Polynomial kernels for Proper Interval Completion and related problems
Given a graph G=(V,E) and a positive integer k, the Proper Interval Completion problem asks whether there exists a set F of at most k pairs of (V×V)∖E such that the graph H=(V,E∪F) is a proper interval graph. The Proper Interval Completion problem finds applications in molecular biology and genomic...
Uložené v:
| Vydané v: | Information and computation Ročník 231; s. 89 - 108 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Inc
01.10.2013
Elsevier |
| Predmet: | |
| ISSN: | 0890-5401, 1090-2651 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Given a graph G=(V,E) and a positive integer k, the Proper Interval Completion problem asks whether there exists a set F of at most k pairs of (V×V)∖E such that the graph H=(V,E∪F) is a proper interval graph. The Proper Interval Completion problem finds applications in molecular biology and genomic research. This problem is known to be FPT (Kaplan, Tarjan and Shamir, FOCSʼ94), but no polynomial kernel was known to exist. We settle this question by proving that Proper Interval Completion admits a kernel with O(k3) vertices. Moreover, we prove that a related problem, the so-called Bipartite Chain Deletion problem, admits a kernel with O(k2) vertices, completing a previous result of Guo (ISAACʼ07). |
|---|---|
| ISSN: | 0890-5401 1090-2651 |
| DOI: | 10.1016/j.ic.2013.08.006 |