Fractional Calculus involving (p, q)-Mathieu Type Series
Aim of the present paper is to establish fractional integral formulas by using fractional calculus operators involving the generalized ( , )-Mathieu type series. Then, their composition formulas by using the integral transforms are introduced. Further, a new generalized form of the fractional kineti...
Uložené v:
| Vydané v: | Applied mathematics and nonlinear sciences Ročník 5; číslo 2; s. 15 - 34 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Beirut
Sciendo
01.07.2020
De Gruyter Brill Sp. z o.o., Paradigm Publishing Services |
| Predmet: | |
| ISSN: | 2444-8656, 2444-8656 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Aim of the present paper is to establish fractional integral formulas by using fractional calculus operators involving the generalized (
,
)-Mathieu type series. Then, their composition formulas by using the integral transforms are introduced. Further, a new generalized form of the fractional kinetic equation involving the series is also developed. The solutions of fractional kinetic equations are presented in terms of the Mittag-Leffler function. The results established here are quite general in nature and capable of yielding both known and new results. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2444-8656 2444-8656 |
| DOI: | 10.2478/amns.2020.2.00011 |