Sampling/stochastic dynamic programming for optimal operation of multi-purpose reservoirs using artificial neural network-based ensemble streamflow predictions

Due to limited water resources and the increasing demand for agricultural products, it is significantly important to operate surface water reservoirs optimally, especially those located in arid and semi-arid regions. This paper investigates uncertainty-based optimal operation of a multi-purpose wate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydroinformatics Jg. 16; H. 4; S. 907 - 921
Hauptverfasser: Anvari, Sedigheh, Mousavi, S. Jamshid, Morid, Saeed
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London IWA Publishing 01.01.2014
Schlagworte:
ISSN:1464-7141, 1465-1734
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Due to limited water resources and the increasing demand for agricultural products, it is significantly important to operate surface water reservoirs optimally, especially those located in arid and semi-arid regions. This paper investigates uncertainty-based optimal operation of a multi-purpose water reservoir system by using four optimization models. The models include dynamic programming (DP), stochastic DP (SDP) with inflow classification (SDP/Class), SDP with inflow scenarios (SDP/Scenario), and sampling SDP (SSDP) with historical scenarios (SSDP/Hist). The performance of the models was tested in Zayandeh-Rud Reservoir system in Iran by evaluating how their release policies perform in a simulation phase. While the SDP approaches were better than the DP approach, the SSDP/Hist model outperformed the other SDP models. We also assessed the effect of ensemble streamflow predictions (ESPs) that were generated by artificial neural networks on the performance of SSDP/Hist. Application of the models to the Zayandeh-Rud case study demonstrated that SSDP in combination with ESPs and the K-means technique, which was used to cluster a large number of ESPs, could be a promising approach for real-time reservoir operation.
AbstractList Due to limited water resources and the increasing demand for agricultural products, it is significantly important to operate surface water reservoirs optimally, especially those located in arid and semi-arid regions. This paper investigates uncertainty-based optimal operation of a multi-purpose water reservoir system by using four optimization models. The models include dynamic programming (DP), stochastic DP (SDP) with inflow classification (SDP/Class), SDP with inflow scenarios (SDP/Scenario), and sampling SDP (SSDP) with historical scenarios (SSDP/Hist). The performance of the models was tested in Zayandeh-Rud Reservoir system in Iran by evaluating how their release policies perform in a simulation phase. While the SDP approaches were better than the DP approach, the SSDP/Hist model outperformed the other SDP models. We also assessed the effect of ensemble streamflow predictions (ESPs) that were generated by artificial neural networks on the performance of SSDP/Hist. Application of the models to the Zayandeh-Rud case study demonstrated that SSDP in combination with ESPs and the K-means technique, which was used to cluster a large number of ESPs, could be a promising approach for real-time reservoir operation.
Author Anvari, Sedigheh
Mousavi, S. Jamshid
Morid, Saeed
Author_xml – sequence: 1
  givenname: Sedigheh
  surname: Anvari
  fullname: Anvari, Sedigheh
  organization: Faculty of Agriculture, Department of Hydraulic Infrastructure, Tarbiat Modares University, Tehran, Iran
– sequence: 2
  givenname: S. Jamshid
  surname: Mousavi
  fullname: Mousavi, S. Jamshid
  organization: School of Civil and Environmental Engineering, Amirkabir University of Technology (Polytechnic of Tehran), 424 Hafez Ave, P.O. Box: 15875-4413, Tehran, Iran
– sequence: 3
  givenname: Saeed
  surname: Morid
  fullname: Morid, Saeed
  organization: Department of Water Resources, Faculty of Agriculture, Tarbiat Modares University, Ale-Ahmad Ave, Shahid Chamran Crossing, Tehran 14117-13116, Iran
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28677189$$DView record in Pascal Francis
BookMark eNp1kc1u1TAQhSNUJNrClnUkhMQmt7GT2M4SVRSQKrEA1pbjjFuXxA4zDtXd8iQ8AO_GK-DcWzaVWB1L_s78nbPiJMQARfGS1TvOhLi43Y8Yd7xmzY434klxylrRVUw27cnh3VaStexZcUZ0V9ecNYqdFr8-m3mZfLi5oBTtraHkbTnug5mzLhhv0Mxz_i5dxDIuyc9mygpoko-hjK6c1yn5allxiQQlAgH-iB6pXGnzGUzeeeuzLcCKB0n3Eb9VgyEYSwgE8zBBSQnBzH9-_4z3uTGM3m4d6Hnx1JmJ4MWDnhdfr959ufxQXX96__Hy7XVlG1mnSvSjs1wwo7rOciNUzTvFbT8oblw3AFgpXScbp0C5RoIE2wtp-cCUGt3YNufFm2PdvPT3FSjp2ZOFaTIB4kqaiVbWTOTLZvTVI_QurhjydJr1bcNY3fR9pl4_UIasmRyaYD3pBfMJca-5ElIytXHtkbMYiRCctj4drpvQ-EmzWm_x6kO8eotXH4fYPbL9q_wfw18pQ7EW
CitedBy_id crossref_primary_10_1007_s10666_018_9628_0
crossref_primary_10_2166_hydro_2020_043
crossref_primary_10_1080_23249676_2022_2093794
crossref_primary_10_1061__ASCE_WR_1943_5452_0000575
crossref_primary_10_2166_hydro_2016_243
crossref_primary_10_2166_hydro_2018_076
crossref_primary_10_1002_ird_2130
crossref_primary_10_1016_j_jhydrol_2018_02_033
crossref_primary_10_1007_s11269_022_03417_5
crossref_primary_10_1007_s11269_019_02481_8
crossref_primary_10_1002_ird_2315
crossref_primary_10_1061_JWRMD5_WRENG_5885
crossref_primary_10_2166_hydro_2017_189
crossref_primary_10_1007_s11269_016_1377_8
crossref_primary_10_1007_s11356_020_12291_w
crossref_primary_10_1002_ird_2567
crossref_primary_10_1061__ASCE_WR_1943_5452_0000883
crossref_primary_10_1061__ASCE_WR_1943_5452_0001013
crossref_primary_10_1029_2018WR023177
crossref_primary_10_2166_hydro_2015_066
crossref_primary_10_1007_s00704_023_04402_7
crossref_primary_10_2166_ws_2016_010
crossref_primary_10_2166_ws_2020_251
crossref_primary_10_1007_s11356_023_28236_y
crossref_primary_10_3390_w13010026
crossref_primary_10_2166_wpt_2025_029
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright IWA Publishing Jul 2014
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright IWA Publishing Jul 2014
DBID AAYXX
CITATION
IQODW
7QH
7UA
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
HCIFZ
L.G
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
7TG
H97
KL.
DOI 10.2166/hydro.2013.236
DatabaseName CrossRef
Pascal-Francis
Aqualine
Water Resources Abstracts
One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Aqualine
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1465-1734
EndPage 921
ExternalDocumentID 28677189
10_2166_hydro_2013_236
GeographicLocations Middle East
Iran
Asia
GeographicLocations_xml – name: Iran
GroupedDBID 0R~
4.4
5GY
7XC
8CJ
8FE
8FH
AAJMC
AAJVE
AAYXX
ABFYC
ABLGR
ACGFO
AECGI
AENEX
AEUYN
AFFHD
AFKRA
AFRAH
AJXRC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BENPR
BHPHI
BKSAR
CCPQU
CITATION
CS3
D1J
DU5
EBS
EJD
GEUZO
GROUPED_DOAJ
H13
HCIFZ
HFPTO
HZ~
L7B
O9-
OK1
P2P
PATMY
PCBAR
PHGZM
PHGZT
PYCSY
R0Z
RHI
~02
AAYOK
AGVJA
IQODW
7QH
7UA
AZQEC
C1K
DWQXO
F1W
GNUQQ
H96
L.G
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7TG
H97
KL.
ID FETCH-LOGICAL-c370t-69dfc261a855c2a6802582c9b82af5beec77f573f8e8f37e7ec967c2b188dfd43
IEDL.DBID BENPR
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000348519300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1464-7141
IngestDate Tue Oct 07 09:21:26 EDT 2025
Wed Nov 19 05:30:14 EST 2025
Wed Apr 02 07:08:29 EDT 2025
Tue Nov 18 22:31:00 EST 2025
Sat Nov 29 06:21:38 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords models
water policy
neural networks
reservoirs
arid environment
digital simulation
case studies
classification
surface water
water resources
stochastic models
optimization
water resource management
prediction
uncertainties
streamflow
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-69dfc261a855c2a6802582c9b82af5beec77f573f8e8f37e7ec967c2b188dfd43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://iwaponline.com/jh/article-pdf/16/4/907/387396/907.pdf
PQID 1943110399
PQPubID 2044529
PageCount 15
ParticipantIDs proquest_miscellaneous_1647016236
proquest_journals_1943110399
pascalfrancis_primary_28677189
crossref_citationtrail_10_2166_hydro_2013_236
crossref_primary_10_2166_hydro_2013_236
PublicationCentury 2000
PublicationDate 2014-01-01
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Journal of hydroinformatics
PublicationYear 2014
Publisher IWA Publishing
Publisher_xml – name: IWA Publishing
SSID ssj0021381
Score 2.1154215
Snippet Due to limited water resources and the increasing demand for agricultural products, it is significantly important to operate surface water reservoirs...
SourceID proquest
pascalfrancis
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 907
SubjectTerms Agricultural products
Arid zones
Artificial neural networks
Case studies
Computer simulation
Dynamic programming
Earth sciences
Earth, ocean, space
Exact sciences and technology
Hydrology
Hydrology. Hydrogeology
Inflow
Mathematical models
Multipurpose reservoirs
Neural networks
Optimization
Policies
Real time operation
Reservoir operation
Reservoirs
Sampling
Semi arid areas
Semiarid zones
Stream discharge
Stream flow
Surface water
Water inflow
Water reservoirs
Water resources
Title Sampling/stochastic dynamic programming for optimal operation of multi-purpose reservoirs using artificial neural network-based ensemble streamflow predictions
URI https://www.proquest.com/docview/1943110399
https://www.proquest.com/docview/1647016236
Volume 16
WOSCitedRecordID wos000348519300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1465-1734
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0021381
  issn: 1464-7141
  databaseCode: PCBAR
  dateStart: 19990701
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1465-1734
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0021381
  issn: 1464-7141
  databaseCode: PATMY
  dateStart: 19990701
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1465-1734
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0021381
  issn: 1464-7141
  databaseCode: BENPR
  dateStart: 19990701
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZgiwRSxT_qQqmMhMTJ7PonsX1CBbXiAKsVFKmcosSxu5W6SUi2Rb3yJDwA78YrMJN4t0IILpxyiGVH-cbjGXv8fYQ8L30iCjedMuFkwZSWiuUmgSwlDUoKByum61VL3unZzBwf23nccOtiWeXaJ_aOuqwd7pFPINmWHM8t7avmC0PVKDxdjRIa18kWMpWJEdl6fTCbf9ikXFz2MqXgDrDqUPGBtlHwNJ0sLssWb_9x-VL0BM1Xy9J2k3fwh8IgbfGHl-6XnsM7__vRd8ntGHTS_cFK7pFrvrpPbkb988XlA_L9Y46V5dXJBGJBt8iRvJmWg1g9jSVcS3hNIcSlNXiZJXRXN34wH1oH2hcmsgZgqztP8U5Te1Gfth3FwvoTigY6cFVQZNDsH339OcNltKSQTPtlceYp3l3Jlz9_fKu_wsB4itRPjIfk0-HB0Zu3LGo3MCf1dMVSWwYH2RkAnziRpwZiKyOcLYzIQ1J477QOiZbBeBOk9to7m2onCm5MGUolH5FRVVd-h9BU-bSQuoTMzChubWGtzrkvVe55SIQdE7aGLnOR2Bz1Nc4ySHAQ6qyHOkOoM4B6TF5s2jcDpcdfW-79Zgmb5gJZALmBoXfXuGdx7nfZFehj8mzzGmYtHsXkla_PoU2qNATbMMbjf3fxhNyCr1HDps8uGa3ac_-U3HAXq9Ou3YvmDs_5_tH7z78A5h8SfA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKFqlIiDdioRQjgTiZ3dhO7BwQ4tGqVZdVBUXqLXUcp1upeZBsW-2VX8IPQPw1_gIzeWyFENx64OSDLduyv5nxeF6EPEucz2M7HjNuRcykEpIZ7YOWEqRScAsS0zZVSyZqOtUHB-HeCvnRx8KgW2XPExtGnRQW_8hHoGwLD-2W4evyC8OqUWhd7UtotLDYdYtzUNnqVzvv4X6fc761uf9um3VVBZgVajxnQZikFvQG2JJvuQk0SH3NbRhrblI_ds4qlfpKpNrpVCinnA0DZXnsaZ2kiRQw7xWyKoX05YCsvt2c7n1cqnieaMqiAvtBL0fptWkiuRcEo9kiqTDa0BMveZMQ-kIMXi9NDTeStqU0_pAKjajbuvm_HdItcqN7VNM3LRXcJisuv0PWuvrus8Vd8u2TQc_5_GgEb107M5icmiaL3GTQdi5qGXRTeMLTArhoBtMVpWvJgxYpbRwvWQmwLGpHMWarOiuOq5pi4MARRQJsc3FQzBDaNI1_PcNnQkJdXrssPnEUY3NM9vP71-IcFkYrWUP498jnSzmg-2SQF7l7QGggXRALlYDmqaUXhnEYKuO5RBrnpT4Ph4T1UIlsl7gd64ecRKDAIbSiBloRQisCaA3Ji-X4sk1Z8teRG78hbzmcY5ZDT8PS6z3Ooo631dEFyIbk6bIbuBKamkzuilMYE0gFygSs8fDfUzwha9v7HybRZGe6-4hcg53J9oNrnQzm1al7TK7as_lxXW10pEbJ4WUD9xe-zG8N
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKiwAJ8a66UIqRQJzCbuwktg8IAe2KqtVqxUPqLXUcu1upeZBsW-2VX8IP4Bfwp_gLzOSxFUJw64GTD7Zsy_5mPON5EfIstSFLzGjkMcMTLxA88LQMQUuJXMCZgRfTNFVL9sVkIg8O1HSF_OhjYdCtsueJDaNOC4N_5ENQtrmPdks1dJ1bxHR7_Lr84mEFKbS09uU0Wojs2cU5qG_1q91tuOvnjI13Pr1773UVBjzDxWjuRSp1BnQI2F5omI4kSACSGZVIpl2YWGuEcKHgTlrpuLDCGhUJwxJfytSlAYd5r5A1wdUIqGvt7c5k-mGp7vm8KZEKrAg9HgO_TRnJ_CgazhZphZGHPn_JmuTQF0_izVLXcDuuLavxxwvRPHvj2__zgd0htzphm75pqeMuWbH5PXK9q_s-W9wn3z5q9KjPj4YgA5uZxqTVNF3kOoO2c13LoJuCaE8L4K4ZTFeUtiUbWjjaOGR6JcC1qC3FWK7qrDiuaooBBUcUCbPN0UExc2jTNH73HooPKbV5bbPkxFKM2dHZz-9fi3NYGK1nDUN4QD5fygGtk9W8yO0GoVFgo4SLFDRSGfhKJUoJ7ds00NZ3IVMD4vWwiU2X0B3ripzEoNghzOIGZjHCLAaYDciL5fiyTWXy15Fbv6FwOZxh9kNfwtKbPebijufV8QXgBuTpshu4FZqgdG6LUxgTBQKUDFjj4b-neEKuAVrj_d3J3iNyAzYWtP9em2R1Xp3ax-SqOZsf19VWR3WUHF42bn8BycR30A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sampling%2Fstochastic+dynamic+programming+for+optimal+operation+of+multi-purpose+reservoirs+using+artificial+neural+network-based+ensemble+stream%EF%AC%82ow+predictions&rft.jtitle=Journal+of+hydroinformatics&rft.au=Anvari%2C+Sedigheh&rft.au=Mousavi%2C+S.+Jamshid&rft.au=Morid%2C+Saeed&rft.date=2014-01-01&rft.issn=1464-7141&rft.eissn=1465-1734&rft.volume=16&rft.issue=4&rft.spage=907&rft.epage=921&rft_id=info:doi/10.2166%2Fhydro.2013.236&rft.externalDBID=n%2Fa&rft.externalDocID=10_2166_hydro_2013_236
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1464-7141&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1464-7141&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1464-7141&client=summon