An inverse method for real-time estimation of aerothermal heating for thermal protection systems of space vehicles
•Measuring surface heat flux of ITPS in space vehicles is challenging.•A novel near real-time approach for solving IHCP associated with ITPS is developed.•The approach developed uses temperature data from internal layers.•The impact of sensor location on the solution is investigated.•The effect of t...
Saved in:
| Published in: | International journal of heat and mass transfer Vol. 177; p. 121482 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Oxford
Elsevier Ltd
01.10.2021
Elsevier BV |
| Subjects: | |
| ISSN: | 0017-9310, 1879-2189 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •Measuring surface heat flux of ITPS in space vehicles is challenging.•A novel near real-time approach for solving IHCP associated with ITPS is developed.•The approach developed uses temperature data from internal layers.•The impact of sensor location on the solution is investigated.•The effect of temperature dependent material properties on the solution is explored.
Space vehicles experience extremely high aerothermal heating during atmospheric entry which necessitates the use of appropriate thermal protection system (TPS). Effective design of TPS and the health monitoring systems (HMS) for space vehicles requires accurate flight data during atmospheric entry process. While direct measurement of the surface heat flux is a very challenging task, an alternative approach is to use the measured temperature values from the inner layers and solve the associated inverse heat conduction problem (IHCP) in order to estimate the surface heat flux. In the present paper, a solution approach is developed based on filter form of Tikhonov regularization method for near real-time calculation of surface heat flux in a one-dimensional medium consists of three layers that represents an integrated thermal protection system (ITPS). The solution is evaluated through numerical test cases developed in ANSYS and using experimental data from the literature. A parametric study is also conducted in order to understand the effect of sensor location (two layers and three layers models) as well as the effect of temperature dependent material properties on the performance of the solution. It is found that the developed solution estimates the surface heat flux with an average RMS error of about 1.96 and 3.44% for the two layer models with constant and temperature dependent material properties respectively. For the three layer model, the average RMS values are found for the constant and temperature dependent material properties as 2% and 4.44% respectively. It is also shown that the developed solution can evaluate the surface heat flux with 17 and 80 s delay for the two and three layers domain respectively, facilitating a near-real time operation for the inverse solution algorithm that can support the development of HMS for space vehicles or other industrial applications with the need for heat flux monitoring. The proposed solution technique is fast, accurate and very convenient to implement even for complex problems involving large temperature variations and temperature dependent material properties. |
|---|---|
| AbstractList | •Measuring surface heat flux of ITPS in space vehicles is challenging.•A novel near real-time approach for solving IHCP associated with ITPS is developed.•The approach developed uses temperature data from internal layers.•The impact of sensor location on the solution is investigated.•The effect of temperature dependent material properties on the solution is explored.
Space vehicles experience extremely high aerothermal heating during atmospheric entry which necessitates the use of appropriate thermal protection system (TPS). Effective design of TPS and the health monitoring systems (HMS) for space vehicles requires accurate flight data during atmospheric entry process. While direct measurement of the surface heat flux is a very challenging task, an alternative approach is to use the measured temperature values from the inner layers and solve the associated inverse heat conduction problem (IHCP) in order to estimate the surface heat flux. In the present paper, a solution approach is developed based on filter form of Tikhonov regularization method for near real-time calculation of surface heat flux in a one-dimensional medium consists of three layers that represents an integrated thermal protection system (ITPS). The solution is evaluated through numerical test cases developed in ANSYS and using experimental data from the literature. A parametric study is also conducted in order to understand the effect of sensor location (two layers and three layers models) as well as the effect of temperature dependent material properties on the performance of the solution. It is found that the developed solution estimates the surface heat flux with an average RMS error of about 1.96 and 3.44% for the two layer models with constant and temperature dependent material properties respectively. For the three layer model, the average RMS values are found for the constant and temperature dependent material properties as 2% and 4.44% respectively. It is also shown that the developed solution can evaluate the surface heat flux with 17 and 80 s delay for the two and three layers domain respectively, facilitating a near-real time operation for the inverse solution algorithm that can support the development of HMS for space vehicles or other industrial applications with the need for heat flux monitoring. The proposed solution technique is fast, accurate and very convenient to implement even for complex problems involving large temperature variations and temperature dependent material properties. Space vehicles experience extremely high aerothermal heating during atmospheric entry which necessitates the use of appropriate thermal protection system (TPS). Effective design of TPS and the health monitoring systems (HMS) for space vehicles requires accurate flight data during atmospheric entry process. While direct measurement of the surface heat flux is a very challenging task, an alternative approach is to use the measured temperature values from the inner layers and solve the associated inverse heat conduction problem (IHCP) in order to estimate the surface heat flux. In the present paper, a solution approach is developed based on filter form of Tikhonov regularization method for near real-time calculation of surface heat flux in a one-dimensional medium consists of three layers that represents an integrated thermal protection system (ITPS). The solution is evaluated through numerical test cases developed in ANSYS and using experimental data from the literature. A parametric study is also conducted in order to understand the effect of sensor location (two layers and three layers models) as well as the effect of temperature dependent material properties on the performance of the solution. It is found that the developed solution estimates the surface heat flux with an average RMS error of about 1.96 and 3.44% for the two layer models with constant and temperature dependent material properties respectively. For the three layer model, the average RMS values are found for the constant and temperature dependent material properties as 2% and 4.44% respectively. It is also shown that the developed solution can evaluate the surface heat flux with 17 and 80 s delay for the two and three layers domain respectively, facilitating a near-real time operation for the inverse solution algorithm that can support the development of HMS for space vehicles or other industrial applications with the need for heat flux monitoring. The proposed solution technique is fast, accurate and very convenient to implement even for complex problems involving large temperature variations and temperature dependent material properties. |
| ArticleNumber | 121482 |
| Author | Uyanna, Obinna Najafi, Hamidreza Rajendra, Bhuvaneswari |
| Author_xml | – sequence: 1 givenname: Obinna orcidid: 0000-0003-1265-6843 surname: Uyanna fullname: Uyanna, Obinna – sequence: 2 givenname: Hamidreza surname: Najafi fullname: Najafi, Hamidreza email: hnajafi@fit.edu – sequence: 3 givenname: Bhuvaneswari orcidid: 0000-0003-2485-4417 surname: Rajendra fullname: Rajendra, Bhuvaneswari |
| BookMark | eNqVkEtLAzEUhYNUsFb_Q8CNm6l5TCczO0uxPii40XVIZ25shpmkJmnBf2-m1Y1uFAKX3Htybs53jkbWWUDompIpJbS4aaem3YCKvQohemWDBj9lhNEpZTQv2Qka01JUGaNlNUJjQqjIKk7JGToPoR2uJC_GyM8tNnYPPgDuIW5cg7Xz2IPqsmh6wBBSUdE4i53GCryLG_C96vCw3di3g_67t01jqA_q8BEi9GF4FbaqBryHjak7CBfoVKsuwOVXnaDX5d3L4iFbPd8_LuarrOaCxEwwIdZcKcU0zzVdc80hBdNVOoQUJREzTrhiomJqVlZNo4uioRXPC7IuFBF8gq6OvulT77uUQ7Zu521aKdlsVuUiF6JIqtujqvYuBA9abn0K7D8kJXIgLVv5m7QcSMsj6WSx_GFRm3hAluSm-4_R09EIEpa9SdNQG7A1NMYnqrJx5u9mn7OTr3c |
| CitedBy_id | crossref_primary_10_1007_s10973_023_12182_5 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124772 crossref_primary_10_1038_s41598_025_10302_9 crossref_primary_10_1016_j_cnsns_2025_109040 crossref_primary_10_2514_1_T7006 crossref_primary_10_1016_j_applthermaleng_2022_119405 crossref_primary_10_1016_j_icheatmasstransfer_2023_106955 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122023 crossref_primary_10_3390_en16237819 crossref_primary_10_1016_j_icheatmasstransfer_2023_106618 crossref_primary_10_1016_j_chphma_2025_08_001 crossref_primary_10_1016_j_ijheatmasstransfer_2023_125161 crossref_primary_10_3390_en16196981 crossref_primary_10_1016_j_ijthermalsci_2023_108229 crossref_primary_10_3390_s25072227 crossref_primary_10_1016_j_icheatmasstransfer_2023_107055 crossref_primary_10_1016_j_ijthermalsci_2025_110148 crossref_primary_10_1016_j_icheatmasstransfer_2025_109445 crossref_primary_10_1080_10407790_2023_2217340 crossref_primary_10_1016_j_icheatmasstransfer_2024_107494 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125409 crossref_primary_10_1016_j_ijthermalsci_2024_109551 crossref_primary_10_2514_1_T7141 crossref_primary_10_1016_j_icheatmasstransfer_2025_109310 |
| Cites_doi | 10.1016/j.ast.2016.01.015 10.1115/1.4031737 10.1016/j.applthermaleng.2015.04.053 10.1016/j.applthermaleng.2016.04.100 10.1016/j.ast.2014.07.015 10.1016/j.ijheatmasstransfer.2016.01.036 10.1016/j.ijthermalsci.2016.10.014 10.1016/j.scient.2011.07.007 10.1016/j.enconman.2007.06.010 10.1016/j.ijheatmasstransfer.2016.02.045 10.1080/17415970701198332 10.1080/00986449908912154 10.1016/j.ijheatmasstransfer.2015.08.020 10.1016/j.ijheatmasstransfer.2014.12.055 10.1016/j.ijheatmasstransfer.2013.02.052 10.1007/BF01937276 10.2514/1.35669 10.1007/BF03256567 10.1016/j.applthermaleng.2015.05.008 10.1016/j.actaastro.2020.06.047 |
| ContentType | Journal Article |
| Copyright | 2021 Copyright Elsevier BV Oct 2021 |
| Copyright_xml | – notice: 2021 – notice: Copyright Elsevier BV Oct 2021 |
| DBID | AAYXX CITATION 7TB 8FD FR3 H8D KR7 L7M |
| DOI | 10.1016/j.ijheatmasstransfer.2021.121482 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1879-2189 |
| ExternalDocumentID | 10_1016_j_ijheatmasstransfer_2021_121482 S0017931021005858 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABDMP ABFNM ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACKIV ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SSG SSR SST SSZ T5K T9H TN5 VOH WUQ XPP ZMT ZY4 ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7TB 8FD AFXIZ AGCQF AGRNS BNPGV FR3 H8D KR7 L7M SSH |
| ID | FETCH-LOGICAL-c370t-7277b3aaa2f34f1b3f3e148f98f90068075303a2792a589ddf66d193460b6a073 |
| ISICitedReferencesCount | 29 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000674485800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0017-9310 |
| IngestDate | Fri Jul 25 08:19:03 EDT 2025 Sat Nov 29 07:33:38 EST 2025 Tue Nov 18 22:18:37 EST 2025 Fri Feb 23 02:44:01 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Digital filter Inverse heat conduction problem (IHCP) Heat flux estimation Reusable launch vehicles Thermal protection systems (TPS) |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c370t-7277b3aaa2f34f1b3f3e148f98f90068075303a2792a589ddf66d193460b6a073 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1265-6843 0000-0003-2485-4417 |
| PQID | 2559474776 |
| PQPubID | 2045464 |
| ParticipantIDs | proquest_journals_2559474776 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121482 crossref_citationtrail_10_1016_j_ijheatmasstransfer_2021_121482 elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2021_121482 |
| PublicationCentury | 2000 |
| PublicationDate | October 2021 2021-10-00 20211001 |
| PublicationDateYYYYMMDD | 2021-10-01 |
| PublicationDate_xml | – month: 10 year: 2021 text: October 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | International journal of heat and mass transfer |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | (bib0007) 2015 Najafi, Woodbury, Beck (bib0031) 2015; 91 Bapanapalli (bib0001) 2007 A.N. Tikhonov, V.I.A.K Arsenin, Solutions of Ill-Posed problems, 1977. Mahulikar, Khurana, Dungarwal, Shevakari, Subramanian, Gujarathi (bib0003) 2008; 56 Najafi, Woodbury, Beck, Keltner (bib0028) 2015; 86 Mahrazi, Braun, White (bib0018) 2013; 50 Cole, Beck, Haji-Sheikh, Litkouhi (bib0034) 2010 Woodbury, Beck (bib0025) 2013; 62 J.V. Beck, B. Blackwell, C.R.S. Clair, Inverse Heat Conduction: Ill-Posed Problems, 1985. Woodbury, Najafi, Beck (bib0030) 2017; 112 Alifanov (bib0013) 1994 Kumar, Mahulikar (bib0002) 2016; 8 Gogu, Bapanapalli, Haftka, Sankar (bib0005) 2009; 46 Duda (bib0016) 2016; 51 Christian, Verges, Braun (bib0019) 2007 Nenarokomov, Alifanov, Budnik, Netelev (bib0021) 2016; 97 Desideri, Peigin, Timchenko (bib0020) 1999 Holman (bib0033) 1986 Uyanna, Najafi (bib0032) 2019 Najafi, Woodbury, Beck (bib0027) 2015; 83 Mohammadiun, Rahimi (bib0023) 2011; 18 Xie, He, Tong, Yan, Xie (bib0017) 2015 Blosser (bib0006) 2000 Kumar, Mahulikar (bib0008) 2016; 103 Chen, Su (bib0024) 2008; 49 Cheng, Zhong, Gu, Zhang (bib0022) 2016; 96 Najafi, Woodbury (bib0029) 2014 Uyanna, Najafi (bib0004) 2020; 176 Myers, Martin, Blosser (bib0035) 1999 Nakamura, Kamimura, Igawa, Morino (bib0015) 2014; 38 Beck (bib0026) 2008; 16 Tikhonov (bib0012) 1963; 153 Hansen (bib0010) 1987; 27 Park, Chung (bib0014) 2007; 176 (10.1016/j.ijheatmasstransfer.2021.121482_bib0007) 2015 Cole (10.1016/j.ijheatmasstransfer.2021.121482_bib0034) 2010 10.1016/j.ijheatmasstransfer.2021.121482_bib0009 Uyanna (10.1016/j.ijheatmasstransfer.2021.121482_bib0004) 2020; 176 Desideri (10.1016/j.ijheatmasstransfer.2021.121482_bib0020) 1999 Nenarokomov (10.1016/j.ijheatmasstransfer.2021.121482_bib0021) 2016; 97 Mahrazi (10.1016/j.ijheatmasstransfer.2021.121482_bib0018) 2013; 50 Blosser (10.1016/j.ijheatmasstransfer.2021.121482_bib0006) 2000 Duda (10.1016/j.ijheatmasstransfer.2021.121482_bib0016) 2016; 51 Alifanov (10.1016/j.ijheatmasstransfer.2021.121482_bib0013) 1994 Bapanapalli (10.1016/j.ijheatmasstransfer.2021.121482_bib0001) 2007 Holman (10.1016/j.ijheatmasstransfer.2021.121482_bib0033) 1986 Chen (10.1016/j.ijheatmasstransfer.2021.121482_bib0024) 2008; 49 Woodbury (10.1016/j.ijheatmasstransfer.2021.121482_bib0030) 2017; 112 Najafi (10.1016/j.ijheatmasstransfer.2021.121482_bib0027) 2015; 83 Hansen (10.1016/j.ijheatmasstransfer.2021.121482_bib0010) 1987; 27 Park (10.1016/j.ijheatmasstransfer.2021.121482_bib0014) 2007; 176 Mohammadiun (10.1016/j.ijheatmasstransfer.2021.121482_bib0023) 2011; 18 Woodbury (10.1016/j.ijheatmasstransfer.2021.121482_bib0025) 2013; 62 Najafi (10.1016/j.ijheatmasstransfer.2021.121482_bib0031) 2015; 91 Beck (10.1016/j.ijheatmasstransfer.2021.121482_bib0026) 2008; 16 Kumar (10.1016/j.ijheatmasstransfer.2021.121482_bib0002) 2016; 8 Tikhonov (10.1016/j.ijheatmasstransfer.2021.121482_bib0012) 1963; 153 Mahulikar (10.1016/j.ijheatmasstransfer.2021.121482_bib0003) 2008; 56 Gogu (10.1016/j.ijheatmasstransfer.2021.121482_bib0005) 2009; 46 Kumar (10.1016/j.ijheatmasstransfer.2021.121482_bib0008) 2016; 103 Najafi (10.1016/j.ijheatmasstransfer.2021.121482_bib0029) 2014 Uyanna (10.1016/j.ijheatmasstransfer.2021.121482_bib0032) 2019 Xie (10.1016/j.ijheatmasstransfer.2021.121482_bib0017) 2015 Nakamura (10.1016/j.ijheatmasstransfer.2021.121482_bib0015) 2014; 38 Cheng (10.1016/j.ijheatmasstransfer.2021.121482_bib0022) 2016; 96 Najafi (10.1016/j.ijheatmasstransfer.2021.121482_bib0028) 2015; 86 10.1016/j.ijheatmasstransfer.2021.121482_bib0011 Christian (10.1016/j.ijheatmasstransfer.2021.121482_bib0019) 2007 Myers (10.1016/j.ijheatmasstransfer.2021.121482_bib0035) 1999 |
| References_xml | – volume: 83 start-page: 710 year: 2015 end-page: 720 ident: bib0027 article-title: A filter based solution for inverse heat conduction problems in multi-layer mediums publication-title: Int. J. Heat Mass Transf. – volume: 176 start-page: 201 year: 2007 end-page: 228 ident: bib0014 article-title: Comparison of various conjugate gradient methods for inverse heat transfer problems publication-title: J. Chem. Eng. Commun. – volume: 86 start-page: 229 year: 2015 end-page: 237 ident: bib0028 article-title: Real-time heat flux measurement using directional flame thermometer publication-title: Appl. Therm. Eng. – volume: 46 start-page: 501 year: 2009 end-page: 513 ident: bib0005 article-title: Comparision of materials for an integrated thermal protection system for spacecraft reentry publication-title: J. Spacecr. Rocket. – year: 1994 ident: bib0013 article-title: Inverse Heat Transfer Problems – reference: J.V. Beck, B. Blackwell, C.R.S. Clair, Inverse Heat Conduction: Ill-Posed Problems, 1985. – year: 1999 ident: bib0020 article-title: Application of Genetic Algorithms to the Solution of the Space Vehicles Reentry Trajectory Optimization Problem – volume: 49 start-page: 301 year: 2008 end-page: 310 ident: bib0024 article-title: Inverse estimation for temperatures of outer surface and geometry of inner surface of furnacewith two layer walls publication-title: Energy Convers. Manag. – volume: 97 start-page: 990 year: 2016 end-page: 1000 ident: bib0021 article-title: Research and development of heat flux sensor for ablative thermal protection of spacecrafts publication-title: Int. J .Heat Mass Transf. – reference: A.N. Tikhonov, V.I.A.K Arsenin, Solutions of Ill-Posed problems, 1977. – volume: 27 start-page: 534 year: 1987 end-page: 553 ident: bib0010 article-title: The Truncated SVD as a method for regularization publication-title: BIT Numer. Math. – volume: 51 start-page: 26 year: 2016 end-page: 33 ident: bib0016 article-title: A method for transient thermal load estimation and its application to identification of aerodynamic heating on atmospheric reentry capsule publication-title: Aerosp. Sci. Technol. – year: 2014 ident: bib0029 article-title: Developing an inverse heat conduction analysis tool for real time heat flux estimation in directional flame thermometer application publication-title: Proceedings of the ASME Energy Sustainability Conference – volume: 91 start-page: 1148 year: 2015 end-page: 1156 ident: bib0031 article-title: Real time solution for inverse heat conduction problems in a two-dimensional plate with multiple heat fluxes at the surface publication-title: Int. J. Heat Mass Transf. – year: 2000 ident: bib0006 article-title: Advanced Metallic Thermal Protection Systems For Reusable Launch Vehicles – volume: 153 start-page: 49 year: 1963 end-page: 52 ident: bib0012 article-title: On the regularization of ill-posed problems publication-title: Dokl. Akad. Nauk SSSR – year: 2019 ident: bib0032 article-title: A near real-time solution appproach for surface heat flux estimation in one dimensional inverse heat conduction problems with moving boundary publication-title: Proceeding of the ASME Heat Transfer Summer Conference – year: 2007 ident: bib0001 article-title: Design of an Intergal Thermal Protection System For Future Space Vehicle – volume: 56 start-page: 593 year: 2008 end-page: 619 ident: bib0003 article-title: Transient aero-thermal mapping of passive thermal protetcion system for nose-cap of reusable hypersonic vehicle publication-title: J. Astronaut. Sci. – volume: 38 start-page: 48 year: 2014 end-page: 55 ident: bib0015 article-title: Inverse analysis for transient thermal load identification and application to aerodynamic heating on atmospheric reentry capsule publication-title: Aerosp. Sci. Technol. – volume: 16 start-page: 3 year: 2008 end-page: 20 ident: bib0026 article-title: Filter solutions for the non-linear inverse heat conduction problem publication-title: Inverse Probl. Sci. Eng. – year: 1999 ident: bib0035 article-title: Parametric weight comparison of current and proposed thermal protection system (TPS) concepts publication-title: Proceedings of the33rd Thermophysics Conference – volume: 62 start-page: 31 year: 2013 end-page: 39 ident: bib0025 article-title: Estimation metrics and optimal regularization in a tikhonov digital filter for inverse heat conduction problem publication-title: Int. J. Heat Mass Transf. – volume: 112 start-page: 252 year: 2017 end-page: 262 ident: bib0030 article-title: Exact analytical solution for 2-D transient heat conduction in a rectangle with partial heating on one edge publication-title: Int. J. Therm. Sci. – volume: 8 year: 2016 ident: bib0002 article-title: Selection of materials and design of multilayer lightweight passive thermal protection system publication-title: J. Therm. Sci. Eng. Appl. – volume: 176 start-page: 341 year: 2020 end-page: 356 ident: bib0004 article-title: Thermal Protection Systems for space vehicles: a review on technology development, current challenges and future prospects publication-title: Acta Astronaut. – volume: 50 year: 2013 ident: bib0018 article-title: Reconstruction of Mars Pathfinder aerothermal heating and heatshield material response using inverse methods publication-title: J. Spacecr. Rockets – year: 1986 ident: bib0033 article-title: Heat Transfer – year: 2010 ident: bib0034 article-title: Heat Conduction Using Green's Functions – year: 2015 ident: bib0007 article-title: NASA Technology Roadmaps, TA 14: Thermal Management Systems – volume: 103 start-page: 344 year: 2016 end-page: 355 ident: bib0008 article-title: Reconstruction of aero-thermal heating and thermal protection material response of a reusable launch vehicle using inverse method publication-title: Appl. Therm. Eng. – year: 2007 ident: bib0019 article-title: Statistical reconstruction of mars entry, descent and landing trajectory and atmospheric profiles publication-title: Proceedings of the AIAA Space Conference and Exposition – year: 2015 ident: bib0017 article-title: An Inverse Analysis to estimate the endothermic reaction parameters and physical properties of aerogel insulating material publication-title: Appl. Therm. Eng. – volume: 96 start-page: 249 year: 2016 end-page: 255 ident: bib0022 article-title: Application of conjugate gradient method for estimation of the wall heat flux of a supersonic combustor publication-title: Int. J. Heat Mass Trasnf. – volume: 18 start-page: 966 year: 2011 end-page: 973 ident: bib0023 article-title: Estimation of time-dependent heat flux using temperature distribution at a point in a two-layer system publication-title: Sci. Iran. B – year: 2007 ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0001 – year: 1986 ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0033 – volume: 51 start-page: 26 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0016 article-title: A method for transient thermal load estimation and its application to identification of aerodynamic heating on atmospheric reentry capsule publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2016.01.015 – volume: 8 issue: 2 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0002 article-title: Selection of materials and design of multilayer lightweight passive thermal protection system publication-title: J. Therm. Sci. Eng. Appl. doi: 10.1115/1.4031737 – volume: 86 start-page: 229 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0028 article-title: Real-time heat flux measurement using directional flame thermometer publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.04.053 – year: 2010 ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0034 – volume: 103 start-page: 344 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0008 article-title: Reconstruction of aero-thermal heating and thermal protection material response of a reusable launch vehicle using inverse method publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.04.100 – year: 1999 ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0020 – volume: 38 start-page: 48 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0015 article-title: Inverse analysis for transient thermal load identification and application to aerodynamic heating on atmospheric reentry capsule publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2014.07.015 – volume: 96 start-page: 249 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0022 article-title: Application of conjugate gradient method for estimation of the wall heat flux of a supersonic combustor publication-title: Int. J. Heat Mass Trasnf. doi: 10.1016/j.ijheatmasstransfer.2016.01.036 – volume: 112 start-page: 252 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0030 article-title: Exact analytical solution for 2-D transient heat conduction in a rectangle with partial heating on one edge publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2016.10.014 – volume: 153 start-page: 49 year: 1963 ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0012 article-title: On the regularization of ill-posed problems publication-title: Dokl. Akad. Nauk SSSR – volume: 50 issue: 6 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0018 article-title: Reconstruction of Mars Pathfinder aerothermal heating and heatshield material response using inverse methods publication-title: J. Spacecr. Rockets – volume: 18 start-page: 966 issue: 4 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0023 article-title: Estimation of time-dependent heat flux using temperature distribution at a point in a two-layer system publication-title: Sci. Iran. B doi: 10.1016/j.scient.2011.07.007 – volume: 49 start-page: 301 issue: 2 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0024 article-title: Inverse estimation for temperatures of outer surface and geometry of inner surface of furnacewith two layer walls publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2007.06.010 – volume: 97 start-page: 990 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0021 article-title: Research and development of heat flux sensor for ablative thermal protection of spacecrafts publication-title: Int. J .Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.02.045 – volume: 16 start-page: 3 issue: 1 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0026 article-title: Filter solutions for the non-linear inverse heat conduction problem publication-title: Inverse Probl. Sci. Eng. doi: 10.1080/17415970701198332 – year: 1994 ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0013 – volume: 176 start-page: 201 year: 2007 ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0014 article-title: Comparison of various conjugate gradient methods for inverse heat transfer problems publication-title: J. Chem. Eng. Commun. doi: 10.1080/00986449908912154 – volume: 91 start-page: 1148 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0031 article-title: Real time solution for inverse heat conduction problems in a two-dimensional plate with multiple heat fluxes at the surface publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2015.08.020 – volume: 83 start-page: 710 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0027 article-title: A filter based solution for inverse heat conduction problems in multi-layer mediums publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2014.12.055 – year: 2014 ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0029 article-title: Developing an inverse heat conduction analysis tool for real time heat flux estimation in directional flame thermometer application – ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0011 – volume: 62 start-page: 31 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0025 article-title: Estimation metrics and optimal regularization in a tikhonov digital filter for inverse heat conduction problem publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2013.02.052 – ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0009 – year: 2007 ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0019 article-title: Statistical reconstruction of mars entry, descent and landing trajectory and atmospheric profiles – volume: 27 start-page: 534 issue: 4 year: 1987 ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0010 article-title: The Truncated SVD as a method for regularization publication-title: BIT Numer. Math. doi: 10.1007/BF01937276 – year: 2000 ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0006 – volume: 46 start-page: 501 issue: 3 year: 2009 ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0005 article-title: Comparision of materials for an integrated thermal protection system for spacecraft reentry publication-title: J. Spacecr. Rocket. doi: 10.2514/1.35669 – year: 2015 ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0007 – volume: 56 start-page: 593 issue: 4 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0003 article-title: Transient aero-thermal mapping of passive thermal protetcion system for nose-cap of reusable hypersonic vehicle publication-title: J. Astronaut. Sci. doi: 10.1007/BF03256567 – year: 2015 ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0017 article-title: An Inverse Analysis to estimate the endothermic reaction parameters and physical properties of aerogel insulating material publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.05.008 – year: 1999 ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0035 article-title: Parametric weight comparison of current and proposed thermal protection system (TPS) concepts – volume: 176 start-page: 341 year: 2020 ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0004 article-title: Thermal Protection Systems for space vehicles: a review on technology development, current challenges and future prospects publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2020.06.047 – year: 2019 ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0032 article-title: A near real-time solution appproach for surface heat flux estimation in one dimensional inverse heat conduction problems with moving boundary |
| SSID | ssj0017046 |
| Score | 2.4940176 |
| Snippet | •Measuring surface heat flux of ITPS in space vehicles is challenging.•A novel near real-time approach for solving IHCP associated with ITPS is developed.•The... Space vehicles experience extremely high aerothermal heating during atmospheric entry which necessitates the use of appropriate thermal protection system... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 121482 |
| SubjectTerms | Algorithms Atmospheric entry Atmospheric models Conduction heating Conductive heat transfer Digital filter Heat Heat flux Heat flux estimation Industrial applications Inverse heat conduction problem (IHCP) Inverse method Material properties Real time operation Regularization Regularization methods Reusable launch vehicles Space vehicles System effectiveness Temperature dependence Temperature effects Thermal protection Thermal protection systems (TPS) |
| Title | An inverse method for real-time estimation of aerothermal heating for thermal protection systems of space vehicles |
| URI | https://dx.doi.org/10.1016/j.ijheatmasstransfer.2021.121482 https://www.proquest.com/docview/2559474776 |
| Volume | 177 |
| WOSCitedRecordID | wos000674485800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2189 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017046 issn: 0017-9310 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKBogXxNfEYCA_8ICEUqWJY8dPqJqGgIeC0Cb1LXISW2vUZlPalcFfxp_H-TPd-NAqhBRFlRtf494v5zvn5zuEXhFRU85VHHEpeEQUlxGvMhplNCcyK1NK6soUm2CTST6d8s-DwQ-_F2Y9Z22bX17y8_-qamgDZeuts1uoOwiFBvgMSoczqB3ON1L8WHMXNdlCuvLQhkkIvuE80oXk3-i0GovgKArZmT1YC7sncuWJlb7N5XHQV9ukz4b6AWYI7MFanhpS3aaDe3WFcSMvhRZu3lQswF3XlSnAX-6ZwSffRGt3p32CUL0Nc8VENELZwtpiMas7-T189UU0sq07Wzr69AIiArn8CpH_5jpGMgqMuGCbYb7kqSO5etvsarxY6zpKdNbS3xp-uwbRDGeNHo4eiR_IUP_YsO96Nef2tbkwMBQ9-a0pfpVYaImFlXgL7SYs42BPd8cfjqYfwxssFttNYn5Ud9Hrnlv497v8k4t0zVkwHtDxA3TfhS54bCH3EA1k-wjdMRTiavkYdeMWO-BhCzwMQMIBeLgHHj5TeAN42AHPXO_beuBhBzzdywAPe-A9QSfvjo4P30euokdUpSxeReAsszIVQiQqJWpUpiqVMGLF4TBVYCB4jlOhk1qKLOd1rSitIcQgNC6pgNloD-20Z618inAmKRiVOtYHAac85-WozEtJRFJTVol99Nb_iUXl0t3rqivz4qaq3Uc8SDi3qV-26Hvo9VY4V9a6qAUAdgspB17lhXtgl4VeAyCMMEaf_cMNPkf3-ofwAO2sugv5At2u1qvZsnvpwPwTGdDg3g |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+inverse+method+for+real-time+estimation+of+aerothermal+heating+for+thermal+protection+systems+of+space+vehicles&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Uyanna%2C+Obinna&rft.au=Najafi%2C+Hamidreza&rft.au=Rajendra%2C+Bhuvaneswari&rft.date=2021-10-01&rft.issn=0017-9310&rft.volume=177&rft.spage=121482&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2021.121482&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijheatmasstransfer_2021_121482 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon |