
– volume: 138
  start-page: 1
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2021.121854_bib0047
  article-title: Atomic layer deposition process modeling and experimental investigation for sustainable manufacturing of nano thin films
  publication-title: J. Manuf. Sci. Eng. Trans. ASME
  doi: 10.1115/1.4034475
SSID ssj0017046
Score 2.4701202
Snippet •The effect of microgroove structure on the fluid dynamics and film conformality in spatial atomic layer deposition is investigated.•Microgroove structure...
Spatial atomic layer deposition (ALD) is a promising high-throughput technique capable of producing ultrathin films on large substrates. Compared to flat...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 121854
SubjectTerms Atmospheric models
Atomic layer epitaxy
Boundary conditions
Carrier gases
Chemical reactions
Computational fluid dynamics
Dynamic mesh method
Film conformality
Film growth
Flow velocity
Fluid dynamics
Fluid flow
Gas flow
Mass transfer
Microgroove structures
Microstructure
Nonuniformity
Photovoltaic cells
Precursors
Purging
Reaction kinetics
Slip flow
Spatial ALD
Substrates
Thin films
Two dimensional models
Title Computational fluid dynamics modeling of spatial atomic layer deposition on microgroove substrates
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2021.121854
https://www.proquest.com/docview/2606931053
Volume 181
WOSCitedRecordID wos000706121000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKB4gXxFUMBvIDQkhVpjSp4_gJTVMnLlVBqJsqXizHTqBVl5SlrcY_4mdyfGvaARN9QIqiKG2s2OfL8Wf78zkIvRShgpE0EUHB8l7Q6woRiJjKIJY0jqnII2FUlWcDOhym4zH71Gr99HthVjNalunlJZv_V1PDPTC23jq7g7nXhcINuAajwxnMDud_MrzN0-Dn-IrZcqI6yuadd4lvnNC51mJqHSpgoXcmd2bih8kW7mVcehnhXMv1vgK5XuWdGlyMCWVbbxLa7RnFjTgU2smblYlzoOc6EwXw40YJPDAigi_Vsv62FK7zNCshZub2w7Lc_uN4IqqsaqQI1ld-rtyTbtYi6l5RgDTbac42vTP0mCx2MtfcOuSUsgBoCNv22N0Nn9v9Y09gJyWmh5Oprq-uqq_poX4fHVUjteGrt4NwDz_yk9PBgI_649Gr-fdA5yfT6_guWcsNtBfBECtqo72jd_3x-_WKFQ3tpjBfh9vodaMlvP4l_kaJrpADw3hG99BdN1TBRxZi91ErLx-gW0YyLOuHKNsCGjZAwx5o2AMNVwV2QMMWaNgADTdAw3BsAA03QHuETk_6o-O3gcvYEciYhouAMpWkvaKXFEATM2goRogiFIYIhAqp4iikTIRSp54vSCQIeApg-IQyJjKpUhU_Ru2yKvMnCGdEZQmJhaLgRNI8Y5prESWpSnqZkNk-euMbjUsXzl5nVZlxr1uc8t-bnetm57bZ9xFblzC3oV12ePbY24k7qmopKAf87VDKgTcxdx9ozaMkTDSASPz0-p-foTvNl3WA2ouLZf4c3ZSrxaS-eOHw-Qvk38vk
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+fluid+dynamics+modeling+of+spatial+atomic+layer+deposition+on+microgroove+substrates&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Li%2C+Zoushuang&rft.au=Cao%2C+Kun&rft.au=Li%2C+Xiaobo&rft.au=Chen%2C+Rong&rft.date=2021-12-01&rft.pub=Elsevier+BV&rft.issn=0017-9310&rft.eissn=1879-2189&rft.volume=181&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2021.121854&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon