An inverse method for real-time estimation of aerothermal heating for thermal protection systems of space vehicles

•Measuring surface heat flux of ITPS in space vehicles is challenging.•A novel near real-time approach for solving IHCP associated with ITPS is developed.•The approach developed uses temperature data from internal layers.•The impact of sensor location on the solution is investigated.•The effect of t...

Full description

Saved in:
Bibliographic Details
Published in:International journal of heat and mass transfer Vol. 177; p. 121482
Main Authors: Uyanna, Obinna, Najafi, Hamidreza, Rajendra, Bhuvaneswari
Format: Journal Article
Language:English
Published: Oxford Elsevier Ltd 01.10.2021
Elsevier BV
Subjects:
ISSN:0017-9310, 1879-2189
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Measuring surface heat flux of ITPS in space vehicles is challenging.•A novel near real-time approach for solving IHCP associated with ITPS is developed.•The approach developed uses temperature data from internal layers.•The impact of sensor location on the solution is investigated.•The effect of temperature dependent material properties on the solution is explored. Space vehicles experience extremely high aerothermal heating during atmospheric entry which necessitates the use of appropriate thermal protection system (TPS). Effective design of TPS and the health monitoring systems (HMS) for space vehicles requires accurate flight data during atmospheric entry process. While direct measurement of the surface heat flux is a very challenging task, an alternative approach is to use the measured temperature values from the inner layers and solve the associated inverse heat conduction problem (IHCP) in order to estimate the surface heat flux. In the present paper, a solution approach is developed based on filter form of Tikhonov regularization method for near real-time calculation of surface heat flux in a one-dimensional medium consists of three layers that represents an integrated thermal protection system (ITPS). The solution is evaluated through numerical test cases developed in ANSYS and using experimental data from the literature. A parametric study is also conducted in order to understand the effect of sensor location (two layers and three layers models) as well as the effect of temperature dependent material properties on the performance of the solution. It is found that the developed solution estimates the surface heat flux with an average RMS error of about 1.96 and 3.44% for the two layer models with constant and temperature dependent material properties respectively. For the three layer model, the average RMS values are found for the constant and temperature dependent material properties as 2% and 4.44% respectively. It is also shown that the developed solution can evaluate the surface heat flux with 17  and 80 s delay for the two and three layers domain respectively, facilitating a near-real time operation for the inverse solution algorithm that can support the development of HMS for space vehicles or other industrial applications with the need for heat flux monitoring. The proposed solution technique is fast, accurate and very convenient to implement even for complex problems involving large temperature variations and temperature dependent material properties.
AbstractList •Measuring surface heat flux of ITPS in space vehicles is challenging.•A novel near real-time approach for solving IHCP associated with ITPS is developed.•The approach developed uses temperature data from internal layers.•The impact of sensor location on the solution is investigated.•The effect of temperature dependent material properties on the solution is explored. Space vehicles experience extremely high aerothermal heating during atmospheric entry which necessitates the use of appropriate thermal protection system (TPS). Effective design of TPS and the health monitoring systems (HMS) for space vehicles requires accurate flight data during atmospheric entry process. While direct measurement of the surface heat flux is a very challenging task, an alternative approach is to use the measured temperature values from the inner layers and solve the associated inverse heat conduction problem (IHCP) in order to estimate the surface heat flux. In the present paper, a solution approach is developed based on filter form of Tikhonov regularization method for near real-time calculation of surface heat flux in a one-dimensional medium consists of three layers that represents an integrated thermal protection system (ITPS). The solution is evaluated through numerical test cases developed in ANSYS and using experimental data from the literature. A parametric study is also conducted in order to understand the effect of sensor location (two layers and three layers models) as well as the effect of temperature dependent material properties on the performance of the solution. It is found that the developed solution estimates the surface heat flux with an average RMS error of about 1.96 and 3.44% for the two layer models with constant and temperature dependent material properties respectively. For the three layer model, the average RMS values are found for the constant and temperature dependent material properties as 2% and 4.44% respectively. It is also shown that the developed solution can evaluate the surface heat flux with 17  and 80 s delay for the two and three layers domain respectively, facilitating a near-real time operation for the inverse solution algorithm that can support the development of HMS for space vehicles or other industrial applications with the need for heat flux monitoring. The proposed solution technique is fast, accurate and very convenient to implement even for complex problems involving large temperature variations and temperature dependent material properties.
Space vehicles experience extremely high aerothermal heating during atmospheric entry which necessitates the use of appropriate thermal protection system (TPS). Effective design of TPS and the health monitoring systems (HMS) for space vehicles requires accurate flight data during atmospheric entry process. While direct measurement of the surface heat flux is a very challenging task, an alternative approach is to use the measured temperature values from the inner layers and solve the associated inverse heat conduction problem (IHCP) in order to estimate the surface heat flux. In the present paper, a solution approach is developed based on filter form of Tikhonov regularization method for near real-time calculation of surface heat flux in a one-dimensional medium consists of three layers that represents an integrated thermal protection system (ITPS). The solution is evaluated through numerical test cases developed in ANSYS and using experimental data from the literature. A parametric study is also conducted in order to understand the effect of sensor location (two layers and three layers models) as well as the effect of temperature dependent material properties on the performance of the solution. It is found that the developed solution estimates the surface heat flux with an average RMS error of about 1.96 and 3.44% for the two layer models with constant and temperature dependent material properties respectively. For the three layer model, the average RMS values are found for the constant and temperature dependent material properties as 2% and 4.44% respectively. It is also shown that the developed solution can evaluate the surface heat flux with 17 and 80 s delay for the two and three layers domain respectively, facilitating a near-real time operation for the inverse solution algorithm that can support the development of HMS for space vehicles or other industrial applications with the need for heat flux monitoring. The proposed solution technique is fast, accurate and very convenient to implement even for complex problems involving large temperature variations and temperature dependent material properties.
ArticleNumber 121482
Author Uyanna, Obinna
Najafi, Hamidreza
Rajendra, Bhuvaneswari
Author_xml – sequence: 1
  givenname: Obinna
  orcidid: 0000-0003-1265-6843
  surname: Uyanna
  fullname: Uyanna, Obinna
– sequence: 2
  givenname: Hamidreza
  surname: Najafi
  fullname: Najafi, Hamidreza
  email: hnajafi@fit.edu
– sequence: 3
  givenname: Bhuvaneswari
  orcidid: 0000-0003-2485-4417
  surname: Rajendra
  fullname: Rajendra, Bhuvaneswari
BookMark eNqVkEtLAzEUhYNUsFb_Q8CNm6l5TCczO0uxPii40XVIZ25shpmkJmnBf2-m1Y1uFAKX3Htybs53jkbWWUDompIpJbS4aaem3YCKvQohemWDBj9lhNEpZTQv2Qka01JUGaNlNUJjQqjIKk7JGToPoR2uJC_GyM8tNnYPPgDuIW5cg7Xz2IPqsmh6wBBSUdE4i53GCryLG_C96vCw3di3g_67t01jqA_q8BEi9GF4FbaqBryHjak7CBfoVKsuwOVXnaDX5d3L4iFbPd8_LuarrOaCxEwwIdZcKcU0zzVdc80hBdNVOoQUJREzTrhiomJqVlZNo4uioRXPC7IuFBF8gq6OvulT77uUQ7Zu521aKdlsVuUiF6JIqtujqvYuBA9abn0K7D8kJXIgLVv5m7QcSMsj6WSx_GFRm3hAluSm-4_R09EIEpa9SdNQG7A1NMYnqrJx5u9mn7OTr3c
CitedBy_id crossref_primary_10_1007_s10973_023_12182_5
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124772
crossref_primary_10_1038_s41598_025_10302_9
crossref_primary_10_1016_j_cnsns_2025_109040
crossref_primary_10_2514_1_T7006
crossref_primary_10_1016_j_applthermaleng_2022_119405
crossref_primary_10_1016_j_icheatmasstransfer_2023_106955
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122023
crossref_primary_10_3390_en16237819
crossref_primary_10_1016_j_icheatmasstransfer_2023_106618
crossref_primary_10_1016_j_chphma_2025_08_001
crossref_primary_10_1016_j_ijheatmasstransfer_2023_125161
crossref_primary_10_3390_en16196981
crossref_primary_10_1016_j_ijthermalsci_2023_108229
crossref_primary_10_3390_s25072227
crossref_primary_10_1016_j_icheatmasstransfer_2023_107055
crossref_primary_10_1016_j_ijthermalsci_2025_110148
crossref_primary_10_1016_j_icheatmasstransfer_2025_109445
crossref_primary_10_1080_10407790_2023_2217340
crossref_primary_10_1016_j_icheatmasstransfer_2024_107494
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125409
crossref_primary_10_1016_j_ijthermalsci_2024_109551
crossref_primary_10_2514_1_T7141
crossref_primary_10_1016_j_icheatmasstransfer_2025_109310
Cites_doi 10.1016/j.ast.2016.01.015
10.1115/1.4031737
10.1016/j.applthermaleng.2015.04.053
10.1016/j.applthermaleng.2016.04.100
10.1016/j.ast.2014.07.015
10.1016/j.ijheatmasstransfer.2016.01.036
10.1016/j.ijthermalsci.2016.10.014
10.1016/j.scient.2011.07.007
10.1016/j.enconman.2007.06.010
10.1016/j.ijheatmasstransfer.2016.02.045
10.1080/17415970701198332
10.1080/00986449908912154
10.1016/j.ijheatmasstransfer.2015.08.020
10.1016/j.ijheatmasstransfer.2014.12.055
10.1016/j.ijheatmasstransfer.2013.02.052
10.1007/BF01937276
10.2514/1.35669
10.1007/BF03256567
10.1016/j.applthermaleng.2015.05.008
10.1016/j.actaastro.2020.06.047
ContentType Journal Article
Copyright 2021
Copyright Elsevier BV Oct 2021
Copyright_xml – notice: 2021
– notice: Copyright Elsevier BV Oct 2021
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.ijheatmasstransfer.2021.121482
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2189
ExternalDocumentID 10_1016_j_ijheatmasstransfer_2021_121482
S0017931021005858
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDMP
ABFNM
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7TB
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
FR3
H8D
KR7
L7M
SSH
ID FETCH-LOGICAL-c370t-7277b3aaa2f34f1b3f3e148f98f90068075303a2792a589ddf66d193460b6a073
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000674485800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0017-9310
IngestDate Fri Jul 25 08:19:03 EDT 2025
Sat Nov 29 07:33:38 EST 2025
Tue Nov 18 22:18:37 EST 2025
Fri Feb 23 02:44:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Digital filter
Inverse heat conduction problem (IHCP)
Heat flux estimation
Reusable launch vehicles
Thermal protection systems (TPS)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c370t-7277b3aaa2f34f1b3f3e148f98f90068075303a2792a589ddf66d193460b6a073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1265-6843
0000-0003-2485-4417
PQID 2559474776
PQPubID 2045464
ParticipantIDs proquest_journals_2559474776
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121482
crossref_citationtrail_10_1016_j_ijheatmasstransfer_2021_121482
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2021_121482
PublicationCentury 2000
PublicationDate October 2021
2021-10-00
20211001
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of heat and mass transfer
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References (bib0007) 2015
Najafi, Woodbury, Beck (bib0031) 2015; 91
Bapanapalli (bib0001) 2007
A.N. Tikhonov, V.I.A.K Arsenin, Solutions of Ill-Posed problems, 1977.
Mahulikar, Khurana, Dungarwal, Shevakari, Subramanian, Gujarathi (bib0003) 2008; 56
Najafi, Woodbury, Beck, Keltner (bib0028) 2015; 86
Mahrazi, Braun, White (bib0018) 2013; 50
Cole, Beck, Haji-Sheikh, Litkouhi (bib0034) 2010
Woodbury, Beck (bib0025) 2013; 62
J.V. Beck, B. Blackwell, C.R.S. Clair, Inverse Heat Conduction: Ill-Posed Problems, 1985.
Woodbury, Najafi, Beck (bib0030) 2017; 112
Alifanov (bib0013) 1994
Kumar, Mahulikar (bib0002) 2016; 8
Gogu, Bapanapalli, Haftka, Sankar (bib0005) 2009; 46
Duda (bib0016) 2016; 51
Christian, Verges, Braun (bib0019) 2007
Nenarokomov, Alifanov, Budnik, Netelev (bib0021) 2016; 97
Desideri, Peigin, Timchenko (bib0020) 1999
Holman (bib0033) 1986
Uyanna, Najafi (bib0032) 2019
Najafi, Woodbury, Beck (bib0027) 2015; 83
Mohammadiun, Rahimi (bib0023) 2011; 18
Xie, He, Tong, Yan, Xie (bib0017) 2015
Blosser (bib0006) 2000
Kumar, Mahulikar (bib0008) 2016; 103
Chen, Su (bib0024) 2008; 49
Cheng, Zhong, Gu, Zhang (bib0022) 2016; 96
Najafi, Woodbury (bib0029) 2014
Uyanna, Najafi (bib0004) 2020; 176
Myers, Martin, Blosser (bib0035) 1999
Nakamura, Kamimura, Igawa, Morino (bib0015) 2014; 38
Beck (bib0026) 2008; 16
Tikhonov (bib0012) 1963; 153
Hansen (bib0010) 1987; 27
Park, Chung (bib0014) 2007; 176
(10.1016/j.ijheatmasstransfer.2021.121482_bib0007) 2015
Cole (10.1016/j.ijheatmasstransfer.2021.121482_bib0034) 2010
10.1016/j.ijheatmasstransfer.2021.121482_bib0009
Uyanna (10.1016/j.ijheatmasstransfer.2021.121482_bib0004) 2020; 176
Desideri (10.1016/j.ijheatmasstransfer.2021.121482_bib0020) 1999
Nenarokomov (10.1016/j.ijheatmasstransfer.2021.121482_bib0021) 2016; 97
Mahrazi (10.1016/j.ijheatmasstransfer.2021.121482_bib0018) 2013; 50
Blosser (10.1016/j.ijheatmasstransfer.2021.121482_bib0006) 2000
Duda (10.1016/j.ijheatmasstransfer.2021.121482_bib0016) 2016; 51
Alifanov (10.1016/j.ijheatmasstransfer.2021.121482_bib0013) 1994
Bapanapalli (10.1016/j.ijheatmasstransfer.2021.121482_bib0001) 2007
Holman (10.1016/j.ijheatmasstransfer.2021.121482_bib0033) 1986
Chen (10.1016/j.ijheatmasstransfer.2021.121482_bib0024) 2008; 49
Woodbury (10.1016/j.ijheatmasstransfer.2021.121482_bib0030) 2017; 112
Najafi (10.1016/j.ijheatmasstransfer.2021.121482_bib0027) 2015; 83
Hansen (10.1016/j.ijheatmasstransfer.2021.121482_bib0010) 1987; 27
Park (10.1016/j.ijheatmasstransfer.2021.121482_bib0014) 2007; 176
Mohammadiun (10.1016/j.ijheatmasstransfer.2021.121482_bib0023) 2011; 18
Woodbury (10.1016/j.ijheatmasstransfer.2021.121482_bib0025) 2013; 62
Najafi (10.1016/j.ijheatmasstransfer.2021.121482_bib0031) 2015; 91
Beck (10.1016/j.ijheatmasstransfer.2021.121482_bib0026) 2008; 16
Kumar (10.1016/j.ijheatmasstransfer.2021.121482_bib0002) 2016; 8
Tikhonov (10.1016/j.ijheatmasstransfer.2021.121482_bib0012) 1963; 153
Mahulikar (10.1016/j.ijheatmasstransfer.2021.121482_bib0003) 2008; 56
Gogu (10.1016/j.ijheatmasstransfer.2021.121482_bib0005) 2009; 46
Kumar (10.1016/j.ijheatmasstransfer.2021.121482_bib0008) 2016; 103
Najafi (10.1016/j.ijheatmasstransfer.2021.121482_bib0029) 2014
Uyanna (10.1016/j.ijheatmasstransfer.2021.121482_bib0032) 2019
Xie (10.1016/j.ijheatmasstransfer.2021.121482_bib0017) 2015
Nakamura (10.1016/j.ijheatmasstransfer.2021.121482_bib0015) 2014; 38
Cheng (10.1016/j.ijheatmasstransfer.2021.121482_bib0022) 2016; 96
Najafi (10.1016/j.ijheatmasstransfer.2021.121482_bib0028) 2015; 86
10.1016/j.ijheatmasstransfer.2021.121482_bib0011
Christian (10.1016/j.ijheatmasstransfer.2021.121482_bib0019) 2007
Myers (10.1016/j.ijheatmasstransfer.2021.121482_bib0035) 1999
References_xml – volume: 83
  start-page: 710
  year: 2015
  end-page: 720
  ident: bib0027
  article-title: A filter based solution for inverse heat conduction problems in multi-layer mediums
  publication-title: Int. J. Heat Mass Transf.
– volume: 176
  start-page: 201
  year: 2007
  end-page: 228
  ident: bib0014
  article-title: Comparison of various conjugate gradient methods for inverse heat transfer problems
  publication-title: J. Chem. Eng. Commun.
– volume: 86
  start-page: 229
  year: 2015
  end-page: 237
  ident: bib0028
  article-title: Real-time heat flux measurement using directional flame thermometer
  publication-title: Appl. Therm. Eng.
– volume: 46
  start-page: 501
  year: 2009
  end-page: 513
  ident: bib0005
  article-title: Comparision of materials for an integrated thermal protection system for spacecraft reentry
  publication-title: J. Spacecr. Rocket.
– year: 1994
  ident: bib0013
  article-title: Inverse Heat Transfer Problems
– reference: J.V. Beck, B. Blackwell, C.R.S. Clair, Inverse Heat Conduction: Ill-Posed Problems, 1985.
– year: 1999
  ident: bib0020
  article-title: Application of Genetic Algorithms to the Solution of the Space Vehicles Reentry Trajectory Optimization Problem
– volume: 49
  start-page: 301
  year: 2008
  end-page: 310
  ident: bib0024
  article-title: Inverse estimation for temperatures of outer surface and geometry of inner surface of furnacewith two layer walls
  publication-title: Energy Convers. Manag.
– volume: 97
  start-page: 990
  year: 2016
  end-page: 1000
  ident: bib0021
  article-title: Research and development of heat flux sensor for ablative thermal protection of spacecrafts
  publication-title: Int. J .Heat Mass Transf.
– reference: A.N. Tikhonov, V.I.A.K Arsenin, Solutions of Ill-Posed problems, 1977.
– volume: 27
  start-page: 534
  year: 1987
  end-page: 553
  ident: bib0010
  article-title: The Truncated SVD as a method for regularization
  publication-title: BIT Numer. Math.
– volume: 51
  start-page: 26
  year: 2016
  end-page: 33
  ident: bib0016
  article-title: A method for transient thermal load estimation and its application to identification of aerodynamic heating on atmospheric reentry capsule
  publication-title: Aerosp. Sci. Technol.
– year: 2014
  ident: bib0029
  article-title: Developing an inverse heat conduction analysis tool for real time heat flux estimation in directional flame thermometer application
  publication-title: Proceedings of the ASME Energy Sustainability Conference
– volume: 91
  start-page: 1148
  year: 2015
  end-page: 1156
  ident: bib0031
  article-title: Real time solution for inverse heat conduction problems in a two-dimensional plate with multiple heat fluxes at the surface
  publication-title: Int. J. Heat Mass Transf.
– year: 2000
  ident: bib0006
  article-title: Advanced Metallic Thermal Protection Systems For Reusable Launch Vehicles
– volume: 153
  start-page: 49
  year: 1963
  end-page: 52
  ident: bib0012
  article-title: On the regularization of ill-posed problems
  publication-title: Dokl. Akad. Nauk SSSR
– year: 2019
  ident: bib0032
  article-title: A near real-time solution appproach for surface heat flux estimation in one dimensional inverse heat conduction problems with moving boundary
  publication-title: Proceeding of the ASME Heat Transfer Summer Conference
– year: 2007
  ident: bib0001
  article-title: Design of an Intergal Thermal Protection System For Future Space Vehicle
– volume: 56
  start-page: 593
  year: 2008
  end-page: 619
  ident: bib0003
  article-title: Transient aero-thermal mapping of passive thermal protetcion system for nose-cap of reusable hypersonic vehicle
  publication-title: J. Astronaut. Sci.
– volume: 38
  start-page: 48
  year: 2014
  end-page: 55
  ident: bib0015
  article-title: Inverse analysis for transient thermal load identification and application to aerodynamic heating on atmospheric reentry capsule
  publication-title: Aerosp. Sci. Technol.
– volume: 16
  start-page: 3
  year: 2008
  end-page: 20
  ident: bib0026
  article-title: Filter solutions for the non-linear inverse heat conduction problem
  publication-title: Inverse Probl. Sci. Eng.
– year: 1999
  ident: bib0035
  article-title: Parametric weight comparison of current and proposed thermal protection system (TPS) concepts
  publication-title: Proceedings of the33rd Thermophysics Conference
– volume: 62
  start-page: 31
  year: 2013
  end-page: 39
  ident: bib0025
  article-title: Estimation metrics and optimal regularization in a tikhonov digital filter for inverse heat conduction problem
  publication-title: Int. J. Heat Mass Transf.
– volume: 112
  start-page: 252
  year: 2017
  end-page: 262
  ident: bib0030
  article-title: Exact analytical solution for 2-D transient heat conduction in a rectangle with partial heating on one edge
  publication-title: Int. J. Therm. Sci.
– volume: 8
  year: 2016
  ident: bib0002
  article-title: Selection of materials and design of multilayer lightweight passive thermal protection system
  publication-title: J. Therm. Sci. Eng. Appl.
– volume: 176
  start-page: 341
  year: 2020
  end-page: 356
  ident: bib0004
  article-title: Thermal Protection Systems for space vehicles: a review on technology development, current challenges and future prospects
  publication-title: Acta Astronaut.
– volume: 50
  year: 2013
  ident: bib0018
  article-title: Reconstruction of Mars Pathfinder aerothermal heating and heatshield material response using inverse methods
  publication-title: J. Spacecr. Rockets
– year: 1986
  ident: bib0033
  article-title: Heat Transfer
– year: 2010
  ident: bib0034
  article-title: Heat Conduction Using Green's Functions
– year: 2015
  ident: bib0007
  article-title: NASA Technology Roadmaps, TA 14: Thermal Management Systems
– volume: 103
  start-page: 344
  year: 2016
  end-page: 355
  ident: bib0008
  article-title: Reconstruction of aero-thermal heating and thermal protection material response of a reusable launch vehicle using inverse method
  publication-title: Appl. Therm. Eng.
– year: 2007
  ident: bib0019
  article-title: Statistical reconstruction of mars entry, descent and landing trajectory and atmospheric profiles
  publication-title: Proceedings of the AIAA Space Conference and Exposition
– year: 2015
  ident: bib0017
  article-title: An Inverse Analysis to estimate the endothermic reaction parameters and physical properties of aerogel insulating material
  publication-title: Appl. Therm. Eng.
– volume: 96
  start-page: 249
  year: 2016
  end-page: 255
  ident: bib0022
  article-title: Application of conjugate gradient method for estimation of the wall heat flux of a supersonic combustor
  publication-title: Int. J. Heat Mass Trasnf.
– volume: 18
  start-page: 966
  year: 2011
  end-page: 973
  ident: bib0023
  article-title: Estimation of time-dependent heat flux using temperature distribution at a point in a two-layer system
  publication-title: Sci. Iran. B
– year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0001
– year: 1986
  ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0033
– volume: 51
  start-page: 26
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0016
  article-title: A method for transient thermal load estimation and its application to identification of aerodynamic heating on atmospheric reentry capsule
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2016.01.015
– volume: 8
  issue: 2
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0002
  article-title: Selection of materials and design of multilayer lightweight passive thermal protection system
  publication-title: J. Therm. Sci. Eng. Appl.
  doi: 10.1115/1.4031737
– volume: 86
  start-page: 229
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0028
  article-title: Real-time heat flux measurement using directional flame thermometer
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.04.053
– year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0034
– volume: 103
  start-page: 344
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0008
  article-title: Reconstruction of aero-thermal heating and thermal protection material response of a reusable launch vehicle using inverse method
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.04.100
– year: 1999
  ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0020
– volume: 38
  start-page: 48
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0015
  article-title: Inverse analysis for transient thermal load identification and application to aerodynamic heating on atmospheric reentry capsule
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2014.07.015
– volume: 96
  start-page: 249
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0022
  article-title: Application of conjugate gradient method for estimation of the wall heat flux of a supersonic combustor
  publication-title: Int. J. Heat Mass Trasnf.
  doi: 10.1016/j.ijheatmasstransfer.2016.01.036
– volume: 112
  start-page: 252
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0030
  article-title: Exact analytical solution for 2-D transient heat conduction in a rectangle with partial heating on one edge
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2016.10.014
– volume: 153
  start-page: 49
  year: 1963
  ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0012
  article-title: On the regularization of ill-posed problems
  publication-title: Dokl. Akad. Nauk SSSR
– volume: 50
  issue: 6
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0018
  article-title: Reconstruction of Mars Pathfinder aerothermal heating and heatshield material response using inverse methods
  publication-title: J. Spacecr. Rockets
– volume: 18
  start-page: 966
  issue: 4
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0023
  article-title: Estimation of time-dependent heat flux using temperature distribution at a point in a two-layer system
  publication-title: Sci. Iran. B
  doi: 10.1016/j.scient.2011.07.007
– volume: 49
  start-page: 301
  issue: 2
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0024
  article-title: Inverse estimation for temperatures of outer surface and geometry of inner surface of furnacewith two layer walls
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2007.06.010
– volume: 97
  start-page: 990
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0021
  article-title: Research and development of heat flux sensor for ablative thermal protection of spacecrafts
  publication-title: Int. J .Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.02.045
– volume: 16
  start-page: 3
  issue: 1
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0026
  article-title: Filter solutions for the non-linear inverse heat conduction problem
  publication-title: Inverse Probl. Sci. Eng.
  doi: 10.1080/17415970701198332
– year: 1994
  ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0013
– volume: 176
  start-page: 201
  year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0014
  article-title: Comparison of various conjugate gradient methods for inverse heat transfer problems
  publication-title: J. Chem. Eng. Commun.
  doi: 10.1080/00986449908912154
– volume: 91
  start-page: 1148
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0031
  article-title: Real time solution for inverse heat conduction problems in a two-dimensional plate with multiple heat fluxes at the surface
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2015.08.020
– volume: 83
  start-page: 710
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0027
  article-title: A filter based solution for inverse heat conduction problems in multi-layer mediums
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2014.12.055
– year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0029
  article-title: Developing an inverse heat conduction analysis tool for real time heat flux estimation in directional flame thermometer application
– ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0011
– volume: 62
  start-page: 31
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0025
  article-title: Estimation metrics and optimal regularization in a tikhonov digital filter for inverse heat conduction problem
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2013.02.052
– ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0009
– year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0019
  article-title: Statistical reconstruction of mars entry, descent and landing trajectory and atmospheric profiles
– volume: 27
  start-page: 534
  issue: 4
  year: 1987
  ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0010
  article-title: The Truncated SVD as a method for regularization
  publication-title: BIT Numer. Math.
  doi: 10.1007/BF01937276
– year: 2000
  ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0006
– volume: 46
  start-page: 501
  issue: 3
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0005
  article-title: Comparision of materials for an integrated thermal protection system for spacecraft reentry
  publication-title: J. Spacecr. Rocket.
  doi: 10.2514/1.35669
– year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0007
– volume: 56
  start-page: 593
  issue: 4
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0003
  article-title: Transient aero-thermal mapping of passive thermal protetcion system for nose-cap of reusable hypersonic vehicle
  publication-title: J. Astronaut. Sci.
  doi: 10.1007/BF03256567
– year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0017
  article-title: An Inverse Analysis to estimate the endothermic reaction parameters and physical properties of aerogel insulating material
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.05.008
– year: 1999
  ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0035
  article-title: Parametric weight comparison of current and proposed thermal protection system (TPS) concepts
– volume: 176
  start-page: 341
  year: 2020
  ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0004
  article-title: Thermal Protection Systems for space vehicles: a review on technology development, current challenges and future prospects
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2020.06.047
– year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2021.121482_bib0032
  article-title: A near real-time solution appproach for surface heat flux estimation in one dimensional inverse heat conduction problems with moving boundary
SSID ssj0017046
Score 2.4940176
Snippet •Measuring surface heat flux of ITPS in space vehicles is challenging.•A novel near real-time approach for solving IHCP associated with ITPS is developed.•The...
Space vehicles experience extremely high aerothermal heating during atmospheric entry which necessitates the use of appropriate thermal protection system...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 121482
SubjectTerms Algorithms
Atmospheric entry
Atmospheric models
Conduction heating
Conductive heat transfer
Digital filter
Heat
Heat flux
Heat flux estimation
Industrial applications
Inverse heat conduction problem (IHCP)
Inverse method
Material properties
Real time operation
Regularization
Regularization methods
Reusable launch vehicles
Space vehicles
System effectiveness
Temperature dependence
Temperature effects
Thermal protection
Thermal protection systems (TPS)
Title An inverse method for real-time estimation of aerothermal heating for thermal protection systems of space vehicles
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2021.121482
https://www.proquest.com/docview/2559474776
Volume 177
WOSCitedRecordID wos000674485800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKBogXxNfEYCA_8ICEUqWJY8dPqJqGgIeC0Cb1LXISW2vUZlPalcFfxp_H-TPd-NAqhBRFlRtf494v5zvn5zuEXhFRU85VHHEpeEQUlxGvMhplNCcyK1NK6soUm2CTST6d8s-DwQ-_F2Y9Z22bX17y8_-qamgDZeuts1uoOwiFBvgMSoczqB3ON1L8WHMXNdlCuvLQhkkIvuE80oXk3-i0GovgKArZmT1YC7sncuWJlb7N5XHQV9ukz4b6AWYI7MFanhpS3aaDe3WFcSMvhRZu3lQswF3XlSnAX-6ZwSffRGt3p32CUL0Nc8VENELZwtpiMas7-T189UU0sq07Wzr69AIiArn8CpH_5jpGMgqMuGCbYb7kqSO5etvsarxY6zpKdNbS3xp-uwbRDGeNHo4eiR_IUP_YsO96Nef2tbkwMBQ9-a0pfpVYaImFlXgL7SYs42BPd8cfjqYfwxssFttNYn5Ud9Hrnlv497v8k4t0zVkwHtDxA3TfhS54bCH3EA1k-wjdMRTiavkYdeMWO-BhCzwMQMIBeLgHHj5TeAN42AHPXO_beuBhBzzdywAPe-A9QSfvjo4P30euokdUpSxeReAsszIVQiQqJWpUpiqVMGLF4TBVYCB4jlOhk1qKLOd1rSitIcQgNC6pgNloD-20Z618inAmKRiVOtYHAac85-WozEtJRFJTVol99Nb_iUXl0t3rqivz4qaq3Uc8SDi3qV-26Hvo9VY4V9a6qAUAdgspB17lhXtgl4VeAyCMMEaf_cMNPkf3-ofwAO2sugv5At2u1qvZsnvpwPwTGdDg3g
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+inverse+method+for+real-time+estimation+of+aerothermal+heating+for+thermal+protection+systems+of+space+vehicles&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Uyanna%2C+Obinna&rft.au=Najafi%2C+Hamidreza&rft.au=Rajendra%2C+Bhuvaneswari&rft.date=2021-10-01&rft.issn=0017-9310&rft.volume=177&rft.spage=121482&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2021.121482&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijheatmasstransfer_2021_121482
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon