On Decoding of the (89, 45, 17) Quadratic Residue Code
In this paper, Three decoding methods of the (89, 45, 17) binary quadratic residue (QR) code to be presented are hard, soft and linear programming decoding algorithms. Firstly, a new hybrid algebraic decoding algorithm for the (89, 45, 17) QR code is proposed. It uses the Laplace formula to obtain t...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on communications Jg. 61; H. 3; S. 832 - 841 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York, NY
IEEE
01.03.2013
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0090-6778, 1558-0857 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this paper, Three decoding methods of the (89, 45, 17) binary quadratic residue (QR) code to be presented are hard, soft and linear programming decoding algorithms. Firstly, a new hybrid algebraic decoding algorithm for the (89, 45, 17) QR code is proposed. It uses the Laplace formula to obtain the primary unknown syndromes, as done in Lin et al.'s algorithm when the number of errors v is less than or equal to 5, whereas Gaussian elimination is adopted to compute the unknown syndromes when v ≥ 6. Secondly, an appropriate modification to the algorithm developed by Chase is also given in this paper. Therefore, combining the proposed algebraic decoding algorithm with the modified Chase-II algorithm, called a new soft-decision decoding algorithm, becomes a complete soft decoding of QR codes. Thirdly, in order to further improve the error-correcting performance of the code, linear programming (LP) is utilized to decode the (89, 45, 17) QR code. Simulation results show that the proposed algebraic decoding algorithm reduces the decoding time when compared with Lin et al.'s hard decoding algorithm, and thus significantly reduces the decoding complexity of soft decoding while maintaining the same bit error rate (BER) performance. Moreover, the LP-based decoding improves the error-rate performance almost without increasing the decoding complexity, when compared with the new soft-decision decoding algorithm. It provides a coding gain of 0.2 dB at BER = 2 × 10 -6 . |
|---|---|
| AbstractList | In this paper, Three decoding methods of the (89, 45, 17) binary quadratic residue (QR) code to be presented are hard, soft and linear programming decoding algorithms. Firstly, a new hybrid algebraic decoding algorithm for the (89, 45, 17) QR code is proposed. It uses the Laplace formula to obtain the primary unknown syndromes, as done in Lin et al.'s algorithm when the number of errors v is less than or equal to 5, whereas Gaussian elimination is adopted to compute the unknown syndromes when v greater than or equal to 6. Secondly, an appropriate modification to the algorithm developed by Chase is also given in this paper. Therefore, combining the proposed algebraic decoding algorithm with the modified Chase-II algorithm, called a new soft-decision decoding algorithm, becomes a complete soft decoding of QR codes. Thirdly, in order to further improve the error-correcting performance of the code, linear programming (LP) is utilized to decode the (89, 45, 17) QR code. Simulation results show that the proposed algebraic decoding algorithm reduces the decoding time when compared with Lin et al.'s hard decoding algorithm, and thus significantly reduces the decoding complexity of soft decoding while maintaining the same bit error rate (BER) performance. Moreover, the LP-based decoding improves the error-rate performance almost without increasing the decoding complexity, when compared with the new soft-decision decoding algorithm. It provides a coding gain of 0.2 dB at BER = 2 x 10-6}. In this paper, Three decoding methods of the (89, 45, 17) binary quadratic residue (QR) code to be presented are hard, soft and linear programming decoding algorithms. Firstly, a new hybrid algebraic decoding algorithm for the (89, 45, 17) QR code is proposed. It uses the Laplace formula to obtain the primary unknown syndromes, as done in Lin et al.'s algorithm when the number of errors v is less than or equal to 5, whereas Gaussian elimination is adopted to compute the unknown syndromes when v ≥ 6. Secondly, an appropriate modification to the algorithm developed by Chase is also given in this paper. Therefore, combining the proposed algebraic decoding algorithm with the modified Chase-II algorithm, called a new soft-decision decoding algorithm, becomes a complete soft decoding of QR codes. Thirdly, in order to further improve the error-correcting performance of the code, linear programming (LP) is utilized to decode the (89, 45, 17) QR code. Simulation results show that the proposed algebraic decoding algorithm reduces the decoding time when compared with Lin et al.'s hard decoding algorithm, and thus significantly reduces the decoding complexity of soft decoding while maintaining the same bit error rate (BER) performance. Moreover, the LP-based decoding improves the error-rate performance almost without increasing the decoding complexity, when compared with the new soft-decision decoding algorithm. It provides a coding gain of 0.2 dB at BER = 2 × 10 -6 . In this paper, Three decoding methods of the (89, 45, 17) binary quadratic residue (QR) code to be presented are hard, soft and linear programming decoding algorithms. Firstly, a new hybrid algebraic decoding algorithm for the (89, 45, 17) QR code is proposed. It uses the Laplace formula to obtain the primary unknown syndromes, as done in Lin et al.'s algorithm when the number of errors v is less than or equal to 5, whereas Gaussian elimination is adopted to compute the unknown syndromes when v ≥ 6. Secondly, an appropriate modification to the algorithm developed by Chase is also given in this paper. Therefore, combining the proposed algebraic decoding algorithm with the modified Chase-II algorithm, called a new soft-decision decoding algorithm, becomes a complete soft decoding of QR codes. Thirdly, in order to further improve the error-correcting performance of the code, linear programming (LP) is utilized to decode the (89, 45, 17) QR code. Simulation results show that the proposed algebraic decoding algorithm reduces the decoding time when compared with Lin et al.'s hard decoding algorithm, and thus significantly reduces the decoding complexity of soft decoding while maintaining the same bit error rate (BER) performance. Moreover, the LP-based decoding improves the error-rate performance almost without increasing the decoding complexity, when compared with the new soft-decision decoding algorithm. It provides a coding gain of 0.2 dB at BER = 2 x 10^{-6}. |
| Author | Trieu-Kien Truong Lin Wang Tsung-Ching Lin Yong Li |
| Author_xml | – sequence: 1 givenname: Lin surname: Wang fullname: Wang, Lin – sequence: 2 givenname: Yong surname: Li fullname: Li, Yong – sequence: 3 givenname: Trieu-Kien surname: Truong fullname: Truong, Trieu-Kien – sequence: 4 givenname: Tsung-Ching surname: Lin fullname: Lin, Tsung-Ching |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27211076$$DView record in Pascal Francis |
| BookMark | eNqNkcFqFTEUhoNU8Lb6BG4CIlToXE-SyeRkI5SrrULLRanrkEkymjKd1GRm4dub2ylddOXqbL7_P4fvHJOjKU2BEMpgyxjojze7_fX1lgPjW8a5ehjAUb0gGyYlNoBSHZENgIamUwpfkeNSbgGgBSE2pNtP9HNwycfpF00DnX8Heor6jLbyjDL1gX5frM92jo7-CCX6JdBd8uE1eTnYsYQ3j_OE_Lz4crP72lztL7_tzq8aJxTMjeIt9N6hRcSeeY09Dg5Qc-2lCApxaLEdlOraninp0HOoBAjfyp7DIMQJOV1773P6s4Qym7tYXBhHO4W0FMNEJ5lUAnVF3z1Db9OSp3pdpVrFhWb6QL1_pGxxdhyynVws5j7HO5v_Gq54taq6yuHKuZxKyWF4QhiYg3jzIN4cxJtVvFnF1-inZ1EX52owTXO2cfyfgrdrQQwhPO3t6sNQofgHAxWOog |
| CODEN | IECMBT |
| CitedBy_id | crossref_primary_10_1109_TCOMM_2014_2333663 crossref_primary_10_1109_TCOMM_2014_2386854 crossref_primary_10_3390_electronics11213598 crossref_primary_10_1049_iet_com_2015_0159 crossref_primary_10_1109_TIT_2018_2830327 crossref_primary_10_1109_TIT_2020_2990421 |
| Cites_doi | 10.1109/TIT.2008.929956 10.1109/PIMRC.2009.5449999 10.1109/18.53750 10.1109/TIT.1978.1055873 10.1109/TIT.1972.1054746 10.1007/978-1-4615-5005-1 10.1109/TCOMM.2003.816994 10.1109/TIT.2010.2048489 10.1049/ip-cdt:19941294 10.1109/18.61132 10.1109/TIT.1987.1057262 10.1109/JSAC.2009.090818 10.1109/18.135639 10.1109/TIT.2007.915712 10.1109/TCOMM.2005.847147 10.1049/ip-i-2.1991.0018 10.1109/TIT.1964.1053699 10.1109/18.915677 10.1109/ISIT.2007.4557442 10.1049/ip-e.1991.0040 10.1109/TIT.2012.2204955 10.1109/TIT.2004.842696 10.1002/j.1538-7305.1950.tb00463.x 10.1109/LCOMM.2010.121310.101225 10.1109/TIT.2008.2006384 |
| ContentType | Journal Article |
| Copyright | 2014 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2013 |
| Copyright_xml | – notice: 2014 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2013 |
| DBID | 97E RIA RIE AAYXX CITATION IQODW 7SP 8FD L7M F28 FR3 |
| DOI | 10.1109/TCOMM.2012.122712.120287 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Library CrossRef Pascal-Francis Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Engineering Research Database Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Applied Sciences |
| EISSN | 1558-0857 |
| EndPage | 841 |
| ExternalDocumentID | 2958403641 27211076 10_1109_TCOMM_2012_122712_120287 6403878 |
| Genre | orig-research |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IES IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 ZCA ZCG AAYXX CITATION AAYOK IQODW RIG 7SP 8FD L7M F28 FR3 |
| ID | FETCH-LOGICAL-c370t-7240bdc8a888b1d98b8fc08929d53e788f484f7764b175c8d20b8f03d45b20f33 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000318420800036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0090-6778 |
| IngestDate | Sun Sep 28 12:21:02 EDT 2025 Sun Nov 30 04:16:22 EST 2025 Wed Apr 02 07:25:20 EDT 2025 Sat Nov 29 01:41:31 EST 2025 Tue Nov 18 22:24:34 EST 2025 Wed Aug 27 02:49:11 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Performance evaluation Berlekamp-Massey algorithm Error estimation Bit error rate Error rate Berlekamp Massey algorithm Linear programming Decoding Chase algorithm Simulation Coding Gaussian elimination quadratic residue code Residue codes Algorithm complexity Error correction Soft decision |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c370t-7240bdc8a888b1d98b8fc08929d53e788f484f7764b175c8d20b8f03d45b20f33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| PQID | 1347239199 |
| PQPubID | 85472 |
| PageCount | 10 |
| ParticipantIDs | crossref_primary_10_1109_TCOMM_2012_122712_120287 pascalfrancis_primary_27211076 ieee_primary_6403878 proquest_journals_1347239199 proquest_miscellaneous_1365157389 crossref_citationtrail_10_1109_TCOMM_2012_122712_120287 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-03-01 |
| PublicationDateYYYYMMDD | 2013-03-01 |
| PublicationDate_xml | – month: 03 year: 2013 text: 2013-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY – name: New York |
| PublicationTitle | IEEE transactions on communications |
| PublicationTitleAbbrev | TCOMM |
| PublicationYear | 2013 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | he (ref2) 2001; 47 ref31 ref30 xu youzhi (ref14) 1991; 138 prange (ref1) 1958 ref11 ref10 ref17 ref16 ref19 ref18 szabo (ref33) 2003; 11 reed (ref13) 1991; 138 ref24 lin (ref29) 2004 ref23 ref26 ref25 ref20 ref22 ref21 reed (ref4) 1990; 137 ref28 chen (ref12) 1994; 40 ref27 (ref32) 0 blahut (ref15) 1983 ref8 ref7 ref3 ref6 chen (ref9) 2007; 23 ref5 |
| References_xml | – year: 2004 ident: ref29 publication-title: Error Control Coding – ident: ref17 doi: 10.1109/TIT.2008.929956 – ident: ref20 doi: 10.1109/PIMRC.2009.5449999 – ident: ref6 doi: 10.1109/18.53750 – ident: ref22 doi: 10.1109/TIT.1978.1055873 – ident: ref21 doi: 10.1109/TIT.1972.1054746 – ident: ref7 doi: 10.1007/978-1-4615-5005-1 – ident: ref11 doi: 10.1109/TCOMM.2003.816994 – ident: ref25 doi: 10.1109/TIT.2010.2048489 – ident: ref10 doi: 10.1049/ip-cdt:19941294 – ident: ref28 doi: 10.1109/18.61132 – ident: ref5 doi: 10.1109/TIT.1987.1057262 – ident: ref27 doi: 10.1109/JSAC.2009.090818 – ident: ref8 doi: 10.1109/18.135639 – ident: ref31 doi: 10.1109/TIT.2007.915712 – year: 1958 ident: ref1 article-title: Some cyclic error-correcting codes with simple decoding algorithms publication-title: Air Force Cambridge Research Center-TN-58-156 – ident: ref16 doi: 10.1109/TCOMM.2005.847147 – volume: 138 start-page: 138 year: 1991 ident: ref14 article-title: implementation of berlekamp-massey algorithm without inversion publication-title: IEE Proceedings I - Communications Speech and Vision doi: 10.1049/ip-i-2.1991.0018 – year: 1983 ident: ref15 publication-title: Theory and Practice of Error Control Code – volume: 11 start-page: 155 year: 2003 ident: ref33 article-title: On interior-point methods and simplex method in linear programming publication-title: Ann St Univ Ovidius Constanta – ident: ref18 doi: 10.1109/TIT.1964.1053699 – volume: 23 start-page: 127 year: 2007 ident: ref9 article-title: Algebraic decoding of quadratic residue codes using Berlekamp-Massey algorithm publication-title: J Inf Sci Eng – volume: 47 start-page: 1181 year: 2001 ident: ref2 article-title: Decoding of the (47, 24, 11) quadratic residue code publication-title: IEEE Trans Inf Theory doi: 10.1109/18.915677 – ident: ref30 doi: 10.1109/ISIT.2007.4557442 – volume: 138 start-page: 295 year: 1991 ident: ref13 article-title: vlsi design of inverse-free berlekamp-massey algorithm publication-title: Computers and Digital Techniques IEE Proceedings- doi: 10.1049/ip-e.1991.0040 – volume: 137 start-page: 202 year: 1990 ident: ref4 article-title: Decoding the (24, 12, 8) Golay code publication-title: Proc Inst Electr Eng – ident: ref26 doi: 10.1109/TIT.2012.2204955 – volume: 40 start-page: 1654 year: 1994 ident: ref12 article-title: Use of Gröbner bases to decode binary cyclic codes up to the true minimum distance publication-title: IEEE Trans Commun – ident: ref23 doi: 10.1109/TIT.2004.842696 – year: 0 ident: ref32 publication-title: GNU Linear Programming Kit – ident: ref3 doi: 10.1002/j.1538-7305.1950.tb00463.x – ident: ref19 doi: 10.1109/LCOMM.2010.121310.101225 – ident: ref24 doi: 10.1109/TIT.2008.2006384 |
| SSID | ssj0004033 |
| Score | 2.108185 |
| Snippet | In this paper, Three decoding methods of the (89, 45, 17) binary quadratic residue (QR) code to be presented are hard, soft and linear programming decoding... |
| SourceID | proquest pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 832 |
| SubjectTerms | Algebra Algorithm design and analysis Algorithms Applied sciences Approximation algorithms Berlekamp-Massey algorithm Chase algorithm Codes Coding, codes Complexity Complexity theory Decoding Exact sciences and technology Gaussian elimination Information, signal and communications theory Linear programming Maximum likelihood decoding Noise levels Performance enhancement Polynomials quadratic residue code Residues Signal and communications theory Telecommunications and information theory |
| Title | On Decoding of the (89, 45, 17) Quadratic Residue Code |
| URI | https://ieeexplore.ieee.org/document/6403878 https://www.proquest.com/docview/1347239199 https://www.proquest.com/docview/1365157389 |
| Volume | 61 |
| WOSCitedRecordID | wos000318420800036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore Digital Library customDbUrl: eissn: 1558-0857 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004033 issn: 0090-6778 databaseCode: RIE dateStart: 19720101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6S0EN7SNqmpc4LBXpoYZ3IkmxJx7Bt6CWPlhRyM7IeECh2yK7z-zOSvU5Ce0hPNkjCZmbkmc-amQ_gs_HCGIRceSUR6QhfhLypmiK3ZWkC-jfOg0tkE_L8XF1f68s1mE21MN77lHzmj-JtOst3ne3jr7LjSsTDVrUO61JWQ63WYw0k5WPHyZjOLtUqa4fq46v5xdlZzOJiRwVjMl3Qrcpnrihxq8TMSLNA4YSB1eKvD3TyOqdb__e-b2FzjC7JyWAO72DNt-_hzZOeg9tQXbTkG2LO6LNIFwgGgOSL0jMiyhkp5FfyszcumoUlvzyaau_JvHP-A_w-_X41_5GP5Am55ZIuc4muunFWGYS4TeG0alSwVGE05EruEfgGoURAOYoGIwirHKM4g3InyobRwPlH2Gi71n8C4pivJJXWaVaIJghDHfWmNJWwuJupzUCu5FjbsbN4JLj4UyeEQXWdNFBHDdSDBupBAxkU08rbobvGC9ZsR0lP80chZ3DwTHXTOBswbpXB3kqX9bhPF3UspGVcF1pncDgN4w6Lxyam9V0f50S6eImR3c6_H70Lr1kiyYiZaXuwsbzr_T68svfLm8XdQTLTB9EZ3aw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB21BanlAKUFESitkTgUadM6thPbR7RQFdHdQrVIvVmOPyQklFTdDb8f28kGKnqAUyLZVqKZcWZePDMP4K12TOsAufKKB6TDXOHzuqqL3JSl9sG_UeptIpvg87m4vpZfNmAy1sI451LymTuJt-ks37ami7_KTisWD1vFJjwoGSO4r9b6XQWJ6dBzMia0c7HO28HydDG9nM1iHhc5KQjh6RIcK7_jjBK7SsyN1MsgHt_zWvz1iU5-5-zJ_73xLjwe4kv0vjeIp7Dhmj149EfXwX2oLhv0IaDO6LVQ61EIAdGxkBPEygkq-Dv0tdM2GoZBVy4Ya-fQtLXuGXw7-7iYnucDfUJuKMernAdnXVsjdAC5dWGlqIU3WIR4yJbUBejrmWCe84rVIYYwwhIcZmBqWVkT7Cl9DltN27gXgCxxFcfcWEkKVnumscVOl7piJuxnbDLgazkqM_QWjxQXP1TCGFiqpAEVNaB6DaheAxkU48qbvr_GP6zZj5Ie5w9CzuDwjurGcdKj3CqDg7Uu1bBTlyqW0hIqCykzeDMOhz0WD05049ouzomE8TzEdi_vf_QRbJ8vZhfq4tP88yvYIYkyI-apHcDW6rZzr-Gh-bn6vrw9TCb7C4c-4PM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Decoding+of+the+%2889%2C+45%2C+17%29+Quadratic+Residue+Code&rft.jtitle=IEEE+transactions+on+communications&rft.au=Wang%2C+Lin&rft.au=Li%2C+Yong&rft.au=Truong%2C+Trieu-Kien&rft.au=Lin%2C+Tsung-Ching&rft.date=2013-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0090-6778&rft.eissn=1558-0857&rft.volume=61&rft.issue=3&rft.spage=832&rft_id=info:doi/10.1109%2FTCOMM.2012.122712.120287&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2958403641 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6778&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6778&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6778&client=summon |