Introducing possibilistic logic in ILP for dealing with exceptions
In this paper we propose a new formalization of the inductive logic programming (ILP) problem for a better handling of exceptions. It is now encoded in first-order possibilistic logic. This allows us to handle exceptions by means of prioritized rules, thus taking lessons from non-monotonic reasoning...
Gespeichert in:
| Veröffentlicht in: | Artificial intelligence Jg. 171; H. 16; S. 939 - 950 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Amsterdam
Elsevier B.V
01.11.2007
Elsevier |
| Schlagworte: | |
| ISSN: | 0004-3702, 1872-7921 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this paper we propose a new formalization of the inductive logic programming (ILP) problem for a better handling of exceptions. It is now encoded in first-order possibilistic logic. This allows us to handle exceptions by means of prioritized rules, thus taking lessons from non-monotonic reasoning. Indeed, in classical first-order logic, the exceptions of the rules that constitute a hypothesis accumulate and classifying an example in two different classes, even if one is the right one, is not correct. The possibilistic formalization provides a sound encoding of non-monotonic reasoning that copes with rules with exceptions and prevents an example to be classified in more than one class. The benefits of our approach with respect to the use of first-order decision lists are pointed out. The possibilistic logic view of ILP problem leads to an optimization problem at the algorithmic level. An algorithm based on simulated annealing that in one turn computes the set of rules together with their priority levels is proposed. The reported experiments show that the algorithm is competitive to standard ILP approaches on benchmark examples. |
|---|---|
| AbstractList | In this paper we propose a new formalization of the inductive logic programming (ILP) problem for a better handling of exceptions. It is now encoded in first-order possibilistic logic. This allows us to handle exceptions by means of prioritized rules, thus taking lessons from non-monotonic reasoning. Indeed, in classical first-order logic, the exceptions of the rules that constitute a hypothesis accumulate and classifying an example in two different classes, even if one is the right one, is not correct. The possibilistic formalization provides a sound encoding of non-monotonic reasoning that copes with rules with exceptions and prevents an example to be classified in more than one class. The benefits of our approach with respect to the use of first-order decision lists are pointed out. The possibilistic logic view of ILP problem leads to an optimization problem at the algorithmic level. An algorithm based on simulated annealing that in one turn computes the set of rules together with their priority levels is proposed. The reported experiments show that the algorithm is competitive to standard ILP approaches on benchmark examples. |
| Author | Prade, Henri Serrurier, Mathieu |
| Author_xml | – sequence: 1 givenname: Mathieu surname: Serrurier fullname: Serrurier, Mathieu email: serrurie@irit.fr – sequence: 2 givenname: Henri surname: Prade fullname: Prade, Henri |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19237873$$DView record in Pascal Francis https://hal.science/hal-03033452$$DView record in HAL |
| BookMark | eNp9kL1OwzAURi0EEi3wBgxZGBgSru0kThiQCuKnUiUYYLYcx4FbBaeyTYG3x1FQBwYWW_50zrXuNyf7drCGkFMKGQVaXqwz5QLakDEAkUGexXCPzGglWCpqRvfJDADylAtgh2Tu_To-eV3TGble2uCG9kOjfU02g_fYYI8-oE764TWeaJPl6inpBpe0RvUj9onhLTFf2mwCDtYfk4NO9d6c_N5H5OXu9vnmIV093i9vFqtUx39DWla8hka3NeS8qTjVHTSiLFhbGt4UVDVcl01e8Y5x4J1grITaQFOIrohsRfkROZ_mvqlebhy-K_ctB4XyYbGSYwZR5HnBtiN7NrEb5bXqO6esRr-zaM24qASP3OXEaRd3d6aTGoMa1wpOYS8pyLFhuZZTw3JsWEIuYxjl_I-8m_-_djVpJpa1ReOk12isNi06o4NsB_x_wA-Eg5hD |
| CODEN | AINTBB |
| CitedBy_id | crossref_primary_10_1016_j_fss_2024_109259 crossref_primary_10_1016_j_ijar_2023_109028 crossref_primary_10_1016_j_ijar_2024_109206 crossref_primary_10_1007_s10618_009_0131_8 crossref_primary_10_1109_TFUZZ_2008_2005490 crossref_primary_10_1016_j_knosys_2010_04_011 crossref_primary_10_1016_j_eswa_2023_119552 |
| Cites_doi | 10.1145/959242.959247 10.1613/jair.105 10.1023/A:1007571119753 10.1093/logcom/9.6.873 10.1016/S0004-3702(99)00054-5 10.1023/A:1009867806624 10.1007/3-540-45402-0_5 10.1002/j.1538-7305.1965.tb04146.x 10.1007/BF03037227 10.1007/BF00058680 10.1016/B978-0-934613-64-4.50040-2 |
| ContentType | Journal Article |
| Copyright | 2007 Elsevier B.V. 2008 INIST-CNRS licence_http://creativecommons.org/publicdomain/zero |
| Copyright_xml | – notice: 2007 Elsevier B.V. – notice: 2008 INIST-CNRS – notice: licence_http://creativecommons.org/publicdomain/zero |
| DBID | 6I. AAFTH AAYXX CITATION IQODW 1XC |
| DOI | 10.1016/j.artint.2007.04.016 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Pascal-Francis Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Applied Sciences |
| EISSN | 1872-7921 |
| EndPage | 950 |
| ExternalDocumentID | oai:HAL:hal-03033452v1 19237873 10_1016_j_artint_2007_04_016 S0004370207000914 |
| GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6I. 6J9 6TJ 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AAKPC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABVKL ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNCT ACNNM ACRLP ACWUS ACZNC ADBBV ADEZE ADMUD AEBSH AECPX AEFWE AEKER AENEX AETEA AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 E3Z EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE IXB J1W JJJVA KOM KQ8 LG9 LY7 M41 MO0 MVM N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TAE TN5 TR2 TWZ UPT UQL VQA WH7 WUQ XFK XJE XJT XPP XSW ZMT ~02 ~G- 77I 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH 1XC |
| ID | FETCH-LOGICAL-c370t-68390bcd9043b831cf0b7652d6e3b51ab3c6b483f2303f722609e0b57f51cf813 |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000251782300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0004-3702 |
| IngestDate | Tue Nov 25 06:20:26 EST 2025 Mon Jul 21 09:11:54 EDT 2025 Tue Nov 18 22:36:29 EST 2025 Sat Nov 29 06:08:05 EST 2025 Fri Feb 23 02:31:58 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 16 |
| Keywords | Inductive logic programming Possibilistic logic Non-monotonic reasoning Exception handling Priority Algorithmics Competitive algorithms Circumscription Possibility theory First order logic Simulated annealing Artificial intelligence Mathematical programming |
| Language | English |
| License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 CC BY 4.0 licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c370t-68390bcd9043b831cf0b7652d6e3b51ab3c6b483f2303f722609e0b57f51cf813 |
| ORCID | 0000-0002-8959-1091 0000-0003-4586-8527 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.artint.2007.04.016 |
| PageCount | 12 |
| ParticipantIDs | hal_primary_oai_HAL_hal_03033452v1 pascalfrancis_primary_19237873 crossref_citationtrail_10_1016_j_artint_2007_04_016 crossref_primary_10_1016_j_artint_2007_04_016 elsevier_sciencedirect_doi_10_1016_j_artint_2007_04_016 |
| PublicationCentury | 2000 |
| PublicationDate | 2007-11-01 |
| PublicationDateYYYYMMDD | 2007-11-01 |
| PublicationDate_xml | – month: 11 year: 2007 text: 2007-11-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Artificial intelligence |
| PublicationYear | 2007 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | M. Serrurier, H. Prade, Gérer les exceptions en programmation logique inductive multiclasse avec la logique possibiliste, in: 15ème Congrès Francophone AFRIF-AFIA de Reconnaissance des Formes et d'Intelligence Artificielle, RFIA'06, tours, France, 2006 Dietterich, Bakiri (bib023) 1995; 2 A. Srinivasan, The aleph manual, Tech. rep., Oxford University Computing Laboratory, Oxford, 2000 E. Lamma, F. Riguzzi, L.M. Pereira, Learning three-valued logic programs, in: S. Dzeroski, P. Flach (Eds.), ILP-99 Late-Breaking Papers, 1999, pp. 30–35 Dubois, Lang, Prade (bib006) 1994 Blockeel, Raedt, Jacobs, Demoen (bib018) 1999; 3 Snow (bib027) 1999; 113 Wrobel (bib012) 1993; vol. 667 Serrurier, Prade, Richard (bib020) 2004; vol. 3194 Ferri, Flach, Hernandez-Orallo (bib030) 2002 Kietz (bib034) 2002 Califf (bib009) 2002 Muggleton, Raedt (bib001) 1994; 19 Muggleton (bib002) 1995; 13 Khardon (bib003) 2000 Eineborg, Boström (bib024) 2001; vol. 2157 Rivest (bib007) 1987; 2 C. Sakama, Nonmonotonic inductive logic programming, in: 6th International Conference on Logic Programming and Nonmonotonic Reasoning, vol. 2173, 2001, pp. 62–79 S. Muggleton, W. Buntine, Machine invention of first order predicates by inverting resolution, in: Proceedings of the Fifth International Conference on Machine Learning (ICML 88), 1988, pp. 339–351 Khardon (bib008) 1999; 35 Serrurier, Prade (bib029) 2005; vol. 3571 S. Sinthupinyo, C. Nattee, T. Okada, B. Kijsirikul, Combining partial rules and winnow algorithm: results on classification of dopamine antagonist molecules, in: Proceedings of the 3rd International Workshop on Active Mining, 2004, pp. 83–92 A. Srinivasan, S.M.M. Bain, Distinguishing exceptions from noise in non-monotonic learning, in: S. Muggleton (Ed.), Proceedings of the 2nd International Workshop on Inductive Logic Programming, 1992 H. Lodhi, S. Muggleton, Is mutagenesis still challenging, in: ILP-05 Late-Breaking Papers, 2005, pp. 35–40 De Raedt, Kersting (bib026) 2003; 5 Benferhat, Dubois, Prade (bib019) 1999; 9 Džeroski, Schulze-Kremer, Heidtke, Siems, Wettschereck (bib033) 1996; vol. 1314 S. Benferhat, D. Dubois, H. Prade, Representing default rules in possibilistic logic, in: Proceedings of the 11th International Conference of on Principles of Knowledge Representation and Reasoning KR92, 1992, pp. 673–684 T. Horvath, P. Vojtas, GAP—rule discovery for graded classification, in: Working Notes of the ECML/PKDD 04 Workshop on Advances in Inductive Rule Learning, 2004 M. Serrurier, H. Prade, Coping with exceptions in multiclass ILP problems using possibilistic logic, in: Proc of the 19th International Joint Conference on Artificial Intelligence (IJCAI-05), 2005, pp. 1761–1764 Lin (bib021) 1965; 44 A. Srinivasan, R. King, S. Muggleton, The role of background knowledge: using a problem from chemistry to examine the performance of an ILP program, Tech. Rep. PRG-TR-08-99, Oxford University Computing Laboratory, Oxford, 1999 Martin, Vrain (bib013) 1996 Bain, Muggleton (bib010) 1991 10.1016/j.artint.2007.04.016_bib004 10.1016/j.artint.2007.04.016_bib005 10.1016/j.artint.2007.04.016_bib025 Rivest (10.1016/j.artint.2007.04.016_bib007) 1987; 2 10.1016/j.artint.2007.04.016_bib022 De Raedt (10.1016/j.artint.2007.04.016_bib026) 2003; 5 Khardon (10.1016/j.artint.2007.04.016_bib008) 1999; 35 Snow (10.1016/j.artint.2007.04.016_bib027) 1999; 113 Dubois (10.1016/j.artint.2007.04.016_bib006) 1994 Bain (10.1016/j.artint.2007.04.016_bib010) 1991 10.1016/j.artint.2007.04.016_bib028 Serrurier (10.1016/j.artint.2007.04.016_bib020) 2004; vol. 3194 Califf (10.1016/j.artint.2007.04.016_bib009) 2002 Benferhat (10.1016/j.artint.2007.04.016_bib019) 1999; 9 Eineborg (10.1016/j.artint.2007.04.016_bib024) 2001; vol. 2157 10.1016/j.artint.2007.04.016_bib015 10.1016/j.artint.2007.04.016_bib016 10.1016/j.artint.2007.04.016_bib014 10.1016/j.artint.2007.04.016_bib011 Serrurier (10.1016/j.artint.2007.04.016_bib029) 2005; vol. 3571 Wrobel (10.1016/j.artint.2007.04.016_bib012) 1993; vol. 667 10.1016/j.artint.2007.04.016_bib031 Muggleton (10.1016/j.artint.2007.04.016_bib002) 1995; 13 10.1016/j.artint.2007.04.016_bib032 Muggleton (10.1016/j.artint.2007.04.016_bib001) 1994; 19 Džeroski (10.1016/j.artint.2007.04.016_bib033) 1996; vol. 1314 10.1016/j.artint.2007.04.016_bib017 Blockeel (10.1016/j.artint.2007.04.016_bib018) 1999; 3 Dietterich (10.1016/j.artint.2007.04.016_bib023) 1995; 2 Khardon (10.1016/j.artint.2007.04.016_bib003) 2000 Lin (10.1016/j.artint.2007.04.016_bib021) 1965; 44 Kietz (10.1016/j.artint.2007.04.016_bib034) 2002 Martin (10.1016/j.artint.2007.04.016_bib013) 1996 Ferri (10.1016/j.artint.2007.04.016_bib030) 2002 |
| References_xml | – volume: 19 start-page: 629 year: 1994 end-page: 680 ident: bib001 article-title: Inductive logic programming: Theory and methods publication-title: New Generation Computing – start-page: 219 year: 1996 end-page: 235 ident: bib013 article-title: A three-valued framework for the induction of general logic programs publication-title: Advances in Inductive Logic Programming – volume: 113 start-page: 269 year: 1999 end-page: 279 ident: bib027 article-title: Diverse confidence levels in a probabilistic semantics for conditional logics publication-title: Artif. Intell. – reference: T. Horvath, P. Vojtas, GAP—rule discovery for graded classification, in: Working Notes of the ECML/PKDD 04 Workshop on Advances in Inductive Rule Learning, 2004 – reference: A. Srinivasan, R. King, S. Muggleton, The role of background knowledge: using a problem from chemistry to examine the performance of an ILP program, Tech. Rep. PRG-TR-08-99, Oxford University Computing Laboratory, Oxford, 1999 – reference: M. Serrurier, H. Prade, Coping with exceptions in multiclass ILP problems using possibilistic logic, in: Proc of the 19th International Joint Conference on Artificial Intelligence (IJCAI-05), 2005, pp. 1761–1764 – volume: vol. 3571 start-page: 675 year: 2005 end-page: 686 ident: bib029 article-title: Possibilistic inductive logic programming publication-title: Proceedings of European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU'05) – start-page: 117 year: 2002 end-page: 132 ident: bib034 article-title: Learnability of description logic programs publication-title: Proceedings of the 12th Inter. Conference of Inductive Logic Programming, ILP 2002 – reference: C. Sakama, Nonmonotonic inductive logic programming, in: 6th International Conference on Logic Programming and Nonmonotonic Reasoning, vol. 2173, 2001, pp. 62–79 – reference: A. Srinivasan, The aleph manual, Tech. rep., Oxford University Computing Laboratory, Oxford, 2000 – volume: 13 start-page: 245 year: 1995 end-page: 286 ident: bib002 article-title: Inverse entailment and Progol publication-title: New Generation Computing – volume: 5 start-page: 31 year: 2003 end-page: 48 ident: bib026 article-title: Probabilistic logic learning publication-title: SIGKDD Explor. Newsl. – volume: vol. 3194 start-page: 288 year: 2004 end-page: 304 ident: bib020 article-title: A simulated annealing framework for ILP publication-title: Proceedings of ILP 2004 – volume: 9 start-page: 873 year: 1999 end-page: 895 ident: bib019 article-title: Possibilistic and standard probabilistic semantics of conditional knowledge bases publication-title: Journal of Logic and Computation – start-page: 471 year: 2000 end-page: 478 ident: bib003 article-title: Learning Horn expressions with LogAn-H publication-title: Proceedings of the 7th International Conference on Machine Learning, ICML '00 – volume: 44 start-page: 2245 year: 1965 end-page: 2269 ident: bib021 article-title: Computer solutions of the traveling salesman problem publication-title: Bell System Technical Journal – volume: 3 start-page: 59 year: 1999 end-page: 93 ident: bib018 article-title: Scaling up inductive logic programming by learning from interpretations publication-title: Data Mining and Knowledge Discovery – start-page: 105 year: 1991 end-page: 119 ident: bib010 article-title: Non-monotonic learning publication-title: Machine Intelligence 12 – reference: S. Sinthupinyo, C. Nattee, T. Okada, B. Kijsirikul, Combining partial rules and winnow algorithm: results on classification of dopamine antagonist molecules, in: Proceedings of the 3rd International Workshop on Active Mining, 2004, pp. 83–92 – reference: S. Muggleton, W. Buntine, Machine invention of first order predicates by inverting resolution, in: Proceedings of the Fifth International Conference on Machine Learning (ICML 88), 1988, pp. 339–351 – start-page: 439 year: 1994 end-page: 513 ident: bib006 article-title: Possibilistic logic publication-title: Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 3 – volume: 35 start-page: 57 year: 1999 end-page: 90 ident: bib008 article-title: Learning to take actions publication-title: Machine Learning – reference: E. Lamma, F. Riguzzi, L.M. Pereira, Learning three-valued logic programs, in: S. Dzeroski, P. Flach (Eds.), ILP-99 Late-Breaking Papers, 1999, pp. 30–35 – volume: 2 start-page: 229 year: 1987 end-page: 246 ident: bib007 article-title: Learning decision lists publication-title: Machine Learning – reference: M. Serrurier, H. Prade, Gérer les exceptions en programmation logique inductive multiclasse avec la logique possibiliste, in: 15ème Congrès Francophone AFRIF-AFIA de Reconnaissance des Formes et d'Intelligence Artificielle, RFIA'06, tours, France, 2006 – volume: 2 start-page: 263 year: 1995 end-page: 286 ident: bib023 article-title: Solving multiclass learning problems by error-correcting output codes publication-title: Journal of Artificial Intelligence Research – volume: vol. 2157 start-page: 41 year: 2001 end-page: 50 ident: bib024 article-title: Classifying uncovered examples by rule stretching publication-title: Proceedings of the 11th International Conference on Inductive Logic Programming – volume: vol. 1314 start-page: 41 year: 1996 end-page: 54 ident: bib033 article-title: Applying ILP to diterpene structure elucidation from publication-title: Proceedings of the 6th International Workshop on Inductive Logic Programming – reference: A. Srinivasan, S.M.M. Bain, Distinguishing exceptions from noise in non-monotonic learning, in: S. Muggleton (Ed.), Proceedings of the 2nd International Workshop on Inductive Logic Programming, 1992 – volume: vol. 667 start-page: 65 year: 1993 end-page: 82 ident: bib012 article-title: On the proper definition of minimality in specialization and theory revision publication-title: Machine Learning: ECML-93 – start-page: 17 year: 2002 end-page: 31 ident: bib009 article-title: Efficient and effective induction of first order decision lists publication-title: Proceedings of the 12th International Conference of Inductive Logic Programming, ILP 2002 – reference: S. Benferhat, D. Dubois, H. Prade, Representing default rules in possibilistic logic, in: Proceedings of the 11th International Conference of on Principles of Knowledge Representation and Reasoning KR92, 1992, pp. 673–684 – start-page: 139 year: 2002 end-page: 146 ident: bib030 article-title: Learning decision trees using the area under the roc curve publication-title: Proceedings of the Nineteenth International Conference on Machine Learning (ICML 2002) – reference: H. Lodhi, S. Muggleton, Is mutagenesis still challenging, in: ILP-05 Late-Breaking Papers, 2005, pp. 35–40 – ident: 10.1016/j.artint.2007.04.016_bib014 – volume: vol. 3194 start-page: 288 year: 2004 ident: 10.1016/j.artint.2007.04.016_bib020 article-title: A simulated annealing framework for ILP – volume: 5 start-page: 31 issue: 1 year: 2003 ident: 10.1016/j.artint.2007.04.016_bib026 article-title: Probabilistic logic learning publication-title: SIGKDD Explor. Newsl. doi: 10.1145/959242.959247 – volume: vol. 3571 start-page: 675 year: 2005 ident: 10.1016/j.artint.2007.04.016_bib029 article-title: Possibilistic inductive logic programming – start-page: 105 year: 1991 ident: 10.1016/j.artint.2007.04.016_bib010 article-title: Non-monotonic learning – start-page: 139 year: 2002 ident: 10.1016/j.artint.2007.04.016_bib030 article-title: Learning decision trees using the area under the roc curve – ident: 10.1016/j.artint.2007.04.016_bib004 – volume: 2 start-page: 263 year: 1995 ident: 10.1016/j.artint.2007.04.016_bib023 article-title: Solving multiclass learning problems by error-correcting output codes publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.105 – ident: 10.1016/j.artint.2007.04.016_bib025 – volume: 35 start-page: 57 year: 1999 ident: 10.1016/j.artint.2007.04.016_bib008 article-title: Learning to take actions publication-title: Machine Learning doi: 10.1023/A:1007571119753 – volume: vol. 1314 start-page: 41 year: 1996 ident: 10.1016/j.artint.2007.04.016_bib033 article-title: Applying ILP to diterpene structure elucidation from 13C NMR spectra – start-page: 17 year: 2002 ident: 10.1016/j.artint.2007.04.016_bib009 article-title: Efficient and effective induction of first order decision lists – start-page: 439 year: 1994 ident: 10.1016/j.artint.2007.04.016_bib006 article-title: Possibilistic logic – ident: 10.1016/j.artint.2007.04.016_bib031 – ident: 10.1016/j.artint.2007.04.016_bib016 – start-page: 219 year: 1996 ident: 10.1016/j.artint.2007.04.016_bib013 article-title: A three-valued framework for the induction of general logic programs – ident: 10.1016/j.artint.2007.04.016_bib011 – volume: 9 start-page: 873 issue: 6 year: 1999 ident: 10.1016/j.artint.2007.04.016_bib019 article-title: Possibilistic and standard probabilistic semantics of conditional knowledge bases publication-title: Journal of Logic and Computation doi: 10.1093/logcom/9.6.873 – volume: vol. 667 start-page: 65 year: 1993 ident: 10.1016/j.artint.2007.04.016_bib012 article-title: On the proper definition of minimality in specialization and theory revision – volume: 113 start-page: 269 issue: 1–2 year: 1999 ident: 10.1016/j.artint.2007.04.016_bib027 article-title: Diverse confidence levels in a probabilistic semantics for conditional logics publication-title: Artif. Intell. doi: 10.1016/S0004-3702(99)00054-5 – volume: vol. 2157 start-page: 41 year: 2001 ident: 10.1016/j.artint.2007.04.016_bib024 article-title: Classifying uncovered examples by rule stretching – volume: 3 start-page: 59 year: 1999 ident: 10.1016/j.artint.2007.04.016_bib018 article-title: Scaling up inductive logic programming by learning from interpretations publication-title: Data Mining and Knowledge Discovery doi: 10.1023/A:1009867806624 – ident: 10.1016/j.artint.2007.04.016_bib005 – ident: 10.1016/j.artint.2007.04.016_bib015 doi: 10.1007/3-540-45402-0_5 – start-page: 117 year: 2002 ident: 10.1016/j.artint.2007.04.016_bib034 article-title: Learnability of description logic programs – ident: 10.1016/j.artint.2007.04.016_bib028 – volume: 44 start-page: 2245 year: 1965 ident: 10.1016/j.artint.2007.04.016_bib021 article-title: Computer solutions of the traveling salesman problem publication-title: Bell System Technical Journal doi: 10.1002/j.1538-7305.1965.tb04146.x – volume: 13 start-page: 245 year: 1995 ident: 10.1016/j.artint.2007.04.016_bib002 article-title: Inverse entailment and Progol publication-title: New Generation Computing doi: 10.1007/BF03037227 – volume: 2 start-page: 229 year: 1987 ident: 10.1016/j.artint.2007.04.016_bib007 article-title: Learning decision lists publication-title: Machine Learning doi: 10.1007/BF00058680 – ident: 10.1016/j.artint.2007.04.016_bib022 doi: 10.1016/B978-0-934613-64-4.50040-2 – ident: 10.1016/j.artint.2007.04.016_bib032 – volume: 19 start-page: 629 issue: 20 year: 1994 ident: 10.1016/j.artint.2007.04.016_bib001 article-title: Inductive logic programming: Theory and methods publication-title: New Generation Computing – start-page: 471 year: 2000 ident: 10.1016/j.artint.2007.04.016_bib003 article-title: Learning Horn expressions with LogAn-H – ident: 10.1016/j.artint.2007.04.016_bib017 |
| SSID | ssj0003991 |
| Score | 1.9926714 |
| Snippet | In this paper we propose a new formalization of the inductive logic programming (ILP) problem for a better handling of exceptions. It is now encoded in... |
| SourceID | hal pascalfrancis crossref elsevier |
| SourceType | Open Access Repository Index Database Enrichment Source Publisher |
| StartPage | 939 |
| SubjectTerms | Applied sciences Artificial intelligence Computer Science Computer science; control theory; systems Exact sciences and technology Inductive logic programming Learning and adaptive systems Machine Learning Non-monotonic reasoning Possibilistic logic |
| Title | Introducing possibilistic logic in ILP for dealing with exceptions |
| URI | https://dx.doi.org/10.1016/j.artint.2007.04.016 https://hal.science/hal-03033452 |
| Volume | 171 |
| WOSCitedRecordID | wos000251782300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7921 dateEnd: 20180131 omitProxy: false ssIdentifier: ssj0003991 issn: 0004-3702 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1da9swFBVbuofB2PdYtrWIsbfhIlu2JT1mo6UZpRTWQd6MJUs0pbjBcUp-_q4-7DgLo2thLyYIO7J1j6-O5HvvQeiLEQmRJVORAIIfpUyZSEohIq51Yqi0mt2pE5tgZ2d8NhPnIeN66eQEWF3z9Vos_qupoQ2MbVNn72Hu_k-hAX6D0eEIZofjPxl-amPPq5VyaeY3Sx_-aqsxf3Vuzm5wTE_PXXhhBSyx34zV6y7CZUhYJ40LJnLSHoPqnf3GjG4aJ3rn837ay7le9d62CTV9bSLEfGt7gYU8u37PayfvJfjRFFwT8X5Ue9fJGXB14fOde9_q9VU6EA1dpfBFjMKsK3z52R2H7vcWrg5dTYU2lJxMD0n8R_1sNyP_dB824bbAjwF3tPrmewnLBB-hvcn0aPajn6OBlgUtRf8cXVKli_zb7etvpOXxpY2efbYol_BCGa-EMqAnFy_R87CuwBOPh1foka5foxedZgcOLvwN-jaAB96CB3bwwPMaAzwwwAMHeGALD7yBx1v06_jo4vtJFHQ0IgXP1kY5kGAiVSVgcCSnsTJEsjxLqlxTmcWlpCqXKacGlqPUMCDkRGgiM2YyOJfH9B0a1Te1fo-w4URVjJZGAC8Esi8ZrEczmVNL80ipxoh2A1WoUGTeap1cF1004VXhh9fqn7KCpAU0jlHUX7XwRVbuOJ91NigCUfQEsADY3HHlZzBZ34mtrX4yOS1sG8x2lKZZchuP0cGWRTf3BKshmODohwf3_xE93bxkn9CobVZ6Hz1Rt-182RwElP4Gm7ykXA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Introducing+possibilistic+logic+in+ILP+for+dealing+with+exceptions&rft.jtitle=Artificial+intelligence&rft.au=Serrurier%2C+Mathieu&rft.au=Prade%2C+Henri&rft.date=2007-11-01&rft.pub=Elsevier+B.V&rft.issn=0004-3702&rft.eissn=1872-7921&rft.volume=171&rft.issue=16&rft.spage=939&rft.epage=950&rft_id=info:doi/10.1016%2Fj.artint.2007.04.016&rft.externalDocID=S0004370207000914 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-3702&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-3702&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-3702&client=summon |