On Decoding of the (89, 45, 17) Quadratic Residue Code

In this paper, Three decoding methods of the (89, 45, 17) binary quadratic residue (QR) code to be presented are hard, soft and linear programming decoding algorithms. Firstly, a new hybrid algebraic decoding algorithm for the (89, 45, 17) QR code is proposed. It uses the Laplace formula to obtain t...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on communications Vol. 61; no. 3; pp. 832 - 841
Main Authors: Wang, Lin, Li, Yong, Truong, Trieu-Kien, Lin, Tsung-Ching
Format: Journal Article
Language:English
Published: New York, NY IEEE 01.03.2013
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0090-6778, 1558-0857
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, Three decoding methods of the (89, 45, 17) binary quadratic residue (QR) code to be presented are hard, soft and linear programming decoding algorithms. Firstly, a new hybrid algebraic decoding algorithm for the (89, 45, 17) QR code is proposed. It uses the Laplace formula to obtain the primary unknown syndromes, as done in Lin et al.'s algorithm when the number of errors v is less than or equal to 5, whereas Gaussian elimination is adopted to compute the unknown syndromes when v ≥ 6. Secondly, an appropriate modification to the algorithm developed by Chase is also given in this paper. Therefore, combining the proposed algebraic decoding algorithm with the modified Chase-II algorithm, called a new soft-decision decoding algorithm, becomes a complete soft decoding of QR codes. Thirdly, in order to further improve the error-correcting performance of the code, linear programming (LP) is utilized to decode the (89, 45, 17) QR code. Simulation results show that the proposed algebraic decoding algorithm reduces the decoding time when compared with Lin et al.'s hard decoding algorithm, and thus significantly reduces the decoding complexity of soft decoding while maintaining the same bit error rate (BER) performance. Moreover, the LP-based decoding improves the error-rate performance almost without increasing the decoding complexity, when compared with the new soft-decision decoding algorithm. It provides a coding gain of 0.2 dB at BER = 2 × 10 -6 .
AbstractList In this paper, Three decoding methods of the (89, 45, 17) binary quadratic residue (QR) code to be presented are hard, soft and linear programming decoding algorithms. Firstly, a new hybrid algebraic decoding algorithm for the (89, 45, 17) QR code is proposed. It uses the Laplace formula to obtain the primary unknown syndromes, as done in Lin et al.'s algorithm when the number of errors v is less than or equal to 5, whereas Gaussian elimination is adopted to compute the unknown syndromes when v greater than or equal to 6. Secondly, an appropriate modification to the algorithm developed by Chase is also given in this paper. Therefore, combining the proposed algebraic decoding algorithm with the modified Chase-II algorithm, called a new soft-decision decoding algorithm, becomes a complete soft decoding of QR codes. Thirdly, in order to further improve the error-correcting performance of the code, linear programming (LP) is utilized to decode the (89, 45, 17) QR code. Simulation results show that the proposed algebraic decoding algorithm reduces the decoding time when compared with Lin et al.'s hard decoding algorithm, and thus significantly reduces the decoding complexity of soft decoding while maintaining the same bit error rate (BER) performance. Moreover, the LP-based decoding improves the error-rate performance almost without increasing the decoding complexity, when compared with the new soft-decision decoding algorithm. It provides a coding gain of 0.2 dB at BER = 2 x 10-6}.
In this paper, Three decoding methods of the (89, 45, 17) binary quadratic residue (QR) code to be presented are hard, soft and linear programming decoding algorithms. Firstly, a new hybrid algebraic decoding algorithm for the (89, 45, 17) QR code is proposed. It uses the Laplace formula to obtain the primary unknown syndromes, as done in Lin et al.'s algorithm when the number of errors v is less than or equal to 5, whereas Gaussian elimination is adopted to compute the unknown syndromes when v ≥ 6. Secondly, an appropriate modification to the algorithm developed by Chase is also given in this paper. Therefore, combining the proposed algebraic decoding algorithm with the modified Chase-II algorithm, called a new soft-decision decoding algorithm, becomes a complete soft decoding of QR codes. Thirdly, in order to further improve the error-correcting performance of the code, linear programming (LP) is utilized to decode the (89, 45, 17) QR code. Simulation results show that the proposed algebraic decoding algorithm reduces the decoding time when compared with Lin et al.'s hard decoding algorithm, and thus significantly reduces the decoding complexity of soft decoding while maintaining the same bit error rate (BER) performance. Moreover, the LP-based decoding improves the error-rate performance almost without increasing the decoding complexity, when compared with the new soft-decision decoding algorithm. It provides a coding gain of 0.2 dB at BER = 2 x 10^{-6}.
In this paper, Three decoding methods of the (89, 45, 17) binary quadratic residue (QR) code to be presented are hard, soft and linear programming decoding algorithms. Firstly, a new hybrid algebraic decoding algorithm for the (89, 45, 17) QR code is proposed. It uses the Laplace formula to obtain the primary unknown syndromes, as done in Lin et al.'s algorithm when the number of errors v is less than or equal to 5, whereas Gaussian elimination is adopted to compute the unknown syndromes when v ≥ 6. Secondly, an appropriate modification to the algorithm developed by Chase is also given in this paper. Therefore, combining the proposed algebraic decoding algorithm with the modified Chase-II algorithm, called a new soft-decision decoding algorithm, becomes a complete soft decoding of QR codes. Thirdly, in order to further improve the error-correcting performance of the code, linear programming (LP) is utilized to decode the (89, 45, 17) QR code. Simulation results show that the proposed algebraic decoding algorithm reduces the decoding time when compared with Lin et al.'s hard decoding algorithm, and thus significantly reduces the decoding complexity of soft decoding while maintaining the same bit error rate (BER) performance. Moreover, the LP-based decoding improves the error-rate performance almost without increasing the decoding complexity, when compared with the new soft-decision decoding algorithm. It provides a coding gain of 0.2 dB at BER = 2 × 10 -6 .
Author Trieu-Kien Truong
Lin Wang
Tsung-Ching Lin
Yong Li
Author_xml – sequence: 1
  givenname: Lin
  surname: Wang
  fullname: Wang, Lin
– sequence: 2
  givenname: Yong
  surname: Li
  fullname: Li, Yong
– sequence: 3
  givenname: Trieu-Kien
  surname: Truong
  fullname: Truong, Trieu-Kien
– sequence: 4
  givenname: Tsung-Ching
  surname: Lin
  fullname: Lin, Tsung-Ching
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27211076$$DView record in Pascal Francis
BookMark eNqNkcFqFTEUhoNU8Lb6BG4CIlToXE-SyeRkI5SrrULLRanrkEkymjKd1GRm4dub2ylddOXqbL7_P4fvHJOjKU2BEMpgyxjojze7_fX1lgPjW8a5ehjAUb0gGyYlNoBSHZENgIamUwpfkeNSbgGgBSE2pNtP9HNwycfpF00DnX8Heor6jLbyjDL1gX5frM92jo7-CCX6JdBd8uE1eTnYsYQ3j_OE_Lz4crP72lztL7_tzq8aJxTMjeIt9N6hRcSeeY09Dg5Qc-2lCApxaLEdlOraninp0HOoBAjfyp7DIMQJOV1773P6s4Qym7tYXBhHO4W0FMNEJ5lUAnVF3z1Db9OSp3pdpVrFhWb6QL1_pGxxdhyynVws5j7HO5v_Gq54taq6yuHKuZxKyWF4QhiYg3jzIN4cxJtVvFnF1-inZ1EX52owTXO2cfyfgrdrQQwhPO3t6sNQofgHAxWOog
CODEN IECMBT
CitedBy_id crossref_primary_10_1109_TCOMM_2014_2333663
crossref_primary_10_1109_TCOMM_2014_2386854
crossref_primary_10_3390_electronics11213598
crossref_primary_10_1049_iet_com_2015_0159
crossref_primary_10_1109_TIT_2018_2830327
crossref_primary_10_1109_TIT_2020_2990421
Cites_doi 10.1109/TIT.2008.929956
10.1109/PIMRC.2009.5449999
10.1109/18.53750
10.1109/TIT.1978.1055873
10.1109/TIT.1972.1054746
10.1007/978-1-4615-5005-1
10.1109/TCOMM.2003.816994
10.1109/TIT.2010.2048489
10.1049/ip-cdt:19941294
10.1109/18.61132
10.1109/TIT.1987.1057262
10.1109/JSAC.2009.090818
10.1109/18.135639
10.1109/TIT.2007.915712
10.1109/TCOMM.2005.847147
10.1049/ip-i-2.1991.0018
10.1109/TIT.1964.1053699
10.1109/18.915677
10.1109/ISIT.2007.4557442
10.1049/ip-e.1991.0040
10.1109/TIT.2012.2204955
10.1109/TIT.2004.842696
10.1002/j.1538-7305.1950.tb00463.x
10.1109/LCOMM.2010.121310.101225
10.1109/TIT.2008.2006384
ContentType Journal Article
Copyright 2014 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2013
Copyright_xml – notice: 2014 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2013
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SP
8FD
L7M
F28
FR3
DOI 10.1109/TCOMM.2012.122712.120287
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Pascal-Francis
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Engineering Research Database
Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1558-0857
EndPage 841
ExternalDocumentID 2958403641
27211076
10_1109_TCOMM_2012_122712_120287
6403878
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
ZCA
ZCG
AAYXX
CITATION
AAYOK
IQODW
RIG
7SP
8FD
L7M
F28
FR3
ID FETCH-LOGICAL-c370t-7240bdc8a888b1d98b8fc08929d53e788f484f7764b175c8d20b8f03d45b20f33
IEDL.DBID RIE
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000318420800036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0090-6778
IngestDate Sun Sep 28 12:21:02 EDT 2025
Sun Nov 30 04:16:22 EST 2025
Wed Apr 02 07:25:20 EDT 2025
Sat Nov 29 01:41:31 EST 2025
Tue Nov 18 22:24:34 EST 2025
Wed Aug 27 02:49:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Performance evaluation
Berlekamp-Massey algorithm
Error estimation
Bit error rate
Error rate
Berlekamp Massey algorithm
Linear programming
Decoding
Chase algorithm
Simulation
Coding
Gaussian elimination
quadratic residue code
Residue codes
Algorithm complexity
Error correction
Soft decision
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-7240bdc8a888b1d98b8fc08929d53e788f484f7764b175c8d20b8f03d45b20f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 1347239199
PQPubID 85472
PageCount 10
ParticipantIDs crossref_primary_10_1109_TCOMM_2012_122712_120287
pascalfrancis_primary_27211076
ieee_primary_6403878
proquest_journals_1347239199
proquest_miscellaneous_1365157389
crossref_citationtrail_10_1109_TCOMM_2012_122712_120287
PublicationCentury 2000
PublicationDate 2013-03-01
PublicationDateYYYYMMDD 2013-03-01
PublicationDate_xml – month: 03
  year: 2013
  text: 2013-03-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on communications
PublicationTitleAbbrev TCOMM
PublicationYear 2013
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References he (ref2) 2001; 47
ref31
ref30
xu youzhi (ref14) 1991; 138
prange (ref1) 1958
ref11
ref10
ref17
ref16
ref19
ref18
szabo (ref33) 2003; 11
reed (ref13) 1991; 138
ref24
lin (ref29) 2004
ref23
ref26
ref25
ref20
ref22
ref21
reed (ref4) 1990; 137
ref28
chen (ref12) 1994; 40
ref27
(ref32) 0
blahut (ref15) 1983
ref8
ref7
ref3
ref6
chen (ref9) 2007; 23
ref5
References_xml – year: 2004
  ident: ref29
  publication-title: Error Control Coding
– ident: ref17
  doi: 10.1109/TIT.2008.929956
– ident: ref20
  doi: 10.1109/PIMRC.2009.5449999
– ident: ref6
  doi: 10.1109/18.53750
– ident: ref22
  doi: 10.1109/TIT.1978.1055873
– ident: ref21
  doi: 10.1109/TIT.1972.1054746
– ident: ref7
  doi: 10.1007/978-1-4615-5005-1
– ident: ref11
  doi: 10.1109/TCOMM.2003.816994
– ident: ref25
  doi: 10.1109/TIT.2010.2048489
– ident: ref10
  doi: 10.1049/ip-cdt:19941294
– ident: ref28
  doi: 10.1109/18.61132
– ident: ref5
  doi: 10.1109/TIT.1987.1057262
– ident: ref27
  doi: 10.1109/JSAC.2009.090818
– ident: ref8
  doi: 10.1109/18.135639
– ident: ref31
  doi: 10.1109/TIT.2007.915712
– year: 1958
  ident: ref1
  article-title: Some cyclic error-correcting codes with simple decoding algorithms
  publication-title: Air Force Cambridge Research Center-TN-58-156
– ident: ref16
  doi: 10.1109/TCOMM.2005.847147
– volume: 138
  start-page: 138
  year: 1991
  ident: ref14
  article-title: implementation of berlekamp-massey algorithm without inversion
  publication-title: IEE Proceedings I - Communications Speech and Vision
  doi: 10.1049/ip-i-2.1991.0018
– year: 1983
  ident: ref15
  publication-title: Theory and Practice of Error Control Code
– volume: 11
  start-page: 155
  year: 2003
  ident: ref33
  article-title: On interior-point methods and simplex method in linear programming
  publication-title: Ann St Univ Ovidius Constanta
– ident: ref18
  doi: 10.1109/TIT.1964.1053699
– volume: 23
  start-page: 127
  year: 2007
  ident: ref9
  article-title: Algebraic decoding of quadratic residue codes using Berlekamp-Massey algorithm
  publication-title: J Inf Sci Eng
– volume: 47
  start-page: 1181
  year: 2001
  ident: ref2
  article-title: Decoding of the (47, 24, 11) quadratic residue code
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/18.915677
– ident: ref30
  doi: 10.1109/ISIT.2007.4557442
– volume: 138
  start-page: 295
  year: 1991
  ident: ref13
  article-title: vlsi design of inverse-free berlekamp-massey algorithm
  publication-title: Computers and Digital Techniques IEE Proceedings-
  doi: 10.1049/ip-e.1991.0040
– volume: 137
  start-page: 202
  year: 1990
  ident: ref4
  article-title: Decoding the (24, 12, 8) Golay code
  publication-title: Proc Inst Electr Eng
– ident: ref26
  doi: 10.1109/TIT.2012.2204955
– volume: 40
  start-page: 1654
  year: 1994
  ident: ref12
  article-title: Use of Gröbner bases to decode binary cyclic codes up to the true minimum distance
  publication-title: IEEE Trans Commun
– ident: ref23
  doi: 10.1109/TIT.2004.842696
– year: 0
  ident: ref32
  publication-title: GNU Linear Programming Kit
– ident: ref3
  doi: 10.1002/j.1538-7305.1950.tb00463.x
– ident: ref19
  doi: 10.1109/LCOMM.2010.121310.101225
– ident: ref24
  doi: 10.1109/TIT.2008.2006384
SSID ssj0004033
Score 2.1080804
Snippet In this paper, Three decoding methods of the (89, 45, 17) binary quadratic residue (QR) code to be presented are hard, soft and linear programming decoding...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 832
SubjectTerms Algebra
Algorithm design and analysis
Algorithms
Applied sciences
Approximation algorithms
Berlekamp-Massey algorithm
Chase algorithm
Codes
Coding, codes
Complexity
Complexity theory
Decoding
Exact sciences and technology
Gaussian elimination
Information, signal and communications theory
Linear programming
Maximum likelihood decoding
Noise levels
Performance enhancement
Polynomials
quadratic residue code
Residues
Signal and communications theory
Telecommunications and information theory
Title On Decoding of the (89, 45, 17) Quadratic Residue Code
URI https://ieeexplore.ieee.org/document/6403878
https://www.proquest.com/docview/1347239199
https://www.proquest.com/docview/1365157389
Volume 61
WOSCitedRecordID wos000318420800036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0857
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004033
  issn: 0090-6778
  databaseCode: RIE
  dateStart: 19720101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Na9VAEB_a4kEPVq1itJYVPCi8tPuV7O6xPC1e2qpU6C3sV6AgifS99O_vziYvbdGDnhLYWRJmZjMzmY8fwAdsrhYtq0tuAy9l61hpvOKlraQN1tUViyPYhDo705eX5tsWLOZemBhjLj6Lh3ibc_mh9wP-KjuqJSZb9TZsK1WPvVp3PZBUTBMnsZxd6U3VDjVHF8vz01Os4uKHjHOVL8msqgemKGOrYGWkXSXmtCOqxR8f6Gx1Tnb_732fwdPJuyTHozo8h63YvYAn92YO7kF93pHPKeZEm0X6liQHkHzUZkFktSBMfSLfBxtQLTz5EZOqDpEs-xBfws-TLxfLr-UEnlB6oei6VMlUu-C1TSGuY8Fop1tPdfKGQiViCnxbqWWb-Chd8iC8DpwmCiqCrBynrRCvYKfru_gaSM25dlIlT6N2MmhqKZILVimjW6tdAWrDx8ZPk8UR4OJXkyMMaposgQYl0IwSaEYJFMDmnb_H6Rr_sGcPOT3TT0wu4OCB6OZ1Psa4dQH7G1k20zldNdhIy4VhxhTwfl5OJwzTJraL_YA0CBevkmf35u-PfguPeQbJwMq0fdhZXw_xHTzyN-ur1fVBVtNbTOTcxQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VgkQ58CqIQClG4gDSprUdJ7aPaKEqorsFtEi9WX5KSCipuht-P7aTDVRwgFMieaxEM-PMTObxAbxKzdVVIE1JtaMlC4aU0nJa6pppp01TEz-ATfDlUlxcyE87MJt6Ybz3ufjMH6XbnMt3ne3Tr7LjhqVkq7gBN2vGKB66tX51QeJqnDmZCtq52NbtYHm8mp8vFqmOix4RSnm-RMPKrxmjjK6SaiP1OrInDLgWf3yis905ufd_b3wf7o7-JXo7KMQD2PHtQ7jz29TBfWjOW_QuRp3JaqEuoOgCotdCzhCrZ4jwN-hzr11SDIu--KisvUfzzvlH8PXk_Wp-Wo7wCaWtON6UPBpr46zQMcg1xElhRLBYRH_I1ZWPoW9gggXOG2aiD2GFozhS4Mqx2lAcquox7LZd658AaigVhvHoazSGOYE1TuQVqbkUQQtTAN_yUdlxtniCuPiucoyBpcoSUEkCapCAGiRQAJl2Xg7zNf5hz37i9EQ_MrmAw2uim9bpEOU2BRxsZanGk7pWqZWWVpJIWcDLaTmesZQ40a3v-kSTAON59O2e_v3RL-D26Wpxps4-LD8-gz2aITNSndoB7G6uev8cbtkfm2_rq8Ossj8B97rgDA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Decoding+of+the+%2889%2C+45%2C+17%29+Quadratic+Residue+Code&rft.jtitle=IEEE+transactions+on+communications&rft.au=LIN+WANG&rft.au=YONG+LI&rft.au=TRUONG%2C+Trieu-Kien&rft.au=LIN%2C+Tsung-Ching&rft.date=2013-03-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=0090-6778&rft.volume=61&rft.issue=3&rft.spage=832&rft.epage=841&rft_id=info:doi/10.1109%2FTCOMM.2012.122712.120287&rft.externalDBID=n%2Fa&rft.externalDocID=27211076
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6778&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6778&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6778&client=summon