Fractional Calculus involving (p, q)-Mathieu Type Series
Aim of the present paper is to establish fractional integral formulas by using fractional calculus operators involving the generalized ( , )-Mathieu type series. Then, their composition formulas by using the integral transforms are introduced. Further, a new generalized form of the fractional kineti...
Saved in:
| Published in: | Applied mathematics and nonlinear sciences Vol. 5; no. 2; pp. 15 - 34 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Beirut
Sciendo
01.07.2020
De Gruyter Brill Sp. z o.o., Paradigm Publishing Services |
| Subjects: | |
| ISSN: | 2444-8656, 2444-8656 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Aim of the present paper is to establish fractional integral formulas by using fractional calculus operators involving the generalized (
,
)-Mathieu type series. Then, their composition formulas by using the integral transforms are introduced. Further, a new generalized form of the fractional kinetic equation involving the series is also developed. The solutions of fractional kinetic equations are presented in terms of the Mittag-Leffler function. The results established here are quite general in nature and capable of yielding both known and new results. |
|---|---|
| AbstractList | Aim of the present paper is to establish fractional integral formulas by using fractional calculus operators involving the generalized (
p
,
q
)-Mathieu type series. Then, their composition formulas by using the integral transforms are introduced. Further, a new generalized form of the fractional kinetic equation involving the series is also developed. The solutions of fractional kinetic equations are presented in terms of the Mittag-Leffler function. The results established here are quite general in nature and capable of yielding both known and new results. Aim of the present paper is to establish fractional integral formulas by using fractional calculus operators involving the generalized ( , )-Mathieu type series. Then, their composition formulas by using the integral transforms are introduced. Further, a new generalized form of the fractional kinetic equation involving the series is also developed. The solutions of fractional kinetic equations are presented in terms of the Mittag-Leffler function. The results established here are quite general in nature and capable of yielding both known and new results. Aim of the present paper is to establish fractional integral formulas by using fractional calculus operators involving the generalized (p, q)-Mathieu type series. Then, their composition formulas by using the integral transforms are introduced. Further, a new generalized form of the fractional kinetic equation involving the series is also developed. The solutions of fractional kinetic equations are presented in terms of the Mittag-Leffler function. The results established here are quite general in nature and capable of yielding both known and new results. |
| Author | Chand, Mehar Kaur, Daljeet Agarwal, Praveen Rakshit, Madhuchanda |
| Author_xml | – sequence: 1 givenname: Daljeet surname: Kaur fullname: Kaur, Daljeet email: daljitk053@gmail.com organization: Department of Applied Sciences, Guru Kashi University, Bathinda-151302, India – sequence: 2 givenname: Praveen surname: Agarwal fullname: Agarwal, Praveen email: goyal.praveen2011@gmail.com organization: Department of Mathematics, Anand International College of Engineering, Jaipur-303012, India – sequence: 3 givenname: Madhuchanda surname: Rakshit fullname: Rakshit, Madhuchanda email: drmrakshit@gmail.com organization: Department of Applied Sciences, Guru Kashi University, Bathinda-151302, India – sequence: 4 givenname: Mehar surname: Chand fullname: Chand, Mehar email: mehar.jallandhra@gmail.com organization: Department of Mathematics, Baba Farid College, Bathinda-151001, India |
| BookMark | eNp9kE1Lw0AQhhdRsNb-AG8BLwqm7lc2ycGDFKtCxYP1vEw207olTdLdpNJ_b2IFRdDTvAPvMwzPCTksqxIJOWN0zGWcXMO69GNOebeOKaWMHZABl1KGiYrU4Y98TEber7oKF0woxQckmTowja1KKIIJFKYtWh_YclsVW1sug4v6Kthchk_QvFlsg_muxuAFnUV_So4WUHgcfc0heZ3ezScP4ez5_nFyOwuNiGkTKhUBpovcKE4lIM8A4zzhuYkQWSqTzBjJYuAAuchFEonUSBmnGaIwNIsjMSTn-7u1qzYt-kavqtZ173otWMq4SLlIuhbbt4yrvHe40LWza3A7zajuHeneke4daa4_HXVM_IsxtoHeRePAFv-SN3vyHYoGXY5L1-668P3an2zEWSQ-AFY4gbs |
| CitedBy_id | crossref_primary_10_1155_2021_1537958 crossref_primary_10_1186_s13660_021_02735_3 crossref_primary_10_3389_fenrg_2023_1142243 crossref_primary_10_1016_j_chaos_2021_111674 crossref_primary_10_1186_s13662_020_03077_y crossref_primary_10_3390_sym13071159 crossref_primary_10_1186_s13662_022_03705_9 crossref_primary_10_3390_math11153343 crossref_primary_10_3390_math8101849 crossref_primary_10_1155_2021_8886056 crossref_primary_10_3390_math9162012 crossref_primary_10_3390_axioms12040387 crossref_primary_10_3390_sym14112322 crossref_primary_10_3390_fractalfract5040160 crossref_primary_10_1155_2020_7359242 crossref_primary_10_1186_s13662_021_03235_w crossref_primary_10_1155_2021_9512371 crossref_primary_10_1186_s13660_022_02896_9 crossref_primary_10_3390_math10234564 crossref_primary_10_3390_sym14122539 crossref_primary_10_1007_s11071_022_07688_w crossref_primary_10_1186_s13662_020_03087_w crossref_primary_10_1007_s44196_021_00009_w crossref_primary_10_3390_fractalfract6020085 crossref_primary_10_3390_math11153308 crossref_primary_10_3390_fractalfract6050231 crossref_primary_10_1186_s13662_021_03289_w crossref_primary_10_3390_sym13040532 |
| Cites_doi | 10.1115/1.4038444 10.1016/j.cam.2017.03.011 10.1186/s13662-018-1500-7 10.2298/TSCI160826008K 10.1515/math-2016-0007 10.1016/j.aej.2017.03.046 10.1080/00207160.2015.1045886 10.2298/TSCI170129096K 10.1112/plms/s3-45.3.519 10.2298/FIL1701125S 10.1016/j.apm.2017.02.021 10.2298/AADM121227028M 10.1063/1.166272 10.1016/j.amc.2007.10.005 10.1016/S0096-3003(99)00208-8 10.1007/978-90-481-3293-5 10.1016/j.camwa.2016.07.010 10.1016/j.aej.2016.07.025 10.1134/S106192081704001X 10.1016/j.amc.2003.09.017 10.1016/j.advwatres.2012.04.005 10.1016/j.physa.2004.06.048 10.1007/s10957-012-0211-6 10.1016/0167-2789(94)90254-2 10.1007/s10957-017-1186-0 10.1016/j.physa.2017.10.002 10.1142/9789814355216 10.1140/epjp/i2018-12096-8 10.2298/TSCI151224222Y 10.7153/mia-2017-20-61 10.1142/9789812817747 10.7153/jmi-2018-12-13 10.1007/BF01329629 10.1007/s40819-018-0532-8 10.5269/bspm.v32i1.18146 10.1615/CritRevBiomedEng.v32.i1.10 10.1007/s11071-017-3870-x 10.2478/s13540-013-0056-1 10.2298/AADM190427005M 10.1016/j.apm.2017.03.029 10.1016/j.chaos.2017.04.025 10.2298/TSCI160111018A 10.1155/2015/289387 10.1007/s10509-006-9191-z 10.3390/axioms1030238 10.1007/s10509-008-9880-x 10.1007/978-3-319-90972-1_14 10.1002/mma.3986 10.1023/A:1002695807970 10.1080/10652460802295978 10.12693/APhysPolA.131.1561 10.1023/A:1021175108964 10.1007/BF01112023 10.4134/BKMS.2014.51.4.995 10.1016/j.apm.2016.12.008 10.1007/BF02599788 10.1016/j.amc.2015.10.021 |
| ContentType | Journal Article |
| Copyright | 2020. This work is published under http://creativecommons.org/licenses/by/4.0 (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0 (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS |
| DOI | 10.2478/amns.2020.2.00011 |
| DatabaseName | CrossRef ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 2444-8656 |
| EndPage | 34 |
| ExternalDocumentID | 10_2478_amns_2020_2_00011 10_2478_amns_2020_2_000115215 |
| GroupedDBID | 9WM AATOW ABFKT ADBLJ AFFHD AFKRA AHGSO ALMA_UNASSIGNED_HOLDINGS AMVHM ARCSS BENPR CCPQU EBS M~E OK1 PHGZM PHGZT PIMPY QD8 SLJYH AAYXX CITATION ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c370t-665ae9fdc6204ae2bae7d82dc5ee1948bcc417a2aad3d38539c4479bee3c0b753 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 64 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000664173100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2444-8656 |
| IngestDate | Wed Nov 19 00:44:39 EST 2025 Sat Nov 29 05:04:16 EST 2025 Tue Nov 18 21:32:30 EST 2025 Sat Nov 29 01:30:04 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | This work is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c370t-665ae9fdc6204ae2bae7d82dc5ee1948bcc417a2aad3d38539c4479bee3c0b753 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/3191239238?pq-origsite=%requestingapplication% |
| PQID | 3191239238 |
| PQPubID | 6761185 |
| PageCount | 20 |
| ParticipantIDs | proquest_journals_3191239238 crossref_primary_10_2478_amns_2020_2_00011 crossref_citationtrail_10_2478_amns_2020_2_00011 walterdegruyter_journals_10_2478_amns_2020_2_000115215 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-07-01 |
| PublicationDateYYYYMMDD | 2020-07-01 |
| PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Beirut |
| PublicationPlace_xml | – name: Beirut |
| PublicationTitle | Applied mathematics and nonlinear sciences |
| PublicationYear | 2020 |
| Publisher | Sciendo De Gruyter Brill Sp. z o.o., Paradigm Publishing Services |
| Publisher_xml | – name: Sciendo – name: De Gruyter Brill Sp. z o.o., Paradigm Publishing Services |
| References | Kumar, D.; Singh, J.; Baleanu, D. (j_amns.2020.2.00011_ref_024_w2aab3b7c80b1b6b1ab2ac24Aa) 2018; 91 Saxena, R. K.; Mathai, A. M. (j_amns.2020.2.00011_ref_082_w2aab3b7c80b1b6b1ab2ac82Aa) 2006; 305 Chand, M.; Hammouch, Z.; Asamoah, J. K.; Baleanu, D.; Ta, K.; Baleanu, D.; Machado, J. (j_amns.2020.2.00011_ref_019_w2aab3b7c80b1b6b1ab2ac19Aa) 2019; 24 Srivastava, H. M.; Saxena, R. K. (j_amns.2020.2.00011_ref_088_w2aab3b7c80b1b6b1ab2ac88Aa) 2001; 118 Sin, C.; Zheng, L.; Sin, J.; Liu, F.; Liu, L. (j_amns.2020.2.00011_ref_008_w2aab3b7c80b1b6b1ab2ab8Aa) 2017; 47 Saigo, M. (j_amns.2020.2.00011_ref_050_w2aab3b7c80b1b6b1ab2ac50Aa) 1980; 25 Gupta, V.; Sharma, B. (j_amns.2020.2.00011_ref_076_w2aab3b7c80b1b6b1ab2ac76Aa) 2011; 5 Atangana, A. (j_amns.2020.2.00011_ref_041_w2aab3b7c80b1b6b1ab2ac41Aa) 2016; 273 Yang, X.; Srivastava, H.; Machado, J. (j_amns.2020.2.00011_ref_034_w2aab3b7c80b1b6b1ab2ac34Aa) 2016; 20 Kumar, D.; Singh, J.; Baleanu, D. (j_amns.2020.2.00011_ref_021_w2aab3b7c80b1b6b1ab2ac21Aa) Tomovski, Z.; Mehrez, K. (j_amns.2020.2.00011_ref_066_w2aab3b7c80b1b6b1ab2ac66Aa) 2017; 20 Kalla, S.; Saxena, R. (j_amns.2020.2.00011_ref_047_w2aab3b7c80b1b6b1ab2ac47Aa) 1974; 24 Srivastava, H.; Agarwal, R.; Jain, S. (j_amns.2020.2.00011_ref_069_w2aab3b7c80b1b6b1ab2ac69Aa) 2017; 40 Saxena, R. K.; Kalla, S. L. (j_amns.2020.2.00011_ref_083_w2aab3b7c80b1b6b1ab2ac83Aa) 2008; 199 Hammouch, Z.; Mekkaoui, T.; Agarwal, P. (j_amns.2020.2.00011_ref_018_w2aab3b7c80b1b6b1ab2ac18Aa); 133 Moghaddam, B.; Machado, J. (j_amns.2020.2.00011_ref_007_w2aab3b7c80b1b6b1ab2ab7Aa) 2017; 73 Saichev, A.; Zaslavsky, M. (j_amns.2020.2.00011_ref_084_w2aab3b7c80b1b6b1ab2ac84Aa) 1997; 7 Choi, J.; Agarwal, P.; Mathur, S.; Purohit, S. (j_amns.2020.2.00011_ref_038_w2aab3b7c80b1b6b1ab2ac38Aa) 2014; 51 Baleanu, D.; Kumar, D.; Purohit, S. (j_amns.2020.2.00011_ref_053_w2aab3b7c80b1b6b1ab2ac53Aa) McBride, A. (j_amns.2020.2.00011_ref_043_w2aab3b7c80b1b6b1ab2ac43Aa) 1982; 45 Chouhan, A.; Purohit, S.; Saraswat, S. (j_amns.2020.2.00011_ref_075_w2aab3b7c80b1b6b1ab2ac75Aa) 2013; 37 Abdelkawy, M.; Zaky, M.; Bhrawy, A.; Baleanu, D. (j_amns.2020.2.00011_ref_005_w2aab3b7c80b1b6b1ab2ab5Aa) 2015; 67 Srivastava, H.; Kumar, D.; Singh, J. (j_amns.2020.2.00011_ref_003_w2aab3b7c80b1b6b1ab2ab3Aa) 2017; 45 Chouhan, A.; Sarswat, S. (j_amns.2020.2.00011_ref_074_w2aab3b7c80b1b6b1ab2ac74Aa) 2012; 2 Saxena, R. K.; Mathai, A. M.; Haubold, H. J. (j_amns.2020.2.00011_ref_081_w2aab3b7c80b1b6b1ab2ac81Aa) 2004; 344 Kiryakova, V. (j_amns.2020.2.00011_ref_067_w2aab3b7c80b1b6b1ab2ac67Aa) 2006; 9 Chaurasia, V.; Pandey, S. C. (j_amns.2020.2.00011_ref_073_w2aab3b7c80b1b6b1ab2ac73Aa) 2008; 317 Choi, J.; Kumar, D. (j_amns.2020.2.00011_ref_072_w2aab3b7c80b1b6b1ab2ac72Aa) 2015; 20 Saigo, M. (j_amns.2020.2.00011_ref_049_w2aab3b7c80b1b6b1ab2ac49Aa) 1979; 24 Kalla, S. (j_amns.2020.2.00011_ref_045_w2aab3b7c80b1b6b1ab2ac45Aa) 1969; 7 Agarwal, P.; Ntouyas, S. K.; Jain, S.; Chand, M.; Singh, G. (j_amns.2020.2.00011_ref_017_w2aab3b7c80b1b6b1ab2ac17Aa) Kumar, D.; Singh, J.; Baleanu, D.; Baleanu, S. (j_amns.2020.2.00011_ref_023_w2aab3b7c80b1b6b1ab2ac23Aa) 2018; 492 Kumar, D.; Purohit, S.; Secer, A.; Atangana, A. (j_amns.2020.2.00011_ref_079_w2aab3b7c80b1b6b1ab2ac79Aa) 2015 Nigmatullin, R.; Baleanu, D. (j_amns.2020.2.00011_ref_015_w2aab3b7c80b1b6b1ab2ac15Aa) 2013; 16 Hajipou, M.; Jajarmi, A.; Baleanu, D. (j_amns.2020.2.00011_ref_026_w2aab3b7c80b1b6b1ab2ac26Aa) 2017; 13 M., G. V.; P., T. K. (j_amns.2020.2.00011_ref_058_w2aab3b7c80b1b6b1ab2ac58Aa) 2013; 7 Agarwal, P.; Chand, M.; Singh, G. (j_amns.2020.2.00011_ref_016_w2aab3b7c80b1b6b1ab2ac16Aa) 2016; 55 Kiryakova, V. (j_amns.2020.2.00011_ref_052_w2aab3b7c80b1b6b1ab2ac52Aa) 2008; 11 Huang, L.; Baleanu, D.; Wu, G.; Zeng, S. (j_amns.2020.2.00011_ref_013_w2aab3b7c80b1b6b1ab2ac13Aa) 2016; 61 Haubold, H.; Mathai, A. (j_amns.2020.2.00011_ref_078_w2aab3b7c80b1b6b1ab2ac78Aa) 2000; 327 Srivastava, H. M.; Parmar, R. K.; Chopra, P. (j_amns.2020.2.00011_ref_063_w2aab3b7c80b1b6b1ab2ac63Aa) 2012; 1 Caputo, M.; Fabrizio, M. (j_amns.2020.2.00011_ref_040_w2aab3b7c80b1b6b1ab2ac40Aa) 2015; 1 Atangana, A.; Baleanu, D. (j_amns.2020.2.00011_ref_042_w2aab3b7c80b1b6b1ab2ac42Aa) 2016; 20 Benson, D.; Meerschaert, M.; Revielle, J. (j_amns.2020.2.00011_ref_004_w2aab3b7c80b1b6b1ab2ab4Aa) 2013; 51 Chaudhry, M. A.; Qadir, A.; Srivastava, H. M.; Paris, R. B. (j_amns.2020.2.00011_ref_064_w2aab3b7c80b1b6b1ab2ac64Aa) 2004; 159 Mehrez, K.; Tomovski, Z. (j_amns.2020.2.00011_ref_065_w2aab3b7c80b1b6b1ab2ac65Aa) 2019; 13 Srivastava, H. M.; Mehrez, K.Ž (j_amns.2020.2.00011_ref_059_w2aab3b7c80b1b6b1ab2ac59Aa) 2018; 12 Carlitz, L. (j_amns.2020.2.00011_ref_035_w2aab3b7c80b1b6b1ab2ac35Aa) 1969; 7 Saxena, R.; Mathai, A.; Haubold, H. (j_amns.2020.2.00011_ref_080_w2aab3b7c80b1b6b1ab2ac80Aa) 2002; 282 Baleanu, D.; Purohit, S. D.; Prajapati, J. C. (j_amns.2020.2.00011_ref_014_w2aab3b7c80b1b6b1ab2ac14Aa) 2016; 14 Magin, R. (j_amns.2020.2.00011_ref_002_w2aab3b7c80b1b6b1ab2ab2Aa) 2004; 32 Srivastava, H.; Agarwal, R.; Jain, S. (j_amns.2020.2.00011_ref_070_w2aab3b7c80b1b6b1ab2ac70Aa) 2017; 31 Saigo, M. (j_amns.2020.2.00011_ref_048_w2aab3b7c80b1b6b1ab2ac48Aa) 1978; 11 Srivastava, H.; Agarwal, P. (j_amns.2020.2.00011_ref_037_w2aab3b7c80b1b6b1ab2ac37Aa) 2013; 8 Diananda, P. (j_amns.2020.2.00011_ref_057_w2aab3b7c80b1b6b1ab2ac57Aa) 1980; 250 Zhao, J.; Zheng, L.; Chen, X.; Zhang, X.; Liu, F. (j_amns.2020.2.00011_ref_006_w2aab3b7c80b1b6b1ab2ab6Aa) 2017; 44 Kilbas, A.; Sebastian, N. (j_amns.2020.2.00011_ref_054_w2aab3b7c80b1b6b1ab2ac54Aa) 2008; 19 Kumar, D.; Singh, J.; Baleanu, D. (j_amns.2020.2.00011_ref_022_w2aab3b7c80b1b6b1ab2ac22Aa) Jajarmi, A.; Hajipour, M.; Baleanu, D. (j_amns.2020.2.00011_ref_029_w2aab3b7c80b1b6b1ab2ac29Aa) 2017; 99 Baleanu, D.; Jajarmi, A.; Hajipour, M. (j_amns.2020.2.00011_ref_027_w2aab3b7c80b1b6b1ab2ac27Aa) 2017; 175 Agarwal, P.; Al-Mdallal, Q.; Cho, Y. J.; Jain, S. (j_amns.2020.2.00011_ref_036_w2aab3b7c80b1b6b1ab2ac36Aa) Srivastava, H. M.; Tomovski, Ž. (j_amns.2020.2.00011_ref_062_w2aab3b7c80b1b6b1ab2ac62Aa) 2004; 5 Razminia, A.; Baleanu, D.; Majd, V. (j_amns.2020.2.00011_ref_009_w2aab3b7c80b1b6b1ab2ab9Aa) 2013; 156 Baleanu, D.; Jajarmi, A.; Asad, J.; Blaszczyk, T. (j_amns.2020.2.00011_ref_028_w2aab3b7c80b1b6b1ab2ac28Aa) 2017; 131 Schroder, K. (j_amns.2020.2.00011_ref_056_w2aab3b7c80b1b6b1ab2ac56Aa) 1949; 121 Agarwal, P.; Jain, S.; Mansour, T. (j_amns.2020.2.00011_ref_039_w2aab3b7c80b1b6b1ab2ac39Aa) 2017; 24 Tomovski, Ž.; Trencevski, K. (j_amns.2020.2.00011_ref_060_w2aab3b7c80b1b6b1ab2ac60Aa) 2003; 4 Zaslavsky, G. M. (j_amns.2020.2.00011_ref_085_w2aab3b7c80b1b6b1ab2ac85Aa) 1994; 76 Gupta, A.; Parihar, C. (j_amns.2020.2.00011_ref_077_w2aab3b7c80b1b6b1ab2ac77Aa) 2014; 32 Kumar, D.; Agarwal, R.; Singh, J. (j_amns.2020.2.00011_ref_025_w2aab3b7c80b1b6b1ab2ac25Aa) Kalla, S.; Saxena, R. (j_amns.2020.2.00011_ref_046_w2aab3b7c80b1b6b1ab2ac46Aa) 1969; 108 Chand, M.; Agarwal, P.; Hammouch, Z. (j_amns.2020.2.00011_ref_020_w2aab3b7c80b1b6b1ab2ac20Aa); 4 Kalla, S. (j_amns.2020.2.00011_ref_044_w2aab3b7c80b1b6b1ab2ac44Aa) 1969; 3 Cerone, P.; Lenard, C. T. (j_amns.2020.2.00011_ref_061_w2aab3b7c80b1b6b1ab2ac61Aa) 2003; 4 2024050209220073569_j_amns.2020.2.00011_ref_003_w2aab3b7c80b1b6b1ab2ab3Aa 2024050209220073569_j_amns.2020.2.00011_ref_038_w2aab3b7c80b1b6b1ab2ac38Aa 2024050209220073569_j_amns.2020.2.00011_ref_087_w2aab3b7c80b1b6b1ab2ac87Aa 2024050209220073569_j_amns.2020.2.00011_ref_056_w2aab3b7c80b1b6b1ab2ac56Aa 2024050209220073569_j_amns.2020.2.00011_ref_069_w2aab3b7c80b1b6b1ab2ac69Aa 2024050209220073569_j_amns.2020.2.00011_ref_030_w2aab3b7c80b1b6b1ab2ac30Aa 2024050209220073569_j_amns.2020.2.00011_ref_012_w2aab3b7c80b1b6b1ab2ac12Aa 2024050209220073569_j_amns.2020.2.00011_ref_025_w2aab3b7c80b1b6b1ab2ac25Aa 2024050209220073569_j_amns.2020.2.00011_ref_074_w2aab3b7c80b1b6b1ab2ac74Aa 2024050209220073569_j_amns.2020.2.00011_ref_061_w2aab3b7c80b1b6b1ab2ac61Aa 2024050209220073569_j_amns.2020.2.00011_ref_043_w2aab3b7c80b1b6b1ab2ac43Aa 2024050209220073569_j_amns.2020.2.00011_ref_028_w2aab3b7c80b1b6b1ab2ac28Aa 2024050209220073569_j_amns.2020.2.00011_ref_077_w2aab3b7c80b1b6b1ab2ac77Aa 2024050209220073569_j_amns.2020.2.00011_ref_006_w2aab3b7c80b1b6b1ab2ab6Aa 2024050209220073569_j_amns.2020.2.00011_ref_046_w2aab3b7c80b1b6b1ab2ac46Aa 2024050209220073569_j_amns.2020.2.00011_ref_059_w2aab3b7c80b1b6b1ab2ac59Aa 2024050209220073569_j_amns.2020.2.00011_ref_020_w2aab3b7c80b1b6b1ab2ac20Aa 2024050209220073569_j_amns.2020.2.00011_ref_015_w2aab3b7c80b1b6b1ab2ac15Aa 2024050209220073569_j_amns.2020.2.00011_ref_082_w2aab3b7c80b1b6b1ab2ac82Aa 2024050209220073569_j_amns.2020.2.00011_ref_064_w2aab3b7c80b1b6b1ab2ac64Aa 2024050209220073569_j_amns.2020.2.00011_ref_051_w2aab3b7c80b1b6b1ab2ac51Aa 2024050209220073569_j_amns.2020.2.00011_ref_033_w2aab3b7c80b1b6b1ab2ac33Aa 2024050209220073569_j_amns.2020.2.00011_ref_018_w2aab3b7c80b1b6b1ab2ac18Aa 2024050209220073569_j_amns.2020.2.00011_ref_067_w2aab3b7c80b1b6b1ab2ac67Aa 2024050209220073569_j_amns.2020.2.00011_ref_001_w2aab3b7c80b1b6b1ab2ab1Aa 2024050209220073569_j_amns.2020.2.00011_ref_036_w2aab3b7c80b1b6b1ab2ac36Aa 2024050209220073569_j_amns.2020.2.00011_ref_085_w2aab3b7c80b1b6b1ab2ac85Aa 2024050209220073569_j_amns.2020.2.00011_ref_049_w2aab3b7c80b1b6b1ab2ac49Aa 2024050209220073569_j_amns.2020.2.00011_ref_041_w2aab3b7c80b1b6b1ab2ac41Aa 2024050209220073569_j_amns.2020.2.00011_ref_009_w2aab3b7c80b1b6b1ab2ab9Aa 2024050209220073569_j_amns.2020.2.00011_ref_010_w2aab3b7c80b1b6b1ab2ac10Aa 2024050209220073569_j_amns.2020.2.00011_ref_054_w2aab3b7c80b1b6b1ab2ac54Aa 2024050209220073569_j_amns.2020.2.00011_ref_023_w2aab3b7c80b1b6b1ab2ac23Aa 2024050209220073569_j_amns.2020.2.00011_ref_072_w2aab3b7c80b1b6b1ab2ac72Aa 2024050209220073569_j_amns.2020.2.00011_ref_048_w2aab3b7c80b1b6b1ab2ac48Aa 2024050209220073569_j_amns.2020.2.00011_ref_084_w2aab3b7c80b1b6b1ab2ac84Aa 2024050209220073569_j_amns.2020.2.00011_ref_017_w2aab3b7c80b1b6b1ab2ac17Aa 2024050209220073569_j_amns.2020.2.00011_ref_066_w2aab3b7c80b1b6b1ab2ac66Aa 2024050209220073569_j_amns.2020.2.00011_ref_079_w2aab3b7c80b1b6b1ab2ac79Aa 2024050209220073569_j_amns.2020.2.00011_ref_040_w2aab3b7c80b1b6b1ab2ac40Aa 2024050209220073569_j_amns.2020.2.00011_ref_053_w2aab3b7c80b1b6b1ab2ac53Aa 2024050209220073569_j_amns.2020.2.00011_ref_035_w2aab3b7c80b1b6b1ab2ac35Aa 2024050209220073569_j_amns.2020.2.00011_ref_022_w2aab3b7c80b1b6b1ab2ac22Aa 2024050209220073569_j_amns.2020.2.00011_ref_071_w2aab3b7c80b1b6b1ab2ac71Aa 2024050209220073569_j_amns.2020.2.00011_ref_047_w2aab3b7c80b1b6b1ab2ac47Aa 2024050209220073569_j_amns.2020.2.00011_ref_029_w2aab3b7c80b1b6b1ab2ac29Aa 2024050209220073569_j_amns.2020.2.00011_ref_016_w2aab3b7c80b1b6b1ab2ac16Aa 2024050209220073569_j_amns.2020.2.00011_ref_065_w2aab3b7c80b1b6b1ab2ac65Aa 2024050209220073569_j_amns.2020.2.00011_ref_007_w2aab3b7c80b1b6b1ab2ab7Aa 2024050209220073569_j_amns.2020.2.00011_ref_078_w2aab3b7c80b1b6b1ab2ac78Aa 2024050209220073569_j_amns.2020.2.00011_ref_021_w2aab3b7c80b1b6b1ab2ac21Aa 2024050209220073569_j_amns.2020.2.00011_ref_070_w2aab3b7c80b1b6b1ab2ac70Aa 2024050209220073569_j_amns.2020.2.00011_ref_034_w2aab3b7c80b1b6b1ab2ac34Aa 2024050209220073569_j_amns.2020.2.00011_ref_083_w2aab3b7c80b1b6b1ab2ac83Aa 2024050209220073569_j_amns.2020.2.00011_ref_052_w2aab3b7c80b1b6b1ab2ac52Aa 2024050209220073569_j_amns.2020.2.00011_ref_086_w2aab3b7c80b1b6b1ab2ac86Aa 2024050209220073569_j_amns.2020.2.00011_ref_004_w2aab3b7c80b1b6b1ab2ab4Aa 2024050209220073569_j_amns.2020.2.00011_ref_019_w2aab3b7c80b1b6b1ab2ac19Aa 2024050209220073569_j_amns.2020.2.00011_ref_068_w2aab3b7c80b1b6b1ab2ac68Aa 2024050209220073569_j_amns.2020.2.00011_ref_055_w2aab3b7c80b1b6b1ab2ac55Aa 2024050209220073569_j_amns.2020.2.00011_ref_037_w2aab3b7c80b1b6b1ab2ac37Aa 2024050209220073569_j_amns.2020.2.00011_ref_011_w2aab3b7c80b1b6b1ab2ac11Aa 2024050209220073569_j_amns.2020.2.00011_ref_060_w2aab3b7c80b1b6b1ab2ac60Aa 2024050209220073569_j_amns.2020.2.00011_ref_024_w2aab3b7c80b1b6b1ab2ac24Aa 2024050209220073569_j_amns.2020.2.00011_ref_073_w2aab3b7c80b1b6b1ab2ac73Aa 2024050209220073569_j_amns.2020.2.00011_ref_042_w2aab3b7c80b1b6b1ab2ac42Aa 2024050209220073569_j_amns.2020.2.00011_ref_076_w2aab3b7c80b1b6b1ab2ac76Aa 2024050209220073569_j_amns.2020.2.00011_ref_058_w2aab3b7c80b1b6b1ab2ac58Aa 2024050209220073569_j_amns.2020.2.00011_ref_045_w2aab3b7c80b1b6b1ab2ac45Aa 2024050209220073569_j_amns.2020.2.00011_ref_027_w2aab3b7c80b1b6b1ab2ac27Aa 2024050209220073569_j_amns.2020.2.00011_ref_050_w2aab3b7c80b1b6b1ab2ac50Aa 2024050209220073569_j_amns.2020.2.00011_ref_063_w2aab3b7c80b1b6b1ab2ac63Aa 2024050209220073569_j_amns.2020.2.00011_ref_032_w2aab3b7c80b1b6b1ab2ac32Aa 2024050209220073569_j_amns.2020.2.00011_ref_014_w2aab3b7c80b1b6b1ab2ac14Aa 2024050209220073569_j_amns.2020.2.00011_ref_081_w2aab3b7c80b1b6b1ab2ac81Aa 2024050209220073569_j_amns.2020.2.00011_ref_057_w2aab3b7c80b1b6b1ab2ac57Aa 2024050209220073569_j_amns.2020.2.00011_ref_039_w2aab3b7c80b1b6b1ab2ac39Aa 2024050209220073569_j_amns.2020.2.00011_ref_026_w2aab3b7c80b1b6b1ab2ac26Aa 2024050209220073569_j_amns.2020.2.00011_ref_075_w2aab3b7c80b1b6b1ab2ac75Aa 2024050209220073569_j_amns.2020.2.00011_ref_008_w2aab3b7c80b1b6b1ab2ab8Aa 2024050209220073569_j_amns.2020.2.00011_ref_088_w2aab3b7c80b1b6b1ab2ac88Aa 2024050209220073569_j_amns.2020.2.00011_ref_002_w2aab3b7c80b1b6b1ab2ab2Aa 2024050209220073569_j_amns.2020.2.00011_ref_031_w2aab3b7c80b1b6b1ab2ac31Aa 2024050209220073569_j_amns.2020.2.00011_ref_044_w2aab3b7c80b1b6b1ab2ac44Aa 2024050209220073569_j_amns.2020.2.00011_ref_005_w2aab3b7c80b1b6b1ab2ab5Aa 2024050209220073569_j_amns.2020.2.00011_ref_013_w2aab3b7c80b1b6b1ab2ac13Aa 2024050209220073569_j_amns.2020.2.00011_ref_080_w2aab3b7c80b1b6b1ab2ac80Aa 2024050209220073569_j_amns.2020.2.00011_ref_062_w2aab3b7c80b1b6b1ab2ac62Aa |
| References_xml | – volume: 51 start-page: 479 year: 2013 end-page: 497 ident: j_amns.2020.2.00011_ref_004_w2aab3b7c80b1b6b1ab2ab4Aa article-title: Fractional calculus in hydrologicmodeling: a numerical perspective publication-title: Adv. Water Resour – volume: 199 start-page: 504 year: 2008 end-page: 511 ident: j_amns.2020.2.00011_ref_083_w2aab3b7c80b1b6b1ab2ac83Aa article-title: On the solutions of certain fractional kinetic equations publication-title: Appl. Math. Comput – volume: 156 start-page: 45 issue: 1 year: 2013 end-page: 55 ident: j_amns.2020.2.00011_ref_009_w2aab3b7c80b1b6b1ab2ab9Aa article-title: Conditional optimization problems: fractional order case publication-title: J. Optim. Theory App – volume: 108 start-page: 231 year: 1969 end-page: 234 ident: j_amns.2020.2.00011_ref_046_w2aab3b7c80b1b6b1ab2ac46Aa article-title: Integral operators involving hypergeometric functions publication-title: Math. Z – volume: 45 start-page: 192 year: 2017 end-page: 204 ident: j_amns.2020.2.00011_ref_003_w2aab3b7c80b1b6b1ab2ab3Aa article-title: An efficient analytical technique for fractional model of vibration equation publication-title: Appl. Math. Model – volume: 24 start-page: 377 issue: 4 year: 1979 end-page: 385 ident: j_amns.2020.2.00011_ref_049_w2aab3b7c80b1b6b1ab2ac49Aa article-title: A certain boundary value problem for the Euler-Darboux equation I publication-title: Math. Japonica – volume: 13 start-page: 9 issue: 2 year: 2017 ident: j_amns.2020.2.00011_ref_026_w2aab3b7c80b1b6b1ab2ac26Aa article-title: An efficient nonstandard finite difference scheme for a class of fractional chaotic systems publication-title: Journal of Computational and Nonlinear Dynamics doi: 10.1115/1.4038444 – volume: 25 start-page: 211 issue: 2 year: 1980 end-page: 220 ident: j_amns.2020.2.00011_ref_050_w2aab3b7c80b1b6b1ab2ac50Aa article-title: A certain boundary value problem for the Euler-Darboux equation II publication-title: Math. Japonica – volume: 133 start-page: 248 ident: j_amns.2020.2.00011_ref_018_w2aab3b7c80b1b6b1ab2ac18Aa article-title: Optical solitons for the calogero-bogoyavlenskii-schiff equation in (2 + 1) dimensions with time-fractional conformable derivative publication-title: The European Physical Journal Plus – volume: 7 start-page: 180 issue: 1 year: 2013 end-page: 192 ident: j_amns.2020.2.00011_ref_058_w2aab3b7c80b1b6b1ab2ac58Aa article-title: New integral forms of generalized mathieu series and related applications publication-title: Applicable Analysis and Discrete Mathematics – volume: 16 start-page: 911 issue: 4 year: 2013 end-page: 936 ident: j_amns.2020.2.00011_ref_015_w2aab3b7c80b1b6b1ab2ac15Aa article-title: New relationships connecting a class of fractal objects and fractional integrals in space publication-title: Fractional Calculus and Applied Analysis – volume: 24 start-page: 31 year: 1974 end-page: 36 ident: j_amns.2020.2.00011_ref_047_w2aab3b7c80b1b6b1ab2ac47Aa article-title: Integral operators involving hypergeometric functions ii publication-title: Univ. Nac. Tucuman, Rev. Ser. A – volume: 1 start-page: 238 year: 2012 end-page: 258 ident: j_amns.2020.2.00011_ref_063_w2aab3b7c80b1b6b1ab2ac63Aa article-title: A class of extended fractional derivative operators and associated generating relations involving hypergeometric functions publication-title: Axioms – ident: j_amns.2020.2.00011_ref_025_w2aab3b7c80b1b6b1ab2ac25Aa article-title: A modified numerical scheme and convergence analysis for fractional model of lienard’s equation publication-title: Journal of Computational and Applied Mathematics doi: 10.1016/j.cam.2017.03.011 – volume: 121 start-page: 247 year: 1949 end-page: 326 ident: j_amns.2020.2.00011_ref_056_w2aab3b7c80b1b6b1ab2ac56Aa article-title: Das problem der eingespannten rechteckigen elastischen platte i.die biharmonische randwertaufgabe furdas rechteck publication-title: Math. Anal – volume: 5 issue: 2 year: 2004 ident: j_amns.2020.2.00011_ref_062_w2aab3b7c80b1b6b1ab2ac62Aa article-title: Some problems and solutions involving Mathieu’s series and its generalizations publication-title: JIPAM – volume: 32 start-page: 181 issue: 1 year: 2014 end-page: 189 ident: j_amns.2020.2.00011_ref_077_w2aab3b7c80b1b6b1ab2ac77Aa article-title: On solutions of generalized kinetic equations of fractional order publication-title: Bol. Soc. Paran. Mat – volume: 73 start-page: 1262 issue: 6 year: 2017 end-page: 1269 ident: j_amns.2020.2.00011_ref_007_w2aab3b7c80b1b6b1ab2ab7Aa article-title: A stable three-level explicit spline finite difference scheme for a class of nonlinear time variable order fractional partial differential equations publication-title: Comput. Math. Appl – volume: 61 start-page: 1172 issue: 7–8 year: 2016 end-page: 1179 ident: j_amns.2020.2.00011_ref_013_w2aab3b7c80b1b6b1ab2ac13Aa article-title: A new application of the fractional logistic map publication-title: Rom J Phys – volume: 7 start-page: 359 year: 1969 end-page: 393 ident: j_amns.2020.2.00011_ref_035_w2aab3b7c80b1b6b1ab2ac35Aa article-title: Generating functions publication-title: Fibonacci Quart – volume: 5 start-page: 899 issue: 19 year: 2011 end-page: 910 ident: j_amns.2020.2.00011_ref_076_w2aab3b7c80b1b6b1ab2ac76Aa article-title: On the solutions of generalized fractional kinetic equations publication-title: Appl. Math. Sci – volume: 492 start-page: 155 year: 2018 end-page: 167 ident: j_amns.2020.2.00011_ref_023_w2aab3b7c80b1b6b1ab2ac23Aa article-title: Analysis of regularized long-wave equation associated with a new fractional operator with mittag-leffler type kernel publication-title: Physica A – start-page: 58 ident: j_amns.2020.2.00011_ref_036_w2aab3b7c80b1b6b1ab2ac36Aa article-title: Fractional differential equations for the generalized Mittag-Leffler function publication-title: Advances in difference equations doi: 10.1186/s13662-018-1500-7 – volume: 118 start-page: 1 year: 2001 end-page: 52 ident: j_amns.2020.2.00011_ref_088_w2aab3b7c80b1b6b1ab2ac88Aa article-title: Operators of fractional integration and their applications publication-title: Appl. Math. Comput – volume: 20 start-page: 763 year: 2016 end-page: 769 ident: j_amns.2020.2.00011_ref_042_w2aab3b7c80b1b6b1ab2ac42Aa article-title: New fractional derivatives with nonlocal and non-singular kernel, theory and application to heat transfer model publication-title: Thermal Science – volume: 40 start-page: 255 year: 2017 end-page: 273 ident: j_amns.2020.2.00011_ref_069_w2aab3b7c80b1b6b1ab2ac69Aa article-title: Integral transform and fractional derivative formulas involving the extended generalized hypergeometric functions and probability distributions publication-title: Math. Method Appl. Sci – volume: 19 start-page: 869 year: 2008 end-page: 883 ident: j_amns.2020.2.00011_ref_054_w2aab3b7c80b1b6b1ab2ac54Aa article-title: Generalized fractional integration of bessel function of the first kind publication-title: Int Transf Spec Funct – ident: j_amns.2020.2.00011_ref_021_w2aab3b7c80b1b6b1ab2ac21Aa article-title: Modified kawahara equation within a fractional derivative with non-singular kernel publication-title: Thermal Science doi: 10.2298/TSCI160826008K – volume: 131 start-page: 1561 issue: 6 year: 2017 end-page: 1564 ident: j_amns.2020.2.00011_ref_028_w2aab3b7c80b1b6b1ab2ac28Aa article-title: The motion of a bead sliding on a wire in fractional sense publication-title: Acta Physica Polonica A – volume: 273 start-page: 948 year: 2016 end-page: 956 ident: j_amns.2020.2.00011_ref_041_w2aab3b7c80b1b6b1ab2ac41Aa article-title: On the new fractional derivative and application to nonlinear Fisher’s reaction diffusion equation publication-title: Applied Mathematics and Computation – volume: 44 start-page: 497 year: 2017 end-page: 507 ident: j_amns.2020.2.00011_ref_006_w2aab3b7c80b1b6b1ab2ab6Aa article-title: Unsteady marangoni convection heat transfer of fractional maxwell fluid with cattaneo heat flux publication-title: Appl. Math. Model – volume: 14 start-page: 89 issue: 1 year: 2016 end-page: 99 ident: j_amns.2020.2.00011_ref_014_w2aab3b7c80b1b6b1ab2ac14Aa article-title: Integral inequalities involving generalized Erdélyi-Kober fractional integral operators publication-title: Open Mathematics doi: 10.1515/math-2016-0007 – volume: 99 start-page: 285 year: 2017 end-page: 296 ident: j_amns.2020.2.00011_ref_029_w2aab3b7c80b1b6b1ab2ac29Aa article-title: New aspects of the adaptive synchronization and hyperchaos suppression of a financial model publication-title: Chaos, Solitons and Fractals – volume: 317 start-page: 213 year: 2008 end-page: 219 ident: j_amns.2020.2.00011_ref_073_w2aab3b7c80b1b6b1ab2ac73Aa article-title: On the new computable solution of the generalized fractional kinetic equations involving the generalized function for the fractional calculus and related functions publication-title: Astrophys. Space Sci – volume: 9 start-page: 159 year: 2006 end-page: 176 ident: j_amns.2020.2.00011_ref_067_w2aab3b7c80b1b6b1ab2ac67Aa article-title: On two saigo’s fractional integral operators in the class of univalent functions publication-title: Fract. Calc. Appl. Anal – volume: 67 start-page: 773 issue: 3 year: 2015 end-page: 791 ident: j_amns.2020.2.00011_ref_005_w2aab3b7c80b1b6b1ab2ab5Aa article-title: Numerical Simulation Of Time Variable Fractional Order Mobile-Immobile Advection-Dispersion Model publication-title: Rom. Rep. Phys – volume: 11 start-page: 203 issue: 2 year: 2008 end-page: 220 ident: j_amns.2020.2.00011_ref_052_w2aab3b7c80b1b6b1ab2ac52Aa article-title: A brief story about the operators of the generalized fractional calculus publication-title: Fract. Calc. Appl. Anal – volume: 282 start-page: 281 year: 2002 end-page: 28 ident: j_amns.2020.2.00011_ref_080_w2aab3b7c80b1b6b1ab2ac80Aa article-title: On fractional kinetic equations publication-title: Astrophys. Space Sci – volume: 13 start-page: 309 issue: 1 year: 2019 end-page: 324 ident: j_amns.2020.2.00011_ref_065_w2aab3b7c80b1b6b1ab2ac65Aa article-title: On a new (p,q)-Mathieu-type power series and its applications publication-title: Applicable Analysis and Discrete Mathematics – volume: 327 start-page: 53 year: 2000 end-page: 63 ident: j_amns.2020.2.00011_ref_078_w2aab3b7c80b1b6b1ab2ac78Aa article-title: The fractional kinetic equation and thermonuclear functions publication-title: Astrophys. Space Sci – volume: 47 start-page: 114 year: 2017 end-page: 127 ident: j_amns.2020.2.00011_ref_008_w2aab3b7c80b1b6b1ab2ab8Aa article-title: Unsteady flow of viscoelastic fluid with the fractional K-BKZ model between two parallel plates publication-title: Appl. Math. Model – volume: 24 start-page: 415 issue: 4 year: 2017 end-page: 425 ident: j_amns.2020.2.00011_ref_039_w2aab3b7c80b1b6b1ab2ac39Aa article-title: Further extended caputo fractional derivative operator and its applications publication-title: Russian Journal of Mathematical physics – volume: 45 start-page: 519 year: 1982 end-page: 546 ident: j_amns.2020.2.00011_ref_043_w2aab3b7c80b1b6b1ab2ac43Aa article-title: Fractional powers of a class of ordinary differential operators publication-title: Proc. London Math. Soc. (III) – volume: 20 start-page: 113 year: 2015 end-page: 123 ident: j_amns.2020.2.00011_ref_072_w2aab3b7c80b1b6b1ab2ac72Aa article-title: Solutions of generalized fractional kinetic equations involving Aleph functions publication-title: Math. Commun – ident: j_amns.2020.2.00011_ref_017_w2aab3b7c80b1b6b1ab2ac17Aa article-title: Fractional kinetic equations involving generalized k-Bessel function via Sumudu transform publication-title: Alexandria Engineering journal doi: 10.1016/j.aej.2017.03.046 – volume: 31 start-page: 125 year: 2017 end-page: 140 ident: j_amns.2020.2.00011_ref_070_w2aab3b7c80b1b6b1ab2ac70Aa article-title: A family of the incomplete hypergeometric functions and associated integral transform and fractional derivative formulas publication-title: Filomat – volume: 32 start-page: 1 issue: 1 year: 2004 end-page: 104 ident: j_amns.2020.2.00011_ref_002_w2aab3b7c80b1b6b1ab2ab2Aa article-title: Fractional calculus in bioengineering publication-title: Crit. Rev. Biomed. Eng – start-page: 7 year: 2015 ident: j_amns.2020.2.00011_ref_079_w2aab3b7c80b1b6b1ab2ac79Aa publication-title: On Generalized Fractional Kinetic Equations Involving Generalized Bessel Function of the First Kind, Mathematical Problems in Engineering – volume: 305 start-page: 305 year: 2006 end-page: 313 ident: j_amns.2020.2.00011_ref_082_w2aab3b7c80b1b6b1ab2ac82Aa article-title: Haubold, Solution of generalized fractional reaction-diffusion equations publication-title: Astrophys. Space Sci – volume: 7 start-page: 753 year: 1997 end-page: 764 ident: j_amns.2020.2.00011_ref_084_w2aab3b7c80b1b6b1ab2ac84Aa article-title: Fractional kinetic equations: solutions and applications publication-title: Caos – volume: 20 start-page: 753 year: 2016 end-page: 756 ident: j_amns.2020.2.00011_ref_034_w2aab3b7c80b1b6b1ab2ac34Aa article-title: A new fractional derivative without singular kernel: Application to the modelling of the steady heat flow publication-title: Thermal Science – volume: 159 start-page: 589 issue: 2 year: 2004 end-page: 602 ident: j_amns.2020.2.00011_ref_064_w2aab3b7c80b1b6b1ab2ac64Aa article-title: Extended hypergeometric and conuent hypergeometric functions publication-title: Appl. Math. Comput – volume: 4 start-page: 1 issue: 5 year: 2003 end-page: 11 ident: j_amns.2020.2.00011_ref_061_w2aab3b7c80b1b6b1ab2ac61Aa article-title: On integral forms of generalized Mathieu series publication-title: J. Inequal. Pure Appl. Math – volume: 20 start-page: 973 year: 2017 end-page: 986 ident: j_amns.2020.2.00011_ref_066_w2aab3b7c80b1b6b1ab2ac66Aa article-title: Some families of generalized Mathieu-type power series associated probability distributions and related functional inequalities involving complete monotonicity and log-convexity publication-title: Math. Inequal. Appl – volume: 76 start-page: 110 year: 1994 end-page: 122 ident: j_amns.2020.2.00011_ref_085_w2aab3b7c80b1b6b1ab2ac85Aa article-title: Fractional kinetic equation for hamiltonian chaos publication-title: Physica D – volume: 250 start-page: 95 year: 1980 end-page: 98 ident: j_amns.2020.2.00011_ref_057_w2aab3b7c80b1b6b1ab2ac57Aa article-title: Some inequalities related to an inequality of mathieu publication-title: Math. Ann – volume: 4 start-page: 1 issue: 2 year: 2003 end-page: 7 ident: j_amns.2020.2.00011_ref_060_w2aab3b7c80b1b6b1ab2ac60Aa article-title: On an open problem of Bai-Ni Guo and Feng Qi publication-title: J. Inequal. Pure Appl. Math – volume: 344 start-page: 657 year: 2004 end-page: 664 ident: j_amns.2020.2.00011_ref_081_w2aab3b7c80b1b6b1ab2ac81Aa article-title: On generalized fractional kinetic equations publication-title: Physica A – volume: 37 start-page: 299 issue: 2 year: 2013 end-page: 306 ident: j_amns.2020.2.00011_ref_075_w2aab3b7c80b1b6b1ab2ac75Aa article-title: An alternative method for solving generalized differential equations of fractional order publication-title: Kragujevac J. Math – volume: 11 start-page: 135 issue: 2 year: 1978 end-page: 143 ident: j_amns.2020.2.00011_ref_048_w2aab3b7c80b1b6b1ab2ac48Aa article-title: A remark on integral operators involving the gauss hypergeometric functions publication-title: Math. Rep. Kyushu Univ – volume: 24 start-page: 213 year: 2019 end-page: 244 ident: j_amns.2020.2.00011_ref_019_w2aab3b7c80b1b6b1ab2ac19Aa article-title: Certain fractional integrals and solutions of fractional kinetic equations involving the product of s-function publication-title: Mathematical Methods in Engineering. Nonlinear Systems and Complexity – volume: 55 start-page: 3053 issue: 4 year: 2016 end-page: 3059 ident: j_amns.2020.2.00011_ref_016_w2aab3b7c80b1b6b1ab2ac16Aa article-title: Certain fractional kinetic equations involving the product of generalized k-Bessel function publication-title: Alexandria Engineering journal – ident: j_amns.2020.2.00011_ref_053_w2aab3b7c80b1b6b1ab2ac53Aa article-title: Generalized fractional integrals of product of two h-functions and a general class of polynomials publication-title: International Journal of Computer Mathematics doi: 10.1080/00207160.2015.1045886 – volume: 2 start-page: 813 issue: 2 year: 2012 end-page: 818 ident: j_amns.2020.2.00011_ref_074_w2aab3b7c80b1b6b1ab2ac74Aa article-title: On solution of generalized kinetic equation of fractional order publication-title: Int. J. Math. Sci. Appl – ident: j_amns.2020.2.00011_ref_022_w2aab3b7c80b1b6b1ab2ac22Aa article-title: A new fractional model for convective straight fins with temperature-dependent thermal conductivity publication-title: Therm. Sci doi: 10.2298/TSCI170129096K – volume: 175 start-page: 718 issue: 3 year: 2017 end-page: 737 ident: j_amns.2020.2.00011_ref_027_w2aab3b7c80b1b6b1ab2ac27Aa article-title: A new formulation of the fractional optimal control problems involving mittagleffler nonsingular kernel publication-title: Journal of Optimization Theory and Applications – volume: 8 start-page: 333 issue: 2 year: 2013 end-page: 345 ident: j_amns.2020.2.00011_ref_037_w2aab3b7c80b1b6b1ab2ac37Aa article-title: Certain fractional integral operators and the generalized incomplete hypergeometric functions publication-title: Appl. Appl. Math – volume: 3 start-page: 117 year: 1969 end-page: 122 ident: j_amns.2020.2.00011_ref_044_w2aab3b7c80b1b6b1ab2ac44Aa article-title: Integral operators involving Fox’s H-function I publication-title: Acta Mexicana Cienc. Tecn – volume: 51 start-page: 995 issue: 4 year: 2014 end-page: 1003 ident: j_amns.2020.2.00011_ref_038_w2aab3b7c80b1b6b1ab2ac38Aa article-title: Certain new integral formulas involving the generalized Bessel functions publication-title: Bull. Korean Math. Soc – volume: 91 start-page: 307 year: 2018 end-page: 317 ident: j_amns.2020.2.00011_ref_024_w2aab3b7c80b1b6b1ab2ac24Aa article-title: New numerical algorithm for fractional fitzhugh-nagumo equation arising in transmission of nerve impulses publication-title: Nonlinear Dynamics – volume: 12 start-page: 163 issue: 1 year: 2018 end-page: 174 ident: j_amns.2020.2.00011_ref_059_w2aab3b7c80b1b6b1ab2ac59Aa article-title: Tomovski, New inequalities for some generalized Mathieu type series and the Riemann Zeta function publication-title: Journal of Mathematical Inequalities – volume: 4 start-page: 101 ident: j_amns.2020.2.00011_ref_020_w2aab3b7c80b1b6b1ab2ac20Aa article-title: Certain sequences involving product of k-Bessel function publication-title: International Journal of Applied and Computational Mathematics – volume: 7 start-page: 72 year: 1969 end-page: 79 ident: j_amns.2020.2.00011_ref_045_w2aab3b7c80b1b6b1ab2ac45Aa article-title: Integral operators involving Fox’s H-function II publication-title: Acta Mexicana Cienc. Tecn – volume: 1 start-page: 73 year: 2015 end-page: 85 ident: j_amns.2020.2.00011_ref_040_w2aab3b7c80b1b6b1ab2ac40Aa article-title: A new definition of fractional derivative without singular kernel publication-title: Progr. Fract. Differ. Appl – ident: 2024050209220073569_j_amns.2020.2.00011_ref_043_w2aab3b7c80b1b6b1ab2ac43Aa doi: 10.1112/plms/s3-45.3.519 – ident: 2024050209220073569_j_amns.2020.2.00011_ref_070_w2aab3b7c80b1b6b1ab2ac70Aa doi: 10.2298/FIL1701125S – ident: 2024050209220073569_j_amns.2020.2.00011_ref_037_w2aab3b7c80b1b6b1ab2ac37Aa – ident: 2024050209220073569_j_amns.2020.2.00011_ref_005_w2aab3b7c80b1b6b1ab2ab5Aa – ident: 2024050209220073569_j_amns.2020.2.00011_ref_006_w2aab3b7c80b1b6b1ab2ab6Aa doi: 10.1016/j.apm.2017.02.021 – ident: 2024050209220073569_j_amns.2020.2.00011_ref_035_w2aab3b7c80b1b6b1ab2ac35Aa – ident: 2024050209220073569_j_amns.2020.2.00011_ref_058_w2aab3b7c80b1b6b1ab2ac58Aa doi: 10.2298/AADM121227028M – ident: 2024050209220073569_j_amns.2020.2.00011_ref_084_w2aab3b7c80b1b6b1ab2ac84Aa doi: 10.1063/1.166272 – ident: 2024050209220073569_j_amns.2020.2.00011_ref_053_w2aab3b7c80b1b6b1ab2ac53Aa doi: 10.1080/00207160.2015.1045886 – ident: 2024050209220073569_j_amns.2020.2.00011_ref_083_w2aab3b7c80b1b6b1ab2ac83Aa doi: 10.1016/j.amc.2007.10.005 – ident: 2024050209220073569_j_amns.2020.2.00011_ref_088_w2aab3b7c80b1b6b1ab2ac88Aa doi: 10.1016/S0096-3003(99)00208-8 – ident: 2024050209220073569_j_amns.2020.2.00011_ref_033_w2aab3b7c80b1b6b1ab2ac33Aa – ident: 2024050209220073569_j_amns.2020.2.00011_ref_031_w2aab3b7c80b1b6b1ab2ac31Aa doi: 10.1007/978-90-481-3293-5 – ident: 2024050209220073569_j_amns.2020.2.00011_ref_007_w2aab3b7c80b1b6b1ab2ab7Aa doi: 10.1016/j.camwa.2016.07.010 – ident: 2024050209220073569_j_amns.2020.2.00011_ref_014_w2aab3b7c80b1b6b1ab2ac14Aa doi: 10.1515/math-2016-0007 – ident: 2024050209220073569_j_amns.2020.2.00011_ref_016_w2aab3b7c80b1b6b1ab2ac16Aa doi: 10.1016/j.aej.2016.07.025 – ident: 2024050209220073569_j_amns.2020.2.00011_ref_039_w2aab3b7c80b1b6b1ab2ac39Aa doi: 10.1134/S106192081704001X – ident: 2024050209220073569_j_amns.2020.2.00011_ref_064_w2aab3b7c80b1b6b1ab2ac64Aa doi: 10.1016/j.amc.2003.09.017 – ident: 2024050209220073569_j_amns.2020.2.00011_ref_086_w2aab3b7c80b1b6b1ab2ac86Aa – ident: 2024050209220073569_j_amns.2020.2.00011_ref_004_w2aab3b7c80b1b6b1ab2ab4Aa doi: 10.1016/j.advwatres.2012.04.005 – ident: 2024050209220073569_j_amns.2020.2.00011_ref_013_w2aab3b7c80b1b6b1ab2ac13Aa – ident: 2024050209220073569_j_amns.2020.2.00011_ref_076_w2aab3b7c80b1b6b1ab2ac76Aa – ident: 2024050209220073569_j_amns.2020.2.00011_ref_081_w2aab3b7c80b1b6b1ab2ac81Aa doi: 10.1016/j.physa.2004.06.048 – ident: 2024050209220073569_j_amns.2020.2.00011_ref_011_w2aab3b7c80b1b6b1ab2ac11Aa – ident: 2024050209220073569_j_amns.2020.2.00011_ref_009_w2aab3b7c80b1b6b1ab2ab9Aa doi: 10.1007/s10957-012-0211-6 – ident: 2024050209220073569_j_amns.2020.2.00011_ref_068_w2aab3b7c80b1b6b1ab2ac68Aa – ident: 2024050209220073569_j_amns.2020.2.00011_ref_036_w2aab3b7c80b1b6b1ab2ac36Aa doi: 10.1186/s13662-018-1500-7 – ident: 2024050209220073569_j_amns.2020.2.00011_ref_085_w2aab3b7c80b1b6b1ab2ac85Aa doi: 10.1016/0167-2789(94)90254-2 – ident: 2024050209220073569_j_amns.2020.2.00011_ref_010_w2aab3b7c80b1b6b1ab2ac10Aa – ident: 2024050209220073569_j_amns.2020.2.00011_ref_067_w2aab3b7c80b1b6b1ab2ac67Aa – ident: 2024050209220073569_j_amns.2020.2.00011_ref_027_w2aab3b7c80b1b6b1ab2ac27Aa doi: 10.1007/s10957-017-1186-0 – ident: 2024050209220073569_j_amns.2020.2.00011_ref_023_w2aab3b7c80b1b6b1ab2ac23Aa doi: 10.1016/j.physa.2017.10.002 – ident: 2024050209220073569_j_amns.2020.2.00011_ref_012_w2aab3b7c80b1b6b1ab2ac12Aa doi: 10.1142/9789814355216 – ident: 2024050209220073569_j_amns.2020.2.00011_ref_018_w2aab3b7c80b1b6b1ab2ac18Aa doi: 10.1140/epjp/i2018-12096-8 – ident: 2024050209220073569_j_amns.2020.2.00011_ref_049_w2aab3b7c80b1b6b1ab2ac49Aa – ident: 2024050209220073569_j_amns.2020.2.00011_ref_061_w2aab3b7c80b1b6b1ab2ac61Aa – ident: 2024050209220073569_j_amns.2020.2.00011_ref_034_w2aab3b7c80b1b6b1ab2ac34Aa doi: 10.2298/TSCI151224222Y – ident: 2024050209220073569_j_amns.2020.2.00011_ref_062_w2aab3b7c80b1b6b1ab2ac62Aa – ident: 2024050209220073569_j_amns.2020.2.00011_ref_066_w2aab3b7c80b1b6b1ab2ac66Aa doi: 10.7153/mia-2017-20-61 – ident: 2024050209220073569_j_amns.2020.2.00011_ref_001_w2aab3b7c80b1b6b1ab2ab1Aa doi: 10.1142/9789812817747 – ident: 2024050209220073569_j_amns.2020.2.00011_ref_059_w2aab3b7c80b1b6b1ab2ac59Aa doi: 10.7153/jmi-2018-12-13 – ident: 2024050209220073569_j_amns.2020.2.00011_ref_048_w2aab3b7c80b1b6b1ab2ac48Aa – ident: 2024050209220073569_j_amns.2020.2.00011_ref_060_w2aab3b7c80b1b6b1ab2ac60Aa – ident: 2024050209220073569_j_amns.2020.2.00011_ref_056_w2aab3b7c80b1b6b1ab2ac56Aa doi: 10.1007/BF01329629 – ident: 2024050209220073569_j_amns.2020.2.00011_ref_021_w2aab3b7c80b1b6b1ab2ac21Aa doi: 10.2298/TSCI160826008K – ident: 2024050209220073569_j_amns.2020.2.00011_ref_020_w2aab3b7c80b1b6b1ab2ac20Aa doi: 10.1007/s40819-018-0532-8 – ident: 2024050209220073569_j_amns.2020.2.00011_ref_047_w2aab3b7c80b1b6b1ab2ac47Aa – ident: 2024050209220073569_j_amns.2020.2.00011_ref_077_w2aab3b7c80b1b6b1ab2ac77Aa doi: 10.5269/bspm.v32i1.18146 – ident: 2024050209220073569_j_amns.2020.2.00011_ref_045_w2aab3b7c80b1b6b1ab2ac45Aa – ident: 2024050209220073569_j_amns.2020.2.00011_ref_002_w2aab3b7c80b1b6b1ab2ab2Aa doi: 10.1615/CritRevBiomedEng.v32.i1.10 – ident: 2024050209220073569_j_amns.2020.2.00011_ref_024_w2aab3b7c80b1b6b1ab2ac24Aa doi: 10.1007/s11071-017-3870-x – ident: 2024050209220073569_j_amns.2020.2.00011_ref_015_w2aab3b7c80b1b6b1ab2ac15Aa doi: 10.2478/s13540-013-0056-1 – ident: 2024050209220073569_j_amns.2020.2.00011_ref_040_w2aab3b7c80b1b6b1ab2ac40Aa – ident: 2024050209220073569_j_amns.2020.2.00011_ref_065_w2aab3b7c80b1b6b1ab2ac65Aa doi: 10.2298/AADM190427005M – ident: 2024050209220073569_j_amns.2020.2.00011_ref_008_w2aab3b7c80b1b6b1ab2ab8Aa doi: 10.1016/j.apm.2017.03.029 – ident: 2024050209220073569_j_amns.2020.2.00011_ref_032_w2aab3b7c80b1b6b1ab2ac32Aa – ident: 2024050209220073569_j_amns.2020.2.00011_ref_029_w2aab3b7c80b1b6b1ab2ac29Aa doi: 10.1016/j.chaos.2017.04.025 – ident: 2024050209220073569_j_amns.2020.2.00011_ref_042_w2aab3b7c80b1b6b1ab2ac42Aa doi: 10.2298/TSCI160111018A – ident: 2024050209220073569_j_amns.2020.2.00011_ref_030_w2aab3b7c80b1b6b1ab2ac30Aa – ident: 2024050209220073569_j_amns.2020.2.00011_ref_087_w2aab3b7c80b1b6b1ab2ac87Aa – ident: 2024050209220073569_j_amns.2020.2.00011_ref_079_w2aab3b7c80b1b6b1ab2ac79Aa doi: 10.1155/2015/289387 – ident: 2024050209220073569_j_amns.2020.2.00011_ref_082_w2aab3b7c80b1b6b1ab2ac82Aa doi: 10.1007/s10509-006-9191-z – ident: 2024050209220073569_j_amns.2020.2.00011_ref_063_w2aab3b7c80b1b6b1ab2ac63Aa doi: 10.3390/axioms1030238 – ident: 2024050209220073569_j_amns.2020.2.00011_ref_074_w2aab3b7c80b1b6b1ab2ac74Aa – ident: 2024050209220073569_j_amns.2020.2.00011_ref_073_w2aab3b7c80b1b6b1ab2ac73Aa doi: 10.1007/s10509-008-9880-x – ident: 2024050209220073569_j_amns.2020.2.00011_ref_075_w2aab3b7c80b1b6b1ab2ac75Aa – ident: 2024050209220073569_j_amns.2020.2.00011_ref_019_w2aab3b7c80b1b6b1ab2ac19Aa doi: 10.1007/978-3-319-90972-1_14 – ident: 2024050209220073569_j_amns.2020.2.00011_ref_072_w2aab3b7c80b1b6b1ab2ac72Aa – ident: 2024050209220073569_j_amns.2020.2.00011_ref_069_w2aab3b7c80b1b6b1ab2ac69Aa doi: 10.1002/mma.3986 – ident: 2024050209220073569_j_amns.2020.2.00011_ref_078_w2aab3b7c80b1b6b1ab2ac78Aa doi: 10.1023/A:1002695807970 – ident: 2024050209220073569_j_amns.2020.2.00011_ref_071_w2aab3b7c80b1b6b1ab2ac71Aa – ident: 2024050209220073569_j_amns.2020.2.00011_ref_026_w2aab3b7c80b1b6b1ab2ac26Aa doi: 10.1115/1.4038444 – ident: 2024050209220073569_j_amns.2020.2.00011_ref_054_w2aab3b7c80b1b6b1ab2ac54Aa doi: 10.1080/10652460802295978 – ident: 2024050209220073569_j_amns.2020.2.00011_ref_028_w2aab3b7c80b1b6b1ab2ac28Aa doi: 10.12693/APhysPolA.131.1561 – ident: 2024050209220073569_j_amns.2020.2.00011_ref_055_w2aab3b7c80b1b6b1ab2ac55Aa – ident: 2024050209220073569_j_amns.2020.2.00011_ref_022_w2aab3b7c80b1b6b1ab2ac22Aa doi: 10.2298/TSCI170129096K – ident: 2024050209220073569_j_amns.2020.2.00011_ref_025_w2aab3b7c80b1b6b1ab2ac25Aa doi: 10.1016/j.cam.2017.03.011 – ident: 2024050209220073569_j_amns.2020.2.00011_ref_080_w2aab3b7c80b1b6b1ab2ac80Aa doi: 10.1023/A:1021175108964 – ident: 2024050209220073569_j_amns.2020.2.00011_ref_044_w2aab3b7c80b1b6b1ab2ac44Aa doi: 10.1007/BF01112023 – ident: 2024050209220073569_j_amns.2020.2.00011_ref_017_w2aab3b7c80b1b6b1ab2ac17Aa doi: 10.1016/j.aej.2017.03.046 – ident: 2024050209220073569_j_amns.2020.2.00011_ref_038_w2aab3b7c80b1b6b1ab2ac38Aa doi: 10.4134/BKMS.2014.51.4.995 – ident: 2024050209220073569_j_amns.2020.2.00011_ref_052_w2aab3b7c80b1b6b1ab2ac52Aa – ident: 2024050209220073569_j_amns.2020.2.00011_ref_003_w2aab3b7c80b1b6b1ab2ab3Aa doi: 10.1016/j.apm.2016.12.008 – ident: 2024050209220073569_j_amns.2020.2.00011_ref_046_w2aab3b7c80b1b6b1ab2ac46Aa doi: 10.1007/BF01112023 – ident: 2024050209220073569_j_amns.2020.2.00011_ref_050_w2aab3b7c80b1b6b1ab2ac50Aa – ident: 2024050209220073569_j_amns.2020.2.00011_ref_057_w2aab3b7c80b1b6b1ab2ac57Aa doi: 10.1007/BF02599788 – ident: 2024050209220073569_j_amns.2020.2.00011_ref_041_w2aab3b7c80b1b6b1ab2ac41Aa doi: 10.1016/j.amc.2015.10.021 – ident: 2024050209220073569_j_amns.2020.2.00011_ref_051_w2aab3b7c80b1b6b1ab2ac51Aa |
| SSID | ssj0002313662 |
| Score | 2.3901172 |
| Snippet | Aim of the present paper is to establish fractional integral formulas by using fractional calculus operators involving the generalized (
,
)-Mathieu type... Aim of the present paper is to establish fractional integral formulas by using fractional calculus operators involving the generalized ( p , q )-Mathieu type... Aim of the present paper is to establish fractional integral formulas by using fractional calculus operators involving the generalized (p, q)-Mathieu type... |
| SourceID | proquest crossref walterdegruyter |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 15 |
| SubjectTerms | Extended generalized Mathieu series Fractional derivative operators Fractional integral operators Integral transforms |
| Title | Fractional Calculus involving (p, q)-Mathieu Type Series |
| URI | https://reference-global.com/article/10.2478/amns.2020.2.00011 https://www.proquest.com/docview/3191239238 |
| Volume | 5 |
| WOSCitedRecordID | wos000664173100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2444-8656 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002313662 issn: 2444-8656 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2444-8656 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002313662 issn: 2444-8656 databaseCode: BENPR dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2444-8656 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002313662 issn: 2444-8656 databaseCode: PIMPY dateStart: 20160101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-xsoe9lDE2UT6mPPAw0DyK4zjJE2KICh6oKrRJ8BTZZxchQWibFsR_z13iUg1pvCBFiiLZVnTnu_v57nwHsJMqm6NLpEBtUJAkSmGk0kJmFmVmENN4WDebSPv97PIyHwSHWxXSKuc6sVbU7h7ZR75PW4WULMGR7HA0Ftw1iqOroYXGB1jmSmWqBcu_T_qDixcvC6GXWGvZhDOlSrN9c1dylW5Jn79qQPSvQVqgzPZjHa92_noye5rO46O12emtvPeHP0M7AM7oqNkhq7Dkyy-wEsBnFES7WoOsN2nuONDgY3PLXsEquilJe7HLIfox-hmNd8U5Jyv6WcTH14g9a776Cn97J3-OT0VoqyAwTrtToXVifD50yKXojZfW-NRl0mHiPdGQmITqIDXSGBe7mMx5jkqlufU-xq6l4803aJX3pV-HiPCb8vSg7iKHUK3iTh5Dpa2yQ5fYDnTntC0w1Bzn1he3BZ09mB0Fs6NgdhSyjoMfdGDvZcqoKbjx1uCtOe2LIHtVsSB8B_QrJi5G_XdNwjPJxtvrbsInntFk7W5BazqZ-W34iA_Tm2ryPexBeg_OzgdXz5j_5x4 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dSxwxEB_kLLQv2mpLr7Wahwq2NHpms8nug4ioh4fecQ8W7NM2X1cEu563dxX_qf6NndkPDwv1zYfCvgSSEHYmk9_MJPMD-KilTZ2PBXfKOI47UXAjpOIisU4kxjkdjUqyCT0YJBcX6XABfjdvYehaZWMTS0Ptrx3FyHdQVdDIIhxJ9sc3nFijKLvaUGhUanEa7m7RZSv2ekco300husfnhye8ZhXgLtKdKVcqNiEdeUeV2E0Q1gTtE-FdHAJ69LhGJ3e1Ecb4yEd4mqVOSp3aECLXsZpYItDkL0pU9qQFi8Nef_jtPqqDaClSSlTpUyF1smN-5lQVXGBzuwRgDw_AOapdui3z4z78mMzupk0-tjzmusv_2w96CUs1oGYH1Q54BQshX4HlGlyz2nQVq5B0J9UbDux8aK4o6lmwyxytM4VU2Nb4C7v5xPt0GTPMGLnnjCKHoXgNX59k_W-glV_n4S0wxKcy4OdUx1GK2EpiKhlJZaUd-di2odPIMnN1TXWi9rjK0Lci8Wck_ozEn4kyz7_bhs_3Q8ZVQZHHOq81ss5q21Jkc0G3Qf2lNPNe_5wT8Vr87vF5N-D5yXn_LDvrDU7fwwsaXd1QXoPWdDILH-CZ-zW9LCbrtf4z-P7UGvUH8ENFFA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fractional+Calculus+involving+%28p%2C+q%29-Mathieu+Type+Series&rft.jtitle=Applied+mathematics+and+nonlinear+sciences&rft.au=Kaur%2C+Daljeet&rft.au=Agarwal%2C+Praveen&rft.au=Rakshit%2C+Madhuchanda&rft.au=Chand%2C+Mehar&rft.date=2020-07-01&rft.pub=Sciendo&rft.eissn=2444-8656&rft.volume=5&rft.issue=2&rft.spage=15&rft.epage=34&rft_id=info:doi/10.2478%2Famns.2020.2.00011&rft.externalDBID=n%2Fa&rft.externalDocID=10_2478_amns_2020_2_000115215 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2444-8656&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2444-8656&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2444-8656&client=summon |