MetaSensing: Intelligent Metasurface Assisted RF 3D Sensing by Deep Reinforcement Learning

Using RF signals for wireless sensing has gained increasing attention. However, due to the unwanted multi-path fading in uncontrollable radio environments, the accuracy of RF sensing is limited. Instead of passively adapting to the environment, in this paper, we consider the scenario where an intell...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal on selected areas in communications Vol. 39; no. 7; pp. 2182 - 2197
Main Authors: Hu, Jingzhi, Zhang, Hongliang, Bian, Kaigui, Renzo, Marco Di, Han, Zhu, Song, Lingyang
Format: Journal Article
Language:English
Published: New York IEEE 01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Subjects:
ISSN:0733-8716, 1558-0008
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Using RF signals for wireless sensing has gained increasing attention. However, due to the unwanted multi-path fading in uncontrollable radio environments, the accuracy of RF sensing is limited. Instead of passively adapting to the environment, in this paper, we consider the scenario where an intelligent metasurface is deployed for sensing the existence and locations of 3D objects. By programming its beamformer patterns, the metasurface can provide desirable propagation properties. However, achieving a high sensing accuracy is challenging, since it requires the joint optimization of the beamformer patterns and mapping of the received signals to the sensed outcome. To tackle this challenge, we formulate an optimization problem for minimizing the cross-entropy loss of the sensing outcome, and propose a deep reinforcement learning algorithm to jointly compute the optimal beamformer patterns and the mapping of the received signals. Simulation results verify the effectiveness of the proposed algorithm and show how the size of the metasurface and the target space influence the sensing accuracy.
AbstractList Using RF signals for wireless sensing has gained increasing attention. However, due to the unwanted multi-path fading in uncontrollable radio environments, the accuracy of RF sensing is limited. Instead of passively adapting to the environment, in this paper, we consider the scenario where an intelligent metasurface is deployed for sensing the existence and locations of 3D objects. By programming its beamformer patterns, the metasurface can provide desirable propagation properties. However, achieving a high sensing accuracy is challenging, since it requires the joint optimization of the beamformer patterns and mapping of the received signals to the sensed outcome. To tackle this challenge, we formulate an optimization problem for minimizing the cross-entropy loss of the sensing outcome, and propose a deep reinforcement learning algorithm to jointly compute the optimal beamformer patterns and the mapping of the received signals. Simulation results verify the effectiveness of the proposed algorithm and show how the size of the metasurface and the target space influence the sensing accuracy.
Using RF signals for wireless sensing has gained increasing attention. However, due to the unwanted multi-path fading in uncontrollable radio environments, the accuracy of RF sensing is limited. Instead of passively adapting to the environment, in this paper, we consider the scenario where an intelligent metasurface is deployed for sensing the existence and locations of 3D objects. By programming its beamformer patterns, the metasurface can provide desirable propagation properties. However, achieving a high sensing accuracy is challenging, since it requires the joint optimization of the beamformer patterns and mapping of the received signals to the sensed outcome. To tackle this challenge, we formulate an optimization problem for minimizing the cross-entropy loss of the sensing outcome, and propose a deep reinforcement learning algorithm to jointly compute the optimal beamformer patterns and the mapping of the received signals. Simulation results verify the effectiveness of the proposed algorithm and show how the sizes of the metasurface and the target space influence the sensing accuracy
Author Zhang, Hongliang
Bian, Kaigui
Han, Zhu
Renzo, Marco Di
Hu, Jingzhi
Song, Lingyang
Author_xml – sequence: 1
  givenname: Jingzhi
  orcidid: 0000-0002-1965-3576
  surname: Hu
  fullname: Hu, Jingzhi
  email: jingzhi.hu@pku.edu.cn
  organization: Department of Electronics, Peking University, Beijing, China
– sequence: 2
  givenname: Hongliang
  orcidid: 0000-0003-3393-8612
  surname: Zhang
  fullname: Zhang, Hongliang
  email: hongliang.zhang92@gmail.com
  organization: Department of Electrical Engineering, Princeton University, Princeton, NJ, USA
– sequence: 3
  givenname: Kaigui
  orcidid: 0000-0003-0136-6082
  surname: Bian
  fullname: Bian, Kaigui
  email: bkg@pku.edu.cn
  organization: Department of Computer Science, Peking University, Beijing, China
– sequence: 4
  givenname: Marco Di
  surname: Renzo
  fullname: Renzo, Marco Di
  email: marco.di-renzo@universite-paris-saclay.fr
  organization: Université Paris-Saclay, CNRS, Centrale-Supélec, Laboratoire des Signaux et Systèmes, Gif-sur-Yvette, France
– sequence: 5
  givenname: Zhu
  orcidid: 0000-0002-6606-5822
  surname: Han
  fullname: Han, Zhu
  email: hanzhu22@gmail.com
  organization: Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA
– sequence: 6
  givenname: Lingyang
  orcidid: 0000-0001-8644-8241
  surname: Song
  fullname: Song, Lingyang
  email: lingyang.song@pku.edu.cn
  organization: Department of Electronics, Peking University, Beijing, China
BackLink https://hal.science/hal-03357994$$DView record in HAL
BookMark eNp9kE1PGzEQhq2KSg3QH1D1YokThw1je_3FLQrlS6kqAadeLO9mlhot3mA7SPz77ioRBw6cRpp5npnRe0gO4hCRkB8M5oyBPbu9XyznHDibC9CmtvwLmTEpTQUA5oDMQAtRGc3UN3KY8xMAq2vDZ-Tvbyz-HmMO8fGc3sSCfR8eMRY6DfI2db5Fusg55IJrendJxQXd87R5oxeIG3qHIXZDavF5ElfoUxzHx-Rr5_uM3_f1iDxc_npYXlerP1c3y8WqaoWGUmluNWtQSqaUsQCiBgVSaa-aVnnpjUWGYq1F1-i1WCsrDCpuQSvddLUUR-R0t_af790mhWef3tzgg7terNzUAyGktrZ-ZSN7smM3aXjZYi7uadimOH7nuKy5BGYZHym2o9o05Jywe1_LwE1puyltN6Xt9mmPjv7gtKH4EoZYkg_9p-bPnRkQ8f2SrbkGa8R_uf2L2A
CODEN ISACEM
CitedBy_id crossref_primary_10_1109_TAP_2022_3221613
crossref_primary_10_1109_TWC_2022_3145842
crossref_primary_10_1109_JSEN_2023_3332862
crossref_primary_10_3390_s23208561
crossref_primary_10_3390_s24061870
crossref_primary_10_1109_JPROC_2022_3174030
crossref_primary_10_1007_s44291_025_00084_9
crossref_primary_10_1007_s11390_025_5484_y
crossref_primary_10_1109_JIOT_2024_3400960
crossref_primary_10_1109_JPROC_2022_3169771
crossref_primary_10_1109_JSAC_2023_3322788
crossref_primary_10_1109_TAP_2023_3298134
crossref_primary_10_1109_LPT_2024_3427138
crossref_primary_10_1109_TWC_2024_3365215
crossref_primary_10_1109_TIM_2024_3472800
crossref_primary_10_1109_COMST_2022_3202813
crossref_primary_10_1109_TVT_2024_3426042
crossref_primary_10_1109_MNET_128_2200446
crossref_primary_10_1109_TVT_2024_3442574
crossref_primary_10_1109_TWC_2023_3244369
crossref_primary_10_1109_TWC_2024_3433011
crossref_primary_10_1109_JPROC_2024_3397910
crossref_primary_10_1016_j_optlastec_2025_113828
crossref_primary_10_1109_TSP_2025_3586551
crossref_primary_10_3390_a18040235
crossref_primary_10_1093_nsr_nwad150
crossref_primary_10_1109_TVT_2022_3225218
crossref_primary_10_1109_TWC_2022_3178445
crossref_primary_10_1364_PRJ_538732
crossref_primary_10_1051_e3sconf_202451203003
crossref_primary_10_1109_MCOM_001_2300710
crossref_primary_10_1109_TCOMM_2023_3344143
crossref_primary_10_1038_s41598_021_99722_x
crossref_primary_10_1109_TWC_2022_3144340
crossref_primary_10_1016_j_iot_2025_101658
crossref_primary_10_1109_TAP_2022_3150762
Cites_doi 10.3414/ME0592
10.1145/3241539.3241548
10.1109/JSAC.2020.3000813
10.1017/CBO9780511841224
10.1109/MVT.2019.2921627
10.1145/3290605.3300778
10.1109/ACCESS.2020.2977772
10.1109/TWC.2020.3024887
10.1109/MVT.2020.3017927
10.1145/3300061.3345442
10.1186/s13638-019-1438-9
10.1109/LCOMM.2020.3023130
10.1145/2816795.2818072
10.1103/PhysRevLett.59.2229
10.1023/B:NALA.0000005556.40898.a5
10.1016/j.cam.2008.11.012
10.1109/TCCN.2020.2992604
10.1109/PIMRC.2009.5449841
10.1109/TCI.2018.2808762
10.1109/TCOMM.2019.2924010
10.1017/CBO9780511804441
10.1109/JSAC.2020.3007041
10.1109/MSP.2015.2502784
10.1137/140983938
10.1038/nature14236
10.1109/INICA.2007.4353972
10.1109/MNET.2017.1500151
10.1145/3230543.3230579
10.1145/3234463
10.1109/TVT.2020.3024756
10.1109/MWC.001.2000142
10.1109/ACCESS.2019.2935192
10.1007/978-1-84800-070-4_4
10.1109/TVT.2020.2973073
10.1145/1138127.1138128
10.1038/s41467-019-09103-2
10.1109/iWEM.2018.8536630
10.1109/ICNN.1993.298687
10.1145/3379092.3379102
10.1109/JIOT.2016.2624800
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
1XC
VOOES
DOI 10.1109/JSAC.2021.3078492
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database


Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0008
EndPage 2197
ExternalDocumentID oai:HAL:hal-03357994v1
10_1109_JSAC_2021_3078492
9427098
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61931019; 61829101; 61625101; 61941101
  funderid: 10.13039/501100001809
– fundername: European Commission through the H2020 ARIADNE
  grantid: 871464
  funderid: 10.13039/501100000780
– fundername: NSF
  grantid: EARS-1839818; CNS-1717454; CNS-1731424; CNS-1702850
  funderid: 10.13039/100000001
– fundername: H2020 RISE-6G
  grantid: 101017011
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
41~
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
7SP
8FD
L7M
1XC
VOOES
ID FETCH-LOGICAL-c370t-72971be55166890034060567a6bc6a5a89e1e3d73fb7d3d6938e6290767bf453
IEDL.DBID RIE
ISICitedReferencesCount 50
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000663506900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0733-8716
IngestDate Tue Oct 14 20:44:06 EDT 2025
Mon Jun 30 10:10:02 EDT 2025
Tue Nov 18 22:12:13 EST 2025
Sat Nov 29 03:23:03 EST 2025
Wed Aug 27 02:50:51 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-72971be55166890034060567a6bc6a5a89e1e3d73fb7d3d6938e6290767bf453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6606-5822
0000-0002-1965-3576
0000-0001-8644-8241
0000-0003-3393-8612
0000-0003-0136-6082
0000-0003-0772-8793
0000-0002-8602-864X
0000-0002-1797-2311
OpenAccessLink https://hal.science/hal-03357994
PQID 2542501912
PQPubID 85481
PageCount 16
ParticipantIDs hal_primary_oai_HAL_hal_03357994v1
proquest_journals_2542501912
ieee_primary_9427098
crossref_primary_10_1109_JSAC_2021_3078492
crossref_citationtrail_10_1109_JSAC_2021_3078492
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE journal on selected areas in communications
PublicationTitleAbbrev J-SAC
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers
References ref35
ref13
ref12
ref37
ref15
ref36
ref14
mcdonough (ref33) 2004
ref30
ref11
ref32
ref10
ref2
ref1
ref17
ref38
ref16
ref19
ref18
rubinstein (ref39) 2008
bezdek (ref34) 2003; 11
ref46
ref45
ref26
ref25
ref20
ref42
liu (ref24) 2020
ref41
ref22
ref44
ref21
ref43
ref28
ref27
goodfellow (ref31) 2016
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
sutton (ref23) 2018
References_xml – ident: ref5
  doi: 10.3414/ME0592
– ident: ref8
  doi: 10.1145/3241539.3241548
– ident: ref26
  doi: 10.1109/JSAC.2020.3000813
– ident: ref28
  doi: 10.1017/CBO9780511841224
– year: 2018
  ident: ref23
  publication-title: Reinforcement Learning An Introduction
– ident: ref37
  doi: 10.1109/MVT.2019.2921627
– ident: ref9
  doi: 10.1145/3290605.3300778
– ident: ref25
  doi: 10.1109/ACCESS.2020.2977772
– ident: ref29
  doi: 10.1109/TWC.2020.3024887
– ident: ref16
  doi: 10.1109/MVT.2020.3017927
– ident: ref7
  doi: 10.1145/3300061.3345442
– ident: ref15
  doi: 10.1186/s13638-019-1438-9
– year: 2008
  ident: ref39
  publication-title: Simulation and the Monte Carlo Method
– ident: ref22
  doi: 10.1109/LCOMM.2020.3023130
– ident: ref10
  doi: 10.1145/2816795.2818072
– ident: ref41
  doi: 10.1103/PhysRevLett.59.2229
– ident: ref40
  doi: 10.1023/B:NALA.0000005556.40898.a5
– ident: ref46
  doi: 10.1016/j.cam.2008.11.012
– ident: ref19
  doi: 10.1109/TCCN.2020.2992604
– ident: ref2
  doi: 10.1109/PIMRC.2009.5449841
– year: 2016
  ident: ref31
  publication-title: Deep Learning
– ident: ref12
  doi: 10.1109/TCI.2018.2808762
– ident: ref38
  doi: 10.1109/TCOMM.2019.2924010
– ident: ref32
  doi: 10.1017/CBO9780511804441
– ident: ref27
  doi: 10.1109/JSAC.2020.3007041
– ident: ref6
  doi: 10.1109/MSP.2015.2502784
– ident: ref42
  doi: 10.1137/140983938
– ident: ref35
  doi: 10.1038/nature14236
– ident: ref43
  doi: 10.1109/INICA.2007.4353972
– ident: ref4
  doi: 10.1109/MNET.2017.1500151
– year: 2020
  ident: ref24
  article-title: Reconfigurable intelligent surfaces: Principles and opportunities
  publication-title: arXiv 2007 03435
– ident: ref11
  doi: 10.1145/3230543.3230579
– ident: ref36
  doi: 10.1145/3234463
– ident: ref18
  doi: 10.1109/TVT.2020.3024756
– ident: ref20
  doi: 10.1109/MWC.001.2000142
– volume: 11
  start-page: 351
  year: 2003
  ident: ref34
  article-title: Convergence of alternating optimization
  publication-title: Neural Parallel Sci Comput
– ident: ref17
  doi: 10.1109/ACCESS.2019.2935192
– ident: ref44
  doi: 10.1007/978-1-84800-070-4_4
– ident: ref30
  doi: 10.1109/TVT.2020.2973073
– ident: ref3
  doi: 10.1145/1138127.1138128
– ident: ref21
  doi: 10.1038/s41467-019-09103-2
– ident: ref13
  doi: 10.1109/iWEM.2018.8536630
– ident: ref45
  doi: 10.1109/ICNN.1993.298687
– year: 2004
  ident: ref33
  publication-title: Detection of Signals in Noise
– ident: ref14
  doi: 10.1145/3379092.3379102
– ident: ref1
  doi: 10.1109/JIOT.2016.2624800
SSID ssj0014482
Score 2.6039307
Snippet Using RF signals for wireless sensing has gained increasing attention. However, due to the unwanted multi-path fading in uncontrollable radio environments, the...
SourceID hal
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2182
SubjectTerms Accuracy
Algorithms
Antennas
beamformer pattern design
Deep learning
deep reinforcement learning
Electronics
Engineering Sciences
Entropy (Information theory)
Machine learning
Mapping
metasurface
Metasurfaces
Object recognition
Optimization
policy gradient algorithm
Radio frequency
RF 3D sensing
RF signals
Sensors
Three-dimensional displays
Title MetaSensing: Intelligent Metasurface Assisted RF 3D Sensing by Deep Reinforcement Learning
URI https://ieeexplore.ieee.org/document/9427098
https://www.proquest.com/docview/2542501912
https://hal.science/hal-03357994
Volume 39
WOSCitedRecordID wos000663506900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0008
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014482
  issn: 0733-8716
  databaseCode: RIE
  dateStart: 19830101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fSxwxEB488aF9sFpbetZKKH0qXd1NdvOjb4d6qFgRlSJ9WbLJrC2UU-72hP73zeTiorQIvi27kyXkm93ky0y-AfhUBa-ovBeZt63NStnYTLeGlBFL2eYtKhtT_r-fqNNTfXVlzpbgS38WBhFj8hnu0GWM5fsbN6etsl1TcpUbPYCBUnJxVquPGASaESMGSoiMSECKYBa52T2-GO0FJsiLneDQujT80Rw0-EkZkLG0yj__4zjJjF89r3trsJoWk2y0QH8dlnDyGl4-kBjcgB_fsLMXlKU-uf7KjnoBzo7Rg9l82lqHLIBEcHt2PmZinyV71vxh-4i37ByjvqqLW4ksSbJev4HL8cHl3mGW6ilkTqi8o6q1qmiQQmNS0w5mmMzD-kdZ2ThpK6sNFii8Em2jvPDSCI2SB_YsVdOWlXgLy5ObCb4DFgw1HbVyLbdlFZzAS95wbXnleHidGkJ-P8C1S1rjVPLidx05R25qwqQmTOqEyRA-901uF0IbTxl_DKj1diSRfTg6qeleLkSljCnviiFsEEa9VYJnCFv3INfpe53VgSaHtWDgrnzz_63ewwvqwCJRdwuWu-kcP8CKu-t-zabb0RX_AtCo2IA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3faxQxEB7aKqgP_qriadUgPonb7ibZ_PDtaD2uej2kPaT4ErJJthbKtdztFfzvzeTSRVEE35bdyRLyzW7yZSbfALyto1fU3rPC29YWXDS2UK1GZUQu2rIN0qaU_68TOZ2q01P9ZQPe92dhQggp-Szs4mWK5ftLt8Ktsj3NqSy12oRbNee0XJ_W6mMGkWikmIFkrEAakGOYVan3Pp0M9yMXpNVudGnFNf1tFtr8jjmQqbjKH3_kNM2MHvxfBx_C_bycJMM1_o9gI8wfw71fRAa34dtR6OwJ5qnPzz6Qw16CsyP4YLlatNYFEmFCwD05HhF2QLI9aX6QgxCuyHFICqsubSaSLMp69gRmo4-z_XGRKyoUjsmyw7q1smoCBseEwj3MOJ3HFZC0onHC1lbpUAXmJWsb6ZkXmqkgaOTPQjYtr9lT2JpfzsMzINFQ4WEr11LL6-gGXtCGKktrR-Pr5ADKmwE2LquNY9GLC5NYR6kNYmIQE5MxGcC7vsnVWmrjX8ZvImq9HYpkj4cTg_dKxmqpNb-uBrCNGPVWGZ4B7NyAbPIXuzSRKMfVYGSv9PnfW72GO-PZ0cRMDqefX8Bd7Mw6bXcHtrrFKryE2-66O18uXiW3_Ak-tdvH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MetaSensing%3A+Intelligent+Metasurface+Assisted+RF+3D+Sensing+by+Deep+Reinforcement+Learning&rft.jtitle=IEEE+journal+on+selected+areas+in+communications&rft.au=Hu%2C+Jingzhi&rft.au=Zhang%2C+Hongliang&rft.au=Bian%2C+Kaigui&rft.au=Renzo%2C+Marco+Di&rft.date=2021-07-01&rft.issn=0733-8716&rft.eissn=1558-0008&rft.volume=39&rft.issue=7&rft.spage=2182&rft.epage=2197&rft_id=info:doi/10.1109%2FJSAC.2021.3078492&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSAC_2021_3078492
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8716&client=summon