Fractional Calculus involving (p, q)-Mathieu Type Series

Aim of the present paper is to establish fractional integral formulas by using fractional calculus operators involving the generalized ( , )-Mathieu type series. Then, their composition formulas by using the integral transforms are introduced. Further, a new generalized form of the fractional kineti...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics and nonlinear sciences Ročník 5; číslo 2; s. 15 - 34
Hlavní autoři: Kaur, Daljeet, Agarwal, Praveen, Rakshit, Madhuchanda, Chand, Mehar
Médium: Journal Article
Jazyk:angličtina
Vydáno: Beirut Sciendo 01.07.2020
De Gruyter Brill Sp. z o.o., Paradigm Publishing Services
Témata:
ISSN:2444-8656, 2444-8656
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Aim of the present paper is to establish fractional integral formulas by using fractional calculus operators involving the generalized ( , )-Mathieu type series. Then, their composition formulas by using the integral transforms are introduced. Further, a new generalized form of the fractional kinetic equation involving the series is also developed. The solutions of fractional kinetic equations are presented in terms of the Mittag-Leffler function. The results established here are quite general in nature and capable of yielding both known and new results.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2444-8656
2444-8656
DOI:10.2478/amns.2020.2.00011