YOLO deep learning algorithm for object detection in agriculture: a review

YOLO represents the one-stage object detection also called regression-based object detection. Object in the given input is directly classified and located instead of using the candidate region. The accuracy from two-stage detection is higher than one-stage detection where one-stage object detection...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural engineering (Pisa, Italy) Jg. 55; H. 4
Hauptverfasser: Kanna S, Kamalesh, Ramalingam, Kumaraperumal, P, Pazhanivelan, R, Jagadeeswaran, P.C., Prabu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Bologna PAGEPress Publications 01.01.2024
Schlagworte:
ISSN:1974-7071, 2239-6268
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract YOLO represents the one-stage object detection also called regression-based object detection. Object in the given input is directly classified and located instead of using the candidate region. The accuracy from two-stage detection is higher than one-stage detection where one-stage object detection speed is higher than two-stage object detection. YOLO has become popular because of its Detection accuracy, good generalization, open-source, and speed. YOLO boasts exceptional speed due to its approach of using regression problems for frame detection, eliminating the need for a complex pipeline.  In agriculture, using remote sensing and drone technologies YOLO classifies and detects crops, diseases, and pests, and is also used for land use mapping, environmental monitoring, urban planning, and wildlife. Recent research highlights YOLO's impressive performance in various agricultural applications. For instance, YOLOv4 demonstrated high accuracy in counting and locating small objects in UAV-captured images of bean plants, achieving an AP of 84.8% and a recall of 89%. Similarly, YOLOv5 showed significant precision in identifying rice leaf diseases, with a precision rate of 90%. In this review, we discuss the basic principles behind YOLO, different versions of YOLO, limitations, and YOLO application in agriculture and farming.
AbstractList YOLO represents the one-stage object detection also called regression-based object detection. Object in the given input is directly classified and located instead of using the candidate region. The accuracy from two-stage detection is higher than one-stage detection where one-stage object detection speed is higher than two-stage object detection. YOLO has become popular because of its Detection accuracy, good generalization, open-source, and speed. YOLO boasts exceptional speed due to its approach of using regression problems for frame detection, eliminating the need for a complex pipeline.  In agriculture, using remote sensing and drone technologies YOLO classifies and detects crops, diseases, and pests, and is also used for land use mapping, environmental monitoring, urban planning, and wildlife. Recent research highlights YOLO's impressive performance in various agricultural applications. For instance, YOLOv4 demonstrated high accuracy in counting and locating small objects in UAV-captured images of bean plants, achieving an AP of 84.8% and a recall of 89%. Similarly, YOLOv5 showed significant precision in identifying rice leaf diseases, with a precision rate of 90%. In this review, we discuss the basic principles behind YOLO, different versions of YOLO, limitations, and YOLO application in agriculture and farming.
YOLO represents the one-stage object detection also called regression-based object detection. Object in the given input is directly classified and located instead of using the candidate region. The accuracy from two-stage detection is higher than one-stage detection where one-stage object detection speed is higher than two-stage object detection. YOLO has become popular because of its Detection accuracy, good generalization, open-source, and speed. YOLO boasts exceptiol speed due to its approach of using regression problems for frame detection, elimiting the need for a complex pipeline. In agriculture, using remote sensing and drone technologies YOLO classifies and detects crops, diseases, and pests, and is also used for land use mapping, environmental monitoring, urban planning, and wildlife. Recent research highlights YOLO's impressive performance in various agricultural applications. For instance, YOLOv4 demonstrated high accuracy in counting and locating small objects in UAV-captured images of bean plants, achieving an AP of 84.8% and a recall of 89%. Similarly, YOLOv5 showed significant precision in identifying rice leaf diseases, with a precision rate of 90%. In this review, we discuss the basic principles behind YOLO, different versions of YOLO, limitations, and YOLO application in agriculture and farming.
Author R, Jagadeeswaran
P, Pazhanivelan
Kanna S, Kamalesh
P.C., Prabu
Ramalingam, Kumaraperumal
Author_xml – sequence: 1
  givenname: Kamalesh
  surname: Kanna S
  fullname: Kanna S, Kamalesh
– sequence: 2
  givenname: Kumaraperumal
  surname: Ramalingam
  fullname: Ramalingam, Kumaraperumal
– sequence: 3
  givenname: Pazhanivelan
  surname: P
  fullname: P, Pazhanivelan
– sequence: 4
  givenname: Jagadeeswaran
  surname: R
  fullname: R, Jagadeeswaran
– sequence: 5
  givenname: Prabu
  surname: P.C.
  fullname: P.C., Prabu
BookMark eNptkc1PGzEUxK0KpKbAsXdLPW_qr_iDG0KUgiLlQg89WW-9b4NXyzr1Oq347-sQuCBOIz3NjEbv94WcTGlCQr5ytlTM8u8D4FIwoZZcK_6JLISQrtFC2xOy4M6oxjDDP5OLeR4YY1w4Z5xckPvfm_WGdog7OiLkKU5bCuM25Vgen2ifMk3tgKFUS6kS00TjRGGbY9iPZZ_xkgLN-Dfiv3Ny2sM448WrnpFfP24ern82683t3fXVugnSsNLodqXAYheY612_ki5Ia0MrbBeMxqpobasdMKZ54NChgpVQtlOyV6x1nTwjd8feLsHgdzk-QX72CaJ_OaS89ZBLDCP6TgXdCr6qUaN02zsBvbK8dZYbZQWvXd-OXbuc_uxxLn5I-zzV-V5yI4VwSrPqkkdXyGmeM_Y-xAKHZ5QMcfSc-QMDXxn4AwN_YFBTzbvU29aP_f8BWRKJCQ
CitedBy_id crossref_primary_10_3390_app15179341
crossref_primary_10_1016_j_biosystemseng_2025_104245
crossref_primary_10_3390_life15060910
crossref_primary_10_1016_j_atech_2025_101126
crossref_primary_10_3390_agriculture15161786
Cites_doi 10.1109/ICCV.1998.710772
10.3390/f15050737
10.1109/ITW.2015.7133169
10.1007/978-3-319-46475-6_28
10.1007/978-981-99-7216-6_18
10.1016/j.procs.2022.01.135
10.3390/app13126880
10.1109/CVPR.2016.91
10.3390/f15040691
10.3390/agriengineering5040111
10.3390/a15120440
10.18494/SAM3553
10.1109/ACCESS.2023.3343450
10.1109/TPAMI.2014.2343217
10.1109/WACV.2016.7477564
10.5039/agraria.v17i2a1353
10.14569/IJACSA.2023.0140265
10.1016/j.atech.2023.100311
10.1109/MetroAgriFor52389.2021.9628717
10.48084/etasr.6377
10.1155/2019/8597606
10.1016/j.compag.2020.105742
10.1007/978-981-99-6755-1_17
10.1109/ACCESS.2018.2834960
10.1109/ICIIS58898.2023.10253539
10.1109/ICCV48922.2021.00349
10.3390/app13148502
10.1016/j.ophoto.2023.100045
10.1109/CVPR.2017.690
10.1109/CVPR46437.2021.01352
10.1590/1678-992x-2022-0064
10.1109/CVPR52729.2023.00721
10.3389/frobt.2021.627009
10.5391/IJFIS.2022.22.3.223
10.1007/s11042-022-13644-y
10.3390/f15010061
10.3390/drones7080492
10.1007/978-3-031-45438-7_26
10.3390/s23042165
10.1016/j.compag.2021.106560
10.1109/EECSI59885.2023.10295670
10.19101/IJATEE.2022.10100136
10.3390/s20174938
10.3390/rs13245182
10.1109/ASYU56188.2022.9925332
10.1007/s10346-021-01694-6
10.5194/isprs-archives-XLVIII-4-W6-2022-75-2023
10.13031/trans.13791
10.1109/ICDAR.2015.7333881
10.1007/s42979-023-02572-9
10.1016/j.compag.2022.107116
10.3390/rs13112171
10.3389/fpls.2021.753603
10.1007/s11042-020-08976-6
10.1016/B978-0-12-818366-3.00005-8
10.3390/rs14236137
10.1109/ACCESS.2023.3325747
10.3390/a16070343
10.1007/978-3-319-46448-0_2
10.1109/CVPR.2018.00062
10.4108/eai.9-6-2022.174181
10.1109/MED51440.2021.9480344
10.1016/j.eswa.2023.122212
10.1109/ACCESS.2023.3292530
10.1109/CVPRW50498.2020.00203
10.1109/CVPR.2017.685
10.1109/ICCV.2015.169
10.3390/agronomy13082106
10.3390/f15050869
10.1088/1755-1315/974/1/012058
10.1007/978-981-99-7962-2_39
10.1177/1550147719852036
10.1007/978-3-031-72751-1_1
10.1016/j.atech.2023.100231
10.12785/ijcds/140199
10.7717/peerj-cs.1463
10.3390/s20236896
10.3389/fpls.2022.921057
10.1016/j.ecoinf.2022.101919
10.3390/electronics13020273
10.1109/ACCESS.2019.2933060
10.1109/ECICE50847.2020.9301932
10.1038/s41598-021-81216-5
10.3390/agronomy14010126
10.47163/agrociencia.v57i7.2970
10.1109/ACCESS.2024.3351805
10.3390/horticulturae9040443
10.1007/s00521-021-06029-z
10.5220/0009421302080215
10.3390/agronomy12102483
10.3390/agronomy13092279
10.1109/TPAMI.2014.2300479
10.1109/ACCESS.2022.3220234
10.1080/00401706.2021.1904738
10.3389/fpls.2023.1120724
10.1016/j.compag.2019.01.012
10.1109/CVPR.2018.00913
10.3390/rs15020539
10.1016/j.compag.2021.106066
10.1007/s11760-021-02024-y
10.1109/JSTARS.2022.3140776
10.3389/fpls.2022.806878
ContentType Journal Article
Copyright 2024. This work is licensed under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is licensed under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7X2
8FE
8FG
8FH
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
HCIFZ
L6V
M0K
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOA
DOI 10.4081/jae.2024.1641
DatabaseName CrossRef
ProQuest Central (Corporate)
Agricultural Science Collection
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Agricultural Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef

Agricultural Science Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database (subscription)
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2239-6268
ExternalDocumentID oai_doaj_org_article_d4c6b2153f4746bf92af481b98174821
10_4081_jae_2024_1641
GroupedDBID 5VS
67V
7X2
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
AEUYN
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
KQ8
M0K
M7S
PHGZM
PHGZT
PIMPY
PQGLB
PTHSS
3V.
8FE
8FG
8FH
8FK
ABUWG
AZQEC
DWQXO
L6V
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c370t-6b54a8edc09f9f539c388cb28dc76eb28e88b69a0061c1ade4a5248d43f40b9d3
IEDL.DBID M7S
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001404714500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1974-7071
IngestDate Mon Nov 10 04:29:00 EST 2025
Fri Jul 25 11:43:27 EDT 2025
Sat Nov 29 03:38:47 EST 2025
Tue Nov 18 22:14:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by-nc/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-6b54a8edc09f9f539c388cb28dc76eb28e88b69a0061c1ade4a5248d43f40b9d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3173229460?pq-origsite=%requestingapplication%
PQID 3173229460
PQPubID 4728908
ParticipantIDs doaj_primary_oai_doaj_org_article_d4c6b2153f4746bf92af481b98174821
proquest_journals_3173229460
crossref_citationtrail_10_4081_jae_2024_1641
crossref_primary_10_4081_jae_2024_1641
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Bologna
PublicationPlace_xml – name: Bologna
PublicationTitle Journal of agricultural engineering (Pisa, Italy)
PublicationYear 2024
Publisher PAGEPress Publications
Publisher_xml – name: PAGEPress Publications
References 20214
20213
20179
20212
20178
20211
20177
20210
20176
20175
20174
20219
20218
20217
20216
20215
20173
20172
20171
20170
20225
20224
20223
20189
20222
20188
20221
20187
20220
20186
20185
20229
20228
20227
20226
20184
20183
20182
20181
20180
20159
20158
20157
20156
20155
20154
20153
20152
20151
20150
20203
20169
20202
20168
20201
20167
20200
20166
20165
20164
20163
20209
20208
20207
20206
20205
20204
20162
20161
20160
20137
20136
20135
20134
20133
20139
20138
20148
20147
20146
20145
20144
20143
20142
20141
20149
20140
20236
20235
20234
20233
20199
20232
20198
20231
20197
20230
20196
20239
20238
20237
20195
20194
20193
20192
20191
20190
20247
20246
20245
20244
20243
20242
20241
20240
20248
References_xml – ident: 20197
  doi: 10.1109/ICCV.1998.710772
– ident: 20236
  doi: 10.3390/f15050737
– ident: 20221
  doi: 10.1109/ITW.2015.7133169
– ident: 20243
  doi: 10.1007/978-3-319-46475-6_28
– ident: 20215
– ident: 20133
  doi: 10.1007/978-981-99-7216-6_18
– ident: 20176
  doi: 10.1016/j.procs.2022.01.135
– ident: 20165
  doi: 10.3390/app13126880
– ident: 20204
  doi: 10.1109/CVPR.2016.91
– ident: 20248
  doi: 10.3390/f15040691
– ident: 20170
  doi: 10.3390/agriengineering5040111
– ident: 20216
  doi: 10.3390/a15120440
– ident: 20153
  doi: 10.18494/SAM3553
– ident: 20188
  doi: 10.1109/ACCESS.2023.3343450
– ident: 20211
  doi: 10.1109/TPAMI.2014.2343217
– ident: 20218
– ident: 20175
– ident: 20181
– ident: 20147
  doi: 10.1109/WACV.2016.7477564
– ident: 20231
  doi: 10.5039/agraria.v17i2a1353
– ident: 20191
  doi: 10.14569/IJACSA.2023.0140265
– ident: 20179
  doi: 10.1016/j.atech.2023.100311
– ident: 20195
  doi: 10.1109/MetroAgriFor52389.2021.9628717
– ident: 20203
  doi: 10.48084/etasr.6377
– ident: 20217
  doi: 10.1155/2019/8597606
– ident: 20232
  doi: 10.1016/j.compag.2020.105742
– ident: 20136
  doi: 10.1007/978-981-99-6755-1_17
– ident: 20238
  doi: 10.1109/ACCESS.2018.2834960
– ident: 20135
  doi: 10.1109/ICIIS58898.2023.10253539
– ident: 20164
  doi: 10.1109/ICCV48922.2021.00349
– ident: 20212
  doi: 10.3390/app13148502
– ident: 20214
  doi: 10.1016/j.ophoto.2023.100045
– ident: 20205
  doi: 10.1109/CVPR.2017.690
– ident: 20159
  doi: 10.1109/CVPR46437.2021.01352
– ident: 20213
– ident: 20144
  doi: 10.1590/1678-992x-2022-0064
– ident: 20224
  doi: 10.1109/CVPR52729.2023.00721
– ident: 20173
  doi: 10.3389/frobt.2021.627009
– ident: 20193
  doi: 10.5391/IJFIS.2022.22.3.223
– ident: 20160
  doi: 10.1007/s11042-022-13644-y
– ident: 20235
  doi: 10.3390/f15010061
– ident: 20199
  doi: 10.3390/drones7080492
– ident: 20149
  doi: 10.1007/978-3-031-45438-7_26
– ident: 20157
  doi: 10.3390/s23042165
– ident: 20177
  doi: 10.1016/j.compag.2021.106560
– ident: 20140
  doi: 10.1109/EECSI59885.2023.10295670
– ident: 20142
  doi: 10.19101/IJATEE.2022.10100136
– ident: 20182
  doi: 10.3390/s20174938
– ident: 20163
  doi: 10.3390/rs13245182
– ident: 20196
  doi: 10.1109/ASYU56188.2022.9925332
– ident: 20198
– ident: 20155
  doi: 10.1007/s10346-021-01694-6
– ident: 20145
  doi: 10.5194/isprs-archives-XLVIII-4-W6-2022-75-2023
– ident: 20171
  doi: 10.13031/trans.13791
– ident: 20245
  doi: 10.1109/ICDAR.2015.7333881
– ident: 20168
– ident: 20208
  doi: 10.1007/s42979-023-02572-9
– ident: 20150
  doi: 10.1016/j.compag.2022.107116
– ident: 20201
  doi: 10.3390/rs13112171
– ident: 20219
– ident: 20200
  doi: 10.3389/fpls.2021.753603
– ident: 20234
  doi: 10.1007/s11042-020-08976-6
– ident: 20178
  doi: 10.1016/B978-0-12-818366-3.00005-8
– ident: 20137
  doi: 10.3390/rs14236137
– ident: 20187
  doi: 10.1109/ACCESS.2023.3325747
– ident: 20189
  doi: 10.3390/a16070343
– ident: 20185
  doi: 10.1007/978-3-319-46448-0_2
– ident: 20246
  doi: 10.1109/CVPR.2018.00062
– ident: 20242
  doi: 10.4108/eai.9-6-2022.174181
– ident: 20183
  doi: 10.1109/MED51440.2021.9480344
– ident: 20230
  doi: 10.1016/j.eswa.2023.122212
– ident: 20240
  doi: 10.1109/ACCESS.2023.3292530
– ident: 20225
  doi: 10.1109/CVPRW50498.2020.00203
– ident: 20174
  doi: 10.1109/CVPR.2017.685
– ident: 20228
– ident: 20169
  doi: 10.1109/ICCV.2015.169
– ident: 20227
  doi: 10.3390/agronomy13082106
– ident: 20233
  doi: 10.3390/f15050869
– ident: 20194
  doi: 10.1088/1755-1315/974/1/012058
– ident: 20209
  doi: 10.1007/978-981-99-7962-2_39
– ident: 20239
  doi: 10.1177/1550147719852036
– ident: 20226
  doi: 10.1007/978-3-031-72751-1_1
– ident: 20134
  doi: 10.1016/j.atech.2023.100231
– ident: 20141
  doi: 10.12785/ijcds/140199
– ident: 20139
  doi: 10.7717/peerj-cs.1463
– ident: 20148
  doi: 10.3390/s20236896
– ident: 20158
  doi: 10.3389/fpls.2022.921057
– ident: 20207
  doi: 10.1016/j.ecoinf.2022.101919
– ident: 20237
  doi: 10.3390/electronics13020273
– ident: 20156
  doi: 10.1109/ACCESS.2019.2933060
– ident: 20210
  doi: 10.1109/ECICE50847.2020.9301932
– ident: 20180
  doi: 10.1038/s41598-021-81216-5
– ident: 20192
  doi: 10.3390/agronomy14010126
– ident: 20172
– ident: 20162
  doi: 10.47163/agrociencia.v57i7.2970
– ident: 20202
  doi: 10.1109/ACCESS.2024.3351805
– ident: 20151
  doi: 10.3390/horticulturae9040443
– ident: 20166
  doi: 10.1007/s00521-021-06029-z
– ident: 20222
  doi: 10.5220/0009421302080215
– ident: 20186
– ident: 20154
  doi: 10.3390/agronomy12102483
– ident: 20229
  doi: 10.3390/agronomy13092279
– ident: 20161
  doi: 10.1109/TPAMI.2014.2300479
– ident: 20146
– ident: 20138
  doi: 10.1109/ACCESS.2022.3220234
– ident: 20152
  doi: 10.1080/00401706.2021.1904738
– ident: 20247
  doi: 10.3389/fpls.2023.1120724
– ident: 20220
  doi: 10.1016/j.compag.2019.01.012
– ident: 20184
  doi: 10.1109/CVPR.2018.00913
– ident: 20167
  doi: 10.3390/rs15020539
– ident: 20143
  doi: 10.1016/j.compag.2021.106066
– ident: 20190
  doi: 10.1007/s11760-021-02024-y
– ident: 20206
– ident: 20223
– ident: 20241
  doi: 10.1109/JSTARS.2022.3140776
– ident: 20244
  doi: 10.3389/fpls.2022.806878
SSID ssj0001299793
ssib055683572
ssib044743255
Score 2.3226922
SecondaryResourceType review_article
Snippet YOLO represents the one-stage object detection also called regression-based object detection. Object in the given input is directly classified and located...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
SubjectTerms Accuracy
Agriculture
Algorithms
computer vision
Deep learning
Environmental monitoring
Land use
Machine learning
object detection
Object recognition
Pests
Plant diseases
real-time farming
Remote sensing
Urban planning
Wildlife
YOLO
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA2yeNCD-Imrq-QgnqzbJmmbeFvFRUTUg4KeQr66rqxdqdXf76SNriLixWuZtuF1kpmXZt4gtAdBwKRMmSg3CRAUF2uYc1RHlhlWaMIsUW2zifzykt_diesvrb78mbBWHrgFrg83ZRriEi1YzjJdCKIKBrmW4JBL86aEnMS5-EKmwJMY2FIyq7j0Mls0DRWiYfdF5I0ibyL8gUQItK0AJ4MQ2X9UXkCTsEPgEsm3gNXo-v9YtptYNFxGSyGJxIN28CtozpWraHEwqoKQhltD5_dXF1fYOveMQ2OIEVaT0bQa1w9PGDJVPNV-CwZM6uY0VonHJVazRxxhhdu6lnV0Ozy9OTmLQt-EyNA8rqNMA_rcWROLQhQpFYZybjTh1uQZMGnuONeZUD59MYmyjqmUMG4ZYBxrYekG6pTT0m0i7DJOClXE_mcq81ySAgFJOVUZzHuubBcdfIAjTRAV970tJhLIhcdSApbSYyk9ll20_2n-3Kpp_GZ47JH-NPIi2M0FcA0ZXEP-5Rpd1Pv4TjLMzBcJ-RKsYYJl8dZ_vGMbLfhBt5syPdSpq1e3g-bNWz1-qXYbp3wH2jLeYA
  priority: 102
  providerName: Directory of Open Access Journals
Title YOLO deep learning algorithm for object detection in agriculture: a review
URI https://www.proquest.com/docview/3173229460
https://doaj.org/article/d4c6b2153f4746bf92af481b98174821
Volume 55
WOSCitedRecordID wos001404714500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2239-6268
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001299793
  issn: 1974-7071
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2239-6268
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044743255
  issn: 1974-7071
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 2239-6268
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001299793
  issn: 1974-7071
  databaseCode: M0K
  dateStart: 20090601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database (Proquest)
  customDbUrl:
  eissn: 2239-6268
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001299793
  issn: 1974-7071
  databaseCode: M7S
  dateStart: 20090601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central - New (Subscription)
  customDbUrl:
  eissn: 2239-6268
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001299793
  issn: 1974-7071
  databaseCode: BENPR
  dateStart: 20090601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database (subscription)
  customDbUrl:
  eissn: 2239-6268
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001299793
  issn: 1974-7071
  databaseCode: PIMPY
  dateStart: 20090601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYo9NAeCn0gaGHlQ9VTUxLbSexeECAQfbCs-pDgZPmVZSu6u91N-_uZcbysEGovveQQjywnM56Xx98Q8hqMgCuFcVntCghQQm5hz3GbeeFEY5nwzHTNJup-X15cqEFKuM1TWeVCJ0ZF7ScOc-R7YOdA9pSo8v3prwy7RuHpamqh8YCsIUpCEUv3vi7kSQgwj2x57xLBtniZ7ommHIyqIy5vobAsEcxtB8MpwFDu_TAIo8nEO4goijtmK6L731Pe0SKdrP_vt2yQJ8kXpQed8DwlK6P2GXl8MJwlPI7wnHy8PP98Tn0IU5r6SwypuR7CZO3VTwoOL51YzOQASRuLusZ0NKZmOcV7amh3PeYF-X5y_O3oNEvtFzLH67zNKgtMlMG7XDWqKblyXEpnmfSuriAgl0FKWymDXpArjA_ClExIL3gjcqs83ySr48k4bBEaKska0-R4JiswJOUQx5SSmwrUhzR-m7xd_F3tEjY5tsi41hCjIDM0MEMjMzQyY5u8uSWfdqAcfyM8RFbdEiGWdnwxmQ112poaxLKyID2w7FpUtlHMNAK8eSUhWpMMJtlZcFGnDT7XSxa-_PfwK_IIl9NlbXbIajv7HXbJQ_enHc1nPbJ2eNwffOnFVAA8z_JPvSjDMDL4cDa4vAF9c_KS
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAk48EYUCuwBOOHWWW_sXSSEyqNqaJrmUKT2tOzLIagkITEg_hS_kRl73QghuPXA1V6txp7Ht9_uzgzAYwQB1xPGJYXrIkEJqUWfy2zihROl5cJz0zSbKIZDeXysRmvws82FoWuVbUysA7WfOdoj30acQ9tTIk9fzr8k1DWKTlfbFhqNWeyHH9-Rsi1f9N-gfp9wvvv26PVeErsKJC4r0irJLcomg3epKlXZy5TLpHSWS--KHHmmDFLaXBkCd9c1PgjT40J6kZUitcpnOO8FWBdk7B1YH_UPRietBQuBgMxXmZ5U3ivrxczUuOujiroScFfRRUgE-Kbwp0Bo3v5kqHAnF1vIYbq_AWXdT-APuKgxcPfa__b3rsPVuNpmO4173IC1SXUTruyMF7HiSLgF704OB4fMhzBnsYPGmJnTMQpfffzMcEnPZpb2qnBIVV9bm7LJlJnVFM-ZYU0C0G14fy4fcwc609k03AUWcslLU6Z06iyIdGfI1HoyMzkGSGn8BjxrtaldrL5OTUBONbIwUr5G5WtSviblb8DTs-HzpuzI3wa-ItM4G0TVwusHs8VYx-Cj0fFyi2s7FLsQuS0VN6VAvqIk8lHJcZLN1mp0DGFLvTKZe_9-_Qgu7R0dDPSgP9y_D5dJtGaPahM61eJreAAX3bdqslw8jN7C4MN5m9gv8yxM4A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=YOLO+deep+learning+algorithm+for+object+detection+in+agriculture%3A+a+review&rft.jtitle=Journal+of+agricultural+engineering+%28Pisa%2C+Italy%29&rft.au=Kamalesh%2C+Kanna+S&rft.au=Ramalingam%2C+Kumaraperumal&rft.au=Pazhanivelan%2C+P&rft.au=Jagadeeswaran%2C+R&rft.date=2024-01-01&rft.pub=PAGEPress+Publications&rft.issn=1974-7071&rft.eissn=2239-6268&rft.volume=55&rft.issue=4&rft_id=info:doi/10.4081%2Fjae.2024.1641
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1974-7071&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1974-7071&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1974-7071&client=summon