Sampling/stochastic dynamic programming for optimal operation of multi-purpose reservoirs using artificial neural network-based ensemble streamflow predictions
Due to limited water resources and the increasing demand for agricultural products, it is significantly important to operate surface water reservoirs optimally, especially those located in arid and semi-arid regions. This paper investigates uncertainty-based optimal operation of a multi-purpose wate...
Gespeichert in:
| Veröffentlicht in: | Journal of hydroinformatics Jg. 16; H. 4; S. 907 - 921 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
IWA Publishing
01.01.2014
|
| Schlagworte: | |
| ISSN: | 1464-7141, 1465-1734 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Due to limited water resources and the increasing demand for agricultural products, it is significantly important to operate surface water reservoirs optimally, especially those located in arid and semi-arid regions. This paper investigates uncertainty-based optimal operation of a multi-purpose water reservoir system by using four optimization models. The models include dynamic programming (DP), stochastic DP (SDP) with inflow classification (SDP/Class), SDP with inflow scenarios (SDP/Scenario), and sampling SDP (SSDP) with historical scenarios (SSDP/Hist). The performance of the models was tested in Zayandeh-Rud Reservoir system in Iran by evaluating how their release policies perform in a simulation phase. While the SDP approaches were better than the DP approach, the SSDP/Hist model outperformed the other SDP models. We also assessed the effect of ensemble streamflow predictions (ESPs) that were generated by artificial neural networks on the performance of SSDP/Hist. Application of the models to the Zayandeh-Rud case study demonstrated that SSDP in combination with ESPs and the K-means technique, which was used to cluster a large number of ESPs, could be a promising approach for real-time reservoir operation. |
|---|---|
| AbstractList | Due to limited water resources and the increasing demand for agricultural products, it is significantly important to operate surface water reservoirs optimally, especially those located in arid and semi-arid regions. This paper investigates uncertainty-based optimal operation of a multi-purpose water reservoir system by using four optimization models. The models include dynamic programming (DP), stochastic DP (SDP) with inflow classification (SDP/Class), SDP with inflow scenarios (SDP/Scenario), and sampling SDP (SSDP) with historical scenarios (SSDP/Hist). The performance of the models was tested in Zayandeh-Rud Reservoir system in Iran by evaluating how their release policies perform in a simulation phase. While the SDP approaches were better than the DP approach, the SSDP/Hist model outperformed the other SDP models. We also assessed the effect of ensemble streamflow predictions (ESPs) that were generated by artificial neural networks on the performance of SSDP/Hist. Application of the models to the Zayandeh-Rud case study demonstrated that SSDP in combination with ESPs and the K-means technique, which was used to cluster a large number of ESPs, could be a promising approach for real-time reservoir operation. |
| Author | Anvari, Sedigheh Mousavi, S. Jamshid Morid, Saeed |
| Author_xml | – sequence: 1 givenname: Sedigheh surname: Anvari fullname: Anvari, Sedigheh organization: Faculty of Agriculture, Department of Hydraulic Infrastructure, Tarbiat Modares University, Tehran, Iran – sequence: 2 givenname: S. Jamshid surname: Mousavi fullname: Mousavi, S. Jamshid organization: School of Civil and Environmental Engineering, Amirkabir University of Technology (Polytechnic of Tehran), 424 Hafez Ave, P.O. Box: 15875-4413, Tehran, Iran – sequence: 3 givenname: Saeed surname: Morid fullname: Morid, Saeed organization: Department of Water Resources, Faculty of Agriculture, Tarbiat Modares University, Ale-Ahmad Ave, Shahid Chamran Crossing, Tehran 14117-13116, Iran |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28677189$$DView record in Pascal Francis |
| BookMark | eNp1kc1u1TAQhSNUJNrClnUkhMQmt7GT2M4SVRSQKrEA1pbjjFuXxA4zDtXd8iQ8AO_GK-DcWzaVWB1L_s78nbPiJMQARfGS1TvOhLi43Y8Yd7xmzY434klxylrRVUw27cnh3VaStexZcUZ0V9ecNYqdFr8-m3mZfLi5oBTtraHkbTnug5mzLhhv0Mxz_i5dxDIuyc9mygpoko-hjK6c1yn5allxiQQlAgH-iB6pXGnzGUzeeeuzLcCKB0n3Eb9VgyEYSwgE8zBBSQnBzH9-_4z3uTGM3m4d6Hnx1JmJ4MWDnhdfr959ufxQXX96__Hy7XVlG1mnSvSjs1wwo7rOciNUzTvFbT8oblw3AFgpXScbp0C5RoIE2wtp-cCUGt3YNufFm2PdvPT3FSjp2ZOFaTIB4kqaiVbWTOTLZvTVI_QurhjydJr1bcNY3fR9pl4_UIasmRyaYD3pBfMJca-5ElIytXHtkbMYiRCctj4drpvQ-EmzWm_x6kO8eotXH4fYPbL9q_wfw18pQ7EW |
| CitedBy_id | crossref_primary_10_1007_s10666_018_9628_0 crossref_primary_10_2166_hydro_2020_043 crossref_primary_10_1080_23249676_2022_2093794 crossref_primary_10_1061__ASCE_WR_1943_5452_0000575 crossref_primary_10_2166_hydro_2016_243 crossref_primary_10_2166_hydro_2018_076 crossref_primary_10_1002_ird_2130 crossref_primary_10_1016_j_jhydrol_2018_02_033 crossref_primary_10_1007_s11269_022_03417_5 crossref_primary_10_1007_s11269_019_02481_8 crossref_primary_10_1002_ird_2315 crossref_primary_10_1061_JWRMD5_WRENG_5885 crossref_primary_10_2166_hydro_2017_189 crossref_primary_10_1007_s11269_016_1377_8 crossref_primary_10_1007_s11356_020_12291_w crossref_primary_10_1002_ird_2567 crossref_primary_10_1061__ASCE_WR_1943_5452_0000883 crossref_primary_10_1061__ASCE_WR_1943_5452_0001013 crossref_primary_10_1029_2018WR023177 crossref_primary_10_2166_hydro_2015_066 crossref_primary_10_1007_s00704_023_04402_7 crossref_primary_10_2166_ws_2016_010 crossref_primary_10_2166_ws_2020_251 crossref_primary_10_1007_s11356_023_28236_y crossref_primary_10_3390_w13010026 crossref_primary_10_2166_wpt_2025_029 |
| ContentType | Journal Article |
| Copyright | 2015 INIST-CNRS Copyright IWA Publishing Jul 2014 |
| Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright IWA Publishing Jul 2014 |
| DBID | AAYXX CITATION IQODW 7QH 7UA AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 HCIFZ L.G PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PRINS PYCSY 7TG H97 KL. |
| DOI | 10.2166/hydro.2013.236 |
| DatabaseName | CrossRef Pascal-Francis Aqualine Water Resources Abstracts One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Meteorological & Geoastrophysical Abstracts - Academic |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Aqualine Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic ProQuest One Academic (New) Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1465-1734 |
| EndPage | 921 |
| ExternalDocumentID | 28677189 10_2166_hydro_2013_236 |
| GeographicLocations | Middle East Iran Asia |
| GeographicLocations_xml | – name: Iran |
| GroupedDBID | 0R~ 4.4 5GY 7XC 8CJ 8FE 8FH AAJMC AAJVE AAYXX ABFYC ABLGR ACGFO AECGI AENEX AEUYN AFFHD AFKRA AFRAH AJXRC ALMA_UNASSIGNED_HOLDINGS ATCPS BENPR BHPHI BKSAR CCPQU CITATION CS3 D1J DU5 EBS EJD GEUZO GROUPED_DOAJ H13 HCIFZ HFPTO HZ~ L7B O9- OK1 P2P PATMY PCBAR PHGZM PHGZT PYCSY R0Z RHI ~02 AAYOK AGVJA IQODW 7QH 7UA AZQEC C1K DWQXO F1W GNUQQ H96 L.G PKEHL PQEST PQQKQ PQUKI PRINS 7TG H97 KL. |
| ID | FETCH-LOGICAL-c370t-69dfc261a855c2a6802582c9b82af5beec77f573f8e8f37e7ec967c2b188dfd43 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 30 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000348519300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1464-7141 |
| IngestDate | Tue Oct 07 09:21:26 EDT 2025 Wed Nov 19 05:30:14 EST 2025 Wed Apr 02 07:08:29 EDT 2025 Tue Nov 18 22:31:00 EST 2025 Sat Nov 29 06:21:38 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | models water policy neural networks reservoirs arid environment digital simulation case studies classification surface water water resources stochastic models optimization water resource management prediction uncertainties streamflow |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c370t-69dfc261a855c2a6802582c9b82af5beec77f573f8e8f37e7ec967c2b188dfd43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://iwaponline.com/jh/article-pdf/16/4/907/387396/907.pdf |
| PQID | 1943110399 |
| PQPubID | 2044529 |
| PageCount | 15 |
| ParticipantIDs | proquest_miscellaneous_1647016236 proquest_journals_1943110399 pascalfrancis_primary_28677189 crossref_citationtrail_10_2166_hydro_2013_236 crossref_primary_10_2166_hydro_2013_236 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-01-01 |
| PublicationDateYYYYMMDD | 2014-01-01 |
| PublicationDate_xml | – month: 01 year: 2014 text: 2014-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Journal of hydroinformatics |
| PublicationYear | 2014 |
| Publisher | IWA Publishing |
| Publisher_xml | – name: IWA Publishing |
| SSID | ssj0021381 |
| Score | 2.1154215 |
| Snippet | Due to limited water resources and the increasing demand for agricultural products, it is significantly important to operate surface water reservoirs... |
| SourceID | proquest pascalfrancis crossref |
| SourceType | Aggregation Database Index Database Enrichment Source |
| StartPage | 907 |
| SubjectTerms | Agricultural products Arid zones Artificial neural networks Case studies Computer simulation Dynamic programming Earth sciences Earth, ocean, space Exact sciences and technology Hydrology Hydrology. Hydrogeology Inflow Mathematical models Multipurpose reservoirs Neural networks Optimization Policies Real time operation Reservoir operation Reservoirs Sampling Semi arid areas Semiarid zones Stream discharge Stream flow Surface water Water inflow Water reservoirs Water resources |
| Title | Sampling/stochastic dynamic programming for optimal operation of multi-purpose reservoirs using artificial neural network-based ensemble streamflow predictions |
| URI | https://www.proquest.com/docview/1943110399 https://www.proquest.com/docview/1647016236 |
| Volume | 16 |
| WOSCitedRecordID | wos000348519300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1465-1734 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0021381 issn: 1464-7141 databaseCode: PCBAR dateStart: 19990701 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1465-1734 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0021381 issn: 1464-7141 databaseCode: PATMY dateStart: 19990701 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1465-1734 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0021381 issn: 1464-7141 databaseCode: BENPR dateStart: 19990701 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZgiwRSxT_qQqmMhMTJ7PonsX1CBbXiAKsVFKmcosSxu5W6SUi2Rb3yJDwA78YrMJN4t0IILpxyiGVH-cbjGXv8fYQ8L30iCjedMuFkwZSWiuUmgSwlDUoKByum61VL3unZzBwf23nccOtiWeXaJ_aOuqwd7pFPINmWHM8t7avmC0PVKDxdjRIa18kWMpWJEdl6fTCbf9ikXFz2MqXgDrDqUPGBtlHwNJ0sLssWb_9x-VL0BM1Xy9J2k3fwh8IgbfGHl-6XnsM7__vRd8ntGHTS_cFK7pFrvrpPbkb988XlA_L9Y46V5dXJBGJBt8iRvJmWg1g9jSVcS3hNIcSlNXiZJXRXN34wH1oH2hcmsgZgqztP8U5Te1Gfth3FwvoTigY6cFVQZNDsH339OcNltKSQTPtlceYp3l3Jlz9_fKu_wsB4itRPjIfk0-HB0Zu3LGo3MCf1dMVSWwYH2RkAnziRpwZiKyOcLYzIQ1J477QOiZbBeBOk9to7m2onCm5MGUolH5FRVVd-h9BU-bSQuoTMzChubWGtzrkvVe55SIQdE7aGLnOR2Bz1Nc4ySHAQ6qyHOkOoM4B6TF5s2jcDpcdfW-79Zgmb5gJZALmBoXfXuGdx7nfZFehj8mzzGmYtHsXkla_PoU2qNATbMMbjf3fxhNyCr1HDps8uGa3ac_-U3HAXq9Ou3YvmDs_5_tH7z78A5h8SfA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKFqlIiDdioRQjgTiZ3dhO7BwQ4tGqVZdVBUXqLXUcp1upeZBsW-2VX8IPQPw1_gIzeWyFENx64OSDLduyv5nxeF6EPEucz2M7HjNuRcykEpIZ7YOWEqRScAsS0zZVSyZqOtUHB-HeCvnRx8KgW2XPExtGnRQW_8hHoGwLD-2W4evyC8OqUWhd7UtotLDYdYtzUNnqVzvv4X6fc761uf9um3VVBZgVajxnQZikFvQG2JJvuQk0SH3NbRhrblI_ds4qlfpKpNrpVCinnA0DZXnsaZ2kiRQw7xWyKoX05YCsvt2c7n1cqnieaMqiAvtBL0fptWkiuRcEo9kiqTDa0BMveZMQ-kIMXi9NDTeStqU0_pAKjajbuvm_HdItcqN7VNM3LRXcJisuv0PWuvrus8Vd8u2TQc_5_GgEb107M5icmiaL3GTQdi5qGXRTeMLTArhoBtMVpWvJgxYpbRwvWQmwLGpHMWarOiuOq5pi4MARRQJsc3FQzBDaNI1_PcNnQkJdXrssPnEUY3NM9vP71-IcFkYrWUP498jnSzmg-2SQF7l7QGggXRALlYDmqaUXhnEYKuO5RBrnpT4Ph4T1UIlsl7gd64ecRKDAIbSiBloRQisCaA3Ji-X4sk1Z8teRG78hbzmcY5ZDT8PS6z3Ooo631dEFyIbk6bIbuBKamkzuilMYE0gFygSs8fDfUzwha9v7HybRZGe6-4hcg53J9oNrnQzm1al7TK7as_lxXW10pEbJ4WUD9xe-zG8N |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKiwAJ8a66UIqRQJzCbuwktg8IAe2KqtVqxUPqLXUcu1upeZBsW-2VX8IP4Bfwp_gLzOSxFUJw64GTD7Zsy_5mPON5EfIstSFLzGjkMcMTLxA88LQMQUuJXMCZgRfTNFVL9sVkIg8O1HSF_OhjYdCtsueJDaNOC4N_5ENQtrmPdks1dJ1bxHR7_Lr84mEFKbS09uU0Wojs2cU5qG_1q91tuOvnjI13Pr1773UVBjzDxWjuRSp1BnQI2F5omI4kSACSGZVIpl2YWGuEcKHgTlrpuLDCGhUJwxJfytSlAYd5r5A1wdUIqGvt7c5k-mGp7vm8KZEKrAg9HgO_TRnJ_CgazhZphZGHPn_JmuTQF0_izVLXcDuuLavxxwvRPHvj2__zgd0htzphm75pqeMuWbH5PXK9q_s-W9wn3z5q9KjPj4YgA5uZxqTVNF3kOoO2c13LoJuCaE8L4K4ZTFeUtiUbWjjaOGR6JcC1qC3FWK7qrDiuaooBBUcUCbPN0UExc2jTNH73HooPKbV5bbPkxFKM2dHZz-9fi3NYGK1nDUN4QD5fygGtk9W8yO0GoVFgo4SLFDRSGfhKJUoJ7ds00NZ3IVMD4vWwiU2X0B3ripzEoNghzOIGZjHCLAaYDciL5fiyTWXy15Fbv6FwOZxh9kNfwtKbPebijufV8QXgBuTpshu4FZqgdG6LUxgTBQKUDFjj4b-neEKuAVrj_d3J3iNyAzYWtP9em2R1Xp3ax-SqOZsf19VWR3WUHF42bn8BycR30A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sampling%2Fstochastic+dynamic+programming+for+optimal+operation+of+multi-purpose+reservoirs+using+artificial+neural+network-based+ensemble+stream%EF%AC%82ow+predictions&rft.jtitle=Journal+of+hydroinformatics&rft.au=Anvari%2C+Sedigheh&rft.au=Mousavi%2C+S.+Jamshid&rft.au=Morid%2C+Saeed&rft.date=2014-01-01&rft.issn=1464-7141&rft.eissn=1465-1734&rft.volume=16&rft.issue=4&rft.spage=907&rft.epage=921&rft_id=info:doi/10.2166%2Fhydro.2013.236&rft.externalDBID=n%2Fa&rft.externalDocID=10_2166_hydro_2013_236 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1464-7141&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1464-7141&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1464-7141&client=summon |