Polynomial kernels for Proper Interval Completion and related problems

Given a graph G=(V,E) and a positive integer k, the Proper Interval Completion problem asks whether there exists a set F of at most k pairs of (V×V)∖E such that the graph H=(V,E∪F) is a proper interval graph. The Proper Interval Completion problem finds applications in molecular biology and genomic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information and computation Jg. 231; S. 89 - 108
Hauptverfasser: Bessy, Stéphane, Perez, Anthony
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.10.2013
Elsevier
Schlagworte:
ISSN:0890-5401, 1090-2651
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a graph G=(V,E) and a positive integer k, the Proper Interval Completion problem asks whether there exists a set F of at most k pairs of (V×V)∖E such that the graph H=(V,E∪F) is a proper interval graph. The Proper Interval Completion problem finds applications in molecular biology and genomic research. This problem is known to be FPT (Kaplan, Tarjan and Shamir, FOCSʼ94), but no polynomial kernel was known to exist. We settle this question by proving that Proper Interval Completion admits a kernel with O(k3) vertices. Moreover, we prove that a related problem, the so-called Bipartite Chain Deletion problem, admits a kernel with O(k2) vertices, completing a previous result of Guo (ISAACʼ07).
ISSN:0890-5401
1090-2651
DOI:10.1016/j.ic.2013.08.006