Fractional Calculus involving (p, q)-Mathieu Type Series

Aim of the present paper is to establish fractional integral formulas by using fractional calculus operators involving the generalized ( , )-Mathieu type series. Then, their composition formulas by using the integral transforms are introduced. Further, a new generalized form of the fractional kineti...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics and nonlinear sciences Vol. 5; no. 2; pp. 15 - 34
Main Authors: Kaur, Daljeet, Agarwal, Praveen, Rakshit, Madhuchanda, Chand, Mehar
Format: Journal Article
Language:English
Published: Beirut Sciendo 01.07.2020
De Gruyter Brill Sp. z o.o., Paradigm Publishing Services
Subjects:
ISSN:2444-8656, 2444-8656
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Aim of the present paper is to establish fractional integral formulas by using fractional calculus operators involving the generalized ( , )-Mathieu type series. Then, their composition formulas by using the integral transforms are introduced. Further, a new generalized form of the fractional kinetic equation involving the series is also developed. The solutions of fractional kinetic equations are presented in terms of the Mittag-Leffler function. The results established here are quite general in nature and capable of yielding both known and new results.
AbstractList Aim of the present paper is to establish fractional integral formulas by using fractional calculus operators involving the generalized ( p , q )-Mathieu type series. Then, their composition formulas by using the integral transforms are introduced. Further, a new generalized form of the fractional kinetic equation involving the series is also developed. The solutions of fractional kinetic equations are presented in terms of the Mittag-Leffler function. The results established here are quite general in nature and capable of yielding both known and new results.
Aim of the present paper is to establish fractional integral formulas by using fractional calculus operators involving the generalized ( , )-Mathieu type series. Then, their composition formulas by using the integral transforms are introduced. Further, a new generalized form of the fractional kinetic equation involving the series is also developed. The solutions of fractional kinetic equations are presented in terms of the Mittag-Leffler function. The results established here are quite general in nature and capable of yielding both known and new results.
Aim of the present paper is to establish fractional integral formulas by using fractional calculus operators involving the generalized (p, q)-Mathieu type series. Then, their composition formulas by using the integral transforms are introduced. Further, a new generalized form of the fractional kinetic equation involving the series is also developed. The solutions of fractional kinetic equations are presented in terms of the Mittag-Leffler function. The results established here are quite general in nature and capable of yielding both known and new results.
Author Chand, Mehar
Kaur, Daljeet
Agarwal, Praveen
Rakshit, Madhuchanda
Author_xml – sequence: 1
  givenname: Daljeet
  surname: Kaur
  fullname: Kaur, Daljeet
  email: daljitk053@gmail.com
  organization: Department of Applied Sciences, Guru Kashi University, Bathinda-151302, India
– sequence: 2
  givenname: Praveen
  surname: Agarwal
  fullname: Agarwal, Praveen
  email: goyal.praveen2011@gmail.com
  organization: Department of Mathematics, Anand International College of Engineering, Jaipur-303012, India
– sequence: 3
  givenname: Madhuchanda
  surname: Rakshit
  fullname: Rakshit, Madhuchanda
  email: drmrakshit@gmail.com
  organization: Department of Applied Sciences, Guru Kashi University, Bathinda-151302, India
– sequence: 4
  givenname: Mehar
  surname: Chand
  fullname: Chand, Mehar
  email: mehar.jallandhra@gmail.com
  organization: Department of Mathematics, Baba Farid College, Bathinda-151001, India
BookMark eNp9kE1Lw0AQhhdRsNb-AG8BLwqm7lc2ycGDFKtCxYP1vEw207olTdLdpNJ_b2IFRdDTvAPvMwzPCTksqxIJOWN0zGWcXMO69GNOebeOKaWMHZABl1KGiYrU4Y98TEber7oKF0woxQckmTowja1KKIIJFKYtWh_YclsVW1sug4v6Kthchk_QvFlsg_muxuAFnUV_So4WUHgcfc0heZ3ezScP4ez5_nFyOwuNiGkTKhUBpovcKE4lIM8A4zzhuYkQWSqTzBjJYuAAuchFEonUSBmnGaIwNIsjMSTn-7u1qzYt-kavqtZ173otWMq4SLlIuhbbt4yrvHe40LWza3A7zajuHeneke4daa4_HXVM_IsxtoHeRePAFv-SN3vyHYoGXY5L1-668P3an2zEWSQ-AFY4gbs
CitedBy_id crossref_primary_10_1155_2021_1537958
crossref_primary_10_1186_s13660_021_02735_3
crossref_primary_10_3389_fenrg_2023_1142243
crossref_primary_10_1016_j_chaos_2021_111674
crossref_primary_10_1186_s13662_020_03077_y
crossref_primary_10_3390_sym13071159
crossref_primary_10_1186_s13662_022_03705_9
crossref_primary_10_3390_math11153343
crossref_primary_10_3390_math8101849
crossref_primary_10_1155_2021_8886056
crossref_primary_10_3390_math9162012
crossref_primary_10_3390_axioms12040387
crossref_primary_10_3390_sym14112322
crossref_primary_10_3390_fractalfract5040160
crossref_primary_10_1155_2020_7359242
crossref_primary_10_1186_s13662_021_03235_w
crossref_primary_10_1155_2021_9512371
crossref_primary_10_1186_s13660_022_02896_9
crossref_primary_10_3390_math10234564
crossref_primary_10_3390_sym14122539
crossref_primary_10_1007_s11071_022_07688_w
crossref_primary_10_1186_s13662_020_03087_w
crossref_primary_10_1007_s44196_021_00009_w
crossref_primary_10_3390_fractalfract6020085
crossref_primary_10_3390_math11153308
crossref_primary_10_3390_fractalfract6050231
crossref_primary_10_1186_s13662_021_03289_w
crossref_primary_10_3390_sym13040532
Cites_doi 10.1115/1.4038444
10.1016/j.cam.2017.03.011
10.1186/s13662-018-1500-7
10.2298/TSCI160826008K
10.1515/math-2016-0007
10.1016/j.aej.2017.03.046
10.1080/00207160.2015.1045886
10.2298/TSCI170129096K
10.1112/plms/s3-45.3.519
10.2298/FIL1701125S
10.1016/j.apm.2017.02.021
10.2298/AADM121227028M
10.1063/1.166272
10.1016/j.amc.2007.10.005
10.1016/S0096-3003(99)00208-8
10.1007/978-90-481-3293-5
10.1016/j.camwa.2016.07.010
10.1016/j.aej.2016.07.025
10.1134/S106192081704001X
10.1016/j.amc.2003.09.017
10.1016/j.advwatres.2012.04.005
10.1016/j.physa.2004.06.048
10.1007/s10957-012-0211-6
10.1016/0167-2789(94)90254-2
10.1007/s10957-017-1186-0
10.1016/j.physa.2017.10.002
10.1142/9789814355216
10.1140/epjp/i2018-12096-8
10.2298/TSCI151224222Y
10.7153/mia-2017-20-61
10.1142/9789812817747
10.7153/jmi-2018-12-13
10.1007/BF01329629
10.1007/s40819-018-0532-8
10.5269/bspm.v32i1.18146
10.1615/CritRevBiomedEng.v32.i1.10
10.1007/s11071-017-3870-x
10.2478/s13540-013-0056-1
10.2298/AADM190427005M
10.1016/j.apm.2017.03.029
10.1016/j.chaos.2017.04.025
10.2298/TSCI160111018A
10.1155/2015/289387
10.1007/s10509-006-9191-z
10.3390/axioms1030238
10.1007/s10509-008-9880-x
10.1007/978-3-319-90972-1_14
10.1002/mma.3986
10.1023/A:1002695807970
10.1080/10652460802295978
10.12693/APhysPolA.131.1561
10.1023/A:1021175108964
10.1007/BF01112023
10.4134/BKMS.2014.51.4.995
10.1016/j.apm.2016.12.008
10.1007/BF02599788
10.1016/j.amc.2015.10.021
ContentType Journal Article
Copyright 2020. This work is published under http://creativecommons.org/licenses/by/4.0 (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0 (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.2478/amns.2020.2.00011
DatabaseName CrossRef
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2444-8656
EndPage 34
ExternalDocumentID 10_2478_amns_2020_2_00011
10_2478_amns_2020_2_000115215
GroupedDBID 9WM
AATOW
ABFKT
ADBLJ
AFFHD
AFKRA
AHGSO
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
BENPR
CCPQU
EBS
M~E
OK1
PHGZM
PHGZT
PIMPY
QD8
SLJYH
AAYXX
CITATION
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c370t-665ae9fdc6204ae2bae7d82dc5ee1948bcc417a2aad3d38539c4479bee3c0b753
IEDL.DBID BENPR
ISICitedReferencesCount 64
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000664173100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2444-8656
IngestDate Wed Nov 19 00:44:39 EST 2025
Sat Nov 29 05:04:16 EST 2025
Tue Nov 18 21:32:30 EST 2025
Sat Nov 29 01:30:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-665ae9fdc6204ae2bae7d82dc5ee1948bcc417a2aad3d38539c4479bee3c0b753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3191239238?pq-origsite=%requestingapplication%
PQID 3191239238
PQPubID 6761185
PageCount 20
ParticipantIDs proquest_journals_3191239238
crossref_primary_10_2478_amns_2020_2_00011
crossref_citationtrail_10_2478_amns_2020_2_00011
walterdegruyter_journals_10_2478_amns_2020_2_000115215
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Beirut
PublicationPlace_xml – name: Beirut
PublicationTitle Applied mathematics and nonlinear sciences
PublicationYear 2020
Publisher Sciendo
De Gruyter Brill Sp. z o.o., Paradigm Publishing Services
Publisher_xml – name: Sciendo
– name: De Gruyter Brill Sp. z o.o., Paradigm Publishing Services
References Kumar, D.; Singh, J.; Baleanu, D. (j_amns.2020.2.00011_ref_024_w2aab3b7c80b1b6b1ab2ac24Aa) 2018; 91
Saxena, R. K.; Mathai, A. M. (j_amns.2020.2.00011_ref_082_w2aab3b7c80b1b6b1ab2ac82Aa) 2006; 305
Chand, M.; Hammouch, Z.; Asamoah, J. K.; Baleanu, D.; Ta, K.; Baleanu, D.; Machado, J. (j_amns.2020.2.00011_ref_019_w2aab3b7c80b1b6b1ab2ac19Aa) 2019; 24
Srivastava, H. M.; Saxena, R. K. (j_amns.2020.2.00011_ref_088_w2aab3b7c80b1b6b1ab2ac88Aa) 2001; 118
Sin, C.; Zheng, L.; Sin, J.; Liu, F.; Liu, L. (j_amns.2020.2.00011_ref_008_w2aab3b7c80b1b6b1ab2ab8Aa) 2017; 47
Saigo, M. (j_amns.2020.2.00011_ref_050_w2aab3b7c80b1b6b1ab2ac50Aa) 1980; 25
Gupta, V.; Sharma, B. (j_amns.2020.2.00011_ref_076_w2aab3b7c80b1b6b1ab2ac76Aa) 2011; 5
Atangana, A. (j_amns.2020.2.00011_ref_041_w2aab3b7c80b1b6b1ab2ac41Aa) 2016; 273
Yang, X.; Srivastava, H.; Machado, J. (j_amns.2020.2.00011_ref_034_w2aab3b7c80b1b6b1ab2ac34Aa) 2016; 20
Kumar, D.; Singh, J.; Baleanu, D. (j_amns.2020.2.00011_ref_021_w2aab3b7c80b1b6b1ab2ac21Aa)
Tomovski, Z.; Mehrez, K. (j_amns.2020.2.00011_ref_066_w2aab3b7c80b1b6b1ab2ac66Aa) 2017; 20
Kalla, S.; Saxena, R. (j_amns.2020.2.00011_ref_047_w2aab3b7c80b1b6b1ab2ac47Aa) 1974; 24
Srivastava, H.; Agarwal, R.; Jain, S. (j_amns.2020.2.00011_ref_069_w2aab3b7c80b1b6b1ab2ac69Aa) 2017; 40
Saxena, R. K.; Kalla, S. L. (j_amns.2020.2.00011_ref_083_w2aab3b7c80b1b6b1ab2ac83Aa) 2008; 199
Hammouch, Z.; Mekkaoui, T.; Agarwal, P. (j_amns.2020.2.00011_ref_018_w2aab3b7c80b1b6b1ab2ac18Aa); 133
Moghaddam, B.; Machado, J. (j_amns.2020.2.00011_ref_007_w2aab3b7c80b1b6b1ab2ab7Aa) 2017; 73
Saichev, A.; Zaslavsky, M. (j_amns.2020.2.00011_ref_084_w2aab3b7c80b1b6b1ab2ac84Aa) 1997; 7
Choi, J.; Agarwal, P.; Mathur, S.; Purohit, S. (j_amns.2020.2.00011_ref_038_w2aab3b7c80b1b6b1ab2ac38Aa) 2014; 51
Baleanu, D.; Kumar, D.; Purohit, S. (j_amns.2020.2.00011_ref_053_w2aab3b7c80b1b6b1ab2ac53Aa)
McBride, A. (j_amns.2020.2.00011_ref_043_w2aab3b7c80b1b6b1ab2ac43Aa) 1982; 45
Chouhan, A.; Purohit, S.; Saraswat, S. (j_amns.2020.2.00011_ref_075_w2aab3b7c80b1b6b1ab2ac75Aa) 2013; 37
Abdelkawy, M.; Zaky, M.; Bhrawy, A.; Baleanu, D. (j_amns.2020.2.00011_ref_005_w2aab3b7c80b1b6b1ab2ab5Aa) 2015; 67
Srivastava, H.; Kumar, D.; Singh, J. (j_amns.2020.2.00011_ref_003_w2aab3b7c80b1b6b1ab2ab3Aa) 2017; 45
Chouhan, A.; Sarswat, S. (j_amns.2020.2.00011_ref_074_w2aab3b7c80b1b6b1ab2ac74Aa) 2012; 2
Saxena, R. K.; Mathai, A. M.; Haubold, H. J. (j_amns.2020.2.00011_ref_081_w2aab3b7c80b1b6b1ab2ac81Aa) 2004; 344
Kiryakova, V. (j_amns.2020.2.00011_ref_067_w2aab3b7c80b1b6b1ab2ac67Aa) 2006; 9
Chaurasia, V.; Pandey, S. C. (j_amns.2020.2.00011_ref_073_w2aab3b7c80b1b6b1ab2ac73Aa) 2008; 317
Choi, J.; Kumar, D. (j_amns.2020.2.00011_ref_072_w2aab3b7c80b1b6b1ab2ac72Aa) 2015; 20
Saigo, M. (j_amns.2020.2.00011_ref_049_w2aab3b7c80b1b6b1ab2ac49Aa) 1979; 24
Kalla, S. (j_amns.2020.2.00011_ref_045_w2aab3b7c80b1b6b1ab2ac45Aa) 1969; 7
Agarwal, P.; Ntouyas, S. K.; Jain, S.; Chand, M.; Singh, G. (j_amns.2020.2.00011_ref_017_w2aab3b7c80b1b6b1ab2ac17Aa)
Kumar, D.; Singh, J.; Baleanu, D.; Baleanu, S. (j_amns.2020.2.00011_ref_023_w2aab3b7c80b1b6b1ab2ac23Aa) 2018; 492
Kumar, D.; Purohit, S.; Secer, A.; Atangana, A. (j_amns.2020.2.00011_ref_079_w2aab3b7c80b1b6b1ab2ac79Aa) 2015
Nigmatullin, R.; Baleanu, D. (j_amns.2020.2.00011_ref_015_w2aab3b7c80b1b6b1ab2ac15Aa) 2013; 16
Hajipou, M.; Jajarmi, A.; Baleanu, D. (j_amns.2020.2.00011_ref_026_w2aab3b7c80b1b6b1ab2ac26Aa) 2017; 13
M., G. V.; P., T. K. (j_amns.2020.2.00011_ref_058_w2aab3b7c80b1b6b1ab2ac58Aa) 2013; 7
Agarwal, P.; Chand, M.; Singh, G. (j_amns.2020.2.00011_ref_016_w2aab3b7c80b1b6b1ab2ac16Aa) 2016; 55
Kiryakova, V. (j_amns.2020.2.00011_ref_052_w2aab3b7c80b1b6b1ab2ac52Aa) 2008; 11
Huang, L.; Baleanu, D.; Wu, G.; Zeng, S. (j_amns.2020.2.00011_ref_013_w2aab3b7c80b1b6b1ab2ac13Aa) 2016; 61
Haubold, H.; Mathai, A. (j_amns.2020.2.00011_ref_078_w2aab3b7c80b1b6b1ab2ac78Aa) 2000; 327
Srivastava, H. M.; Parmar, R. K.; Chopra, P. (j_amns.2020.2.00011_ref_063_w2aab3b7c80b1b6b1ab2ac63Aa) 2012; 1
Caputo, M.; Fabrizio, M. (j_amns.2020.2.00011_ref_040_w2aab3b7c80b1b6b1ab2ac40Aa) 2015; 1
Atangana, A.; Baleanu, D. (j_amns.2020.2.00011_ref_042_w2aab3b7c80b1b6b1ab2ac42Aa) 2016; 20
Benson, D.; Meerschaert, M.; Revielle, J. (j_amns.2020.2.00011_ref_004_w2aab3b7c80b1b6b1ab2ab4Aa) 2013; 51
Chaudhry, M. A.; Qadir, A.; Srivastava, H. M.; Paris, R. B. (j_amns.2020.2.00011_ref_064_w2aab3b7c80b1b6b1ab2ac64Aa) 2004; 159
Mehrez, K.; Tomovski, Z. (j_amns.2020.2.00011_ref_065_w2aab3b7c80b1b6b1ab2ac65Aa) 2019; 13
Srivastava, H. M.; Mehrez, K.Ž (j_amns.2020.2.00011_ref_059_w2aab3b7c80b1b6b1ab2ac59Aa) 2018; 12
Carlitz, L. (j_amns.2020.2.00011_ref_035_w2aab3b7c80b1b6b1ab2ac35Aa) 1969; 7
Saxena, R.; Mathai, A.; Haubold, H. (j_amns.2020.2.00011_ref_080_w2aab3b7c80b1b6b1ab2ac80Aa) 2002; 282
Baleanu, D.; Purohit, S. D.; Prajapati, J. C. (j_amns.2020.2.00011_ref_014_w2aab3b7c80b1b6b1ab2ac14Aa) 2016; 14
Magin, R. (j_amns.2020.2.00011_ref_002_w2aab3b7c80b1b6b1ab2ab2Aa) 2004; 32
Srivastava, H.; Agarwal, R.; Jain, S. (j_amns.2020.2.00011_ref_070_w2aab3b7c80b1b6b1ab2ac70Aa) 2017; 31
Saigo, M. (j_amns.2020.2.00011_ref_048_w2aab3b7c80b1b6b1ab2ac48Aa) 1978; 11
Srivastava, H.; Agarwal, P. (j_amns.2020.2.00011_ref_037_w2aab3b7c80b1b6b1ab2ac37Aa) 2013; 8
Diananda, P. (j_amns.2020.2.00011_ref_057_w2aab3b7c80b1b6b1ab2ac57Aa) 1980; 250
Zhao, J.; Zheng, L.; Chen, X.; Zhang, X.; Liu, F. (j_amns.2020.2.00011_ref_006_w2aab3b7c80b1b6b1ab2ab6Aa) 2017; 44
Kilbas, A.; Sebastian, N. (j_amns.2020.2.00011_ref_054_w2aab3b7c80b1b6b1ab2ac54Aa) 2008; 19
Kumar, D.; Singh, J.; Baleanu, D. (j_amns.2020.2.00011_ref_022_w2aab3b7c80b1b6b1ab2ac22Aa)
Jajarmi, A.; Hajipour, M.; Baleanu, D. (j_amns.2020.2.00011_ref_029_w2aab3b7c80b1b6b1ab2ac29Aa) 2017; 99
Baleanu, D.; Jajarmi, A.; Hajipour, M. (j_amns.2020.2.00011_ref_027_w2aab3b7c80b1b6b1ab2ac27Aa) 2017; 175
Agarwal, P.; Al-Mdallal, Q.; Cho, Y. J.; Jain, S. (j_amns.2020.2.00011_ref_036_w2aab3b7c80b1b6b1ab2ac36Aa)
Srivastava, H. M.; Tomovski, Ž. (j_amns.2020.2.00011_ref_062_w2aab3b7c80b1b6b1ab2ac62Aa) 2004; 5
Razminia, A.; Baleanu, D.; Majd, V. (j_amns.2020.2.00011_ref_009_w2aab3b7c80b1b6b1ab2ab9Aa) 2013; 156
Baleanu, D.; Jajarmi, A.; Asad, J.; Blaszczyk, T. (j_amns.2020.2.00011_ref_028_w2aab3b7c80b1b6b1ab2ac28Aa) 2017; 131
Schroder, K. (j_amns.2020.2.00011_ref_056_w2aab3b7c80b1b6b1ab2ac56Aa) 1949; 121
Agarwal, P.; Jain, S.; Mansour, T. (j_amns.2020.2.00011_ref_039_w2aab3b7c80b1b6b1ab2ac39Aa) 2017; 24
Tomovski, Ž.; Trencevski, K. (j_amns.2020.2.00011_ref_060_w2aab3b7c80b1b6b1ab2ac60Aa) 2003; 4
Zaslavsky, G. M. (j_amns.2020.2.00011_ref_085_w2aab3b7c80b1b6b1ab2ac85Aa) 1994; 76
Gupta, A.; Parihar, C. (j_amns.2020.2.00011_ref_077_w2aab3b7c80b1b6b1ab2ac77Aa) 2014; 32
Kumar, D.; Agarwal, R.; Singh, J. (j_amns.2020.2.00011_ref_025_w2aab3b7c80b1b6b1ab2ac25Aa)
Kalla, S.; Saxena, R. (j_amns.2020.2.00011_ref_046_w2aab3b7c80b1b6b1ab2ac46Aa) 1969; 108
Chand, M.; Agarwal, P.; Hammouch, Z. (j_amns.2020.2.00011_ref_020_w2aab3b7c80b1b6b1ab2ac20Aa); 4
Kalla, S. (j_amns.2020.2.00011_ref_044_w2aab3b7c80b1b6b1ab2ac44Aa) 1969; 3
Cerone, P.; Lenard, C. T. (j_amns.2020.2.00011_ref_061_w2aab3b7c80b1b6b1ab2ac61Aa) 2003; 4
2024050209220073569_j_amns.2020.2.00011_ref_003_w2aab3b7c80b1b6b1ab2ab3Aa
2024050209220073569_j_amns.2020.2.00011_ref_038_w2aab3b7c80b1b6b1ab2ac38Aa
2024050209220073569_j_amns.2020.2.00011_ref_087_w2aab3b7c80b1b6b1ab2ac87Aa
2024050209220073569_j_amns.2020.2.00011_ref_056_w2aab3b7c80b1b6b1ab2ac56Aa
2024050209220073569_j_amns.2020.2.00011_ref_069_w2aab3b7c80b1b6b1ab2ac69Aa
2024050209220073569_j_amns.2020.2.00011_ref_030_w2aab3b7c80b1b6b1ab2ac30Aa
2024050209220073569_j_amns.2020.2.00011_ref_012_w2aab3b7c80b1b6b1ab2ac12Aa
2024050209220073569_j_amns.2020.2.00011_ref_025_w2aab3b7c80b1b6b1ab2ac25Aa
2024050209220073569_j_amns.2020.2.00011_ref_074_w2aab3b7c80b1b6b1ab2ac74Aa
2024050209220073569_j_amns.2020.2.00011_ref_061_w2aab3b7c80b1b6b1ab2ac61Aa
2024050209220073569_j_amns.2020.2.00011_ref_043_w2aab3b7c80b1b6b1ab2ac43Aa
2024050209220073569_j_amns.2020.2.00011_ref_028_w2aab3b7c80b1b6b1ab2ac28Aa
2024050209220073569_j_amns.2020.2.00011_ref_077_w2aab3b7c80b1b6b1ab2ac77Aa
2024050209220073569_j_amns.2020.2.00011_ref_006_w2aab3b7c80b1b6b1ab2ab6Aa
2024050209220073569_j_amns.2020.2.00011_ref_046_w2aab3b7c80b1b6b1ab2ac46Aa
2024050209220073569_j_amns.2020.2.00011_ref_059_w2aab3b7c80b1b6b1ab2ac59Aa
2024050209220073569_j_amns.2020.2.00011_ref_020_w2aab3b7c80b1b6b1ab2ac20Aa
2024050209220073569_j_amns.2020.2.00011_ref_015_w2aab3b7c80b1b6b1ab2ac15Aa
2024050209220073569_j_amns.2020.2.00011_ref_082_w2aab3b7c80b1b6b1ab2ac82Aa
2024050209220073569_j_amns.2020.2.00011_ref_064_w2aab3b7c80b1b6b1ab2ac64Aa
2024050209220073569_j_amns.2020.2.00011_ref_051_w2aab3b7c80b1b6b1ab2ac51Aa
2024050209220073569_j_amns.2020.2.00011_ref_033_w2aab3b7c80b1b6b1ab2ac33Aa
2024050209220073569_j_amns.2020.2.00011_ref_018_w2aab3b7c80b1b6b1ab2ac18Aa
2024050209220073569_j_amns.2020.2.00011_ref_067_w2aab3b7c80b1b6b1ab2ac67Aa
2024050209220073569_j_amns.2020.2.00011_ref_001_w2aab3b7c80b1b6b1ab2ab1Aa
2024050209220073569_j_amns.2020.2.00011_ref_036_w2aab3b7c80b1b6b1ab2ac36Aa
2024050209220073569_j_amns.2020.2.00011_ref_085_w2aab3b7c80b1b6b1ab2ac85Aa
2024050209220073569_j_amns.2020.2.00011_ref_049_w2aab3b7c80b1b6b1ab2ac49Aa
2024050209220073569_j_amns.2020.2.00011_ref_041_w2aab3b7c80b1b6b1ab2ac41Aa
2024050209220073569_j_amns.2020.2.00011_ref_009_w2aab3b7c80b1b6b1ab2ab9Aa
2024050209220073569_j_amns.2020.2.00011_ref_010_w2aab3b7c80b1b6b1ab2ac10Aa
2024050209220073569_j_amns.2020.2.00011_ref_054_w2aab3b7c80b1b6b1ab2ac54Aa
2024050209220073569_j_amns.2020.2.00011_ref_023_w2aab3b7c80b1b6b1ab2ac23Aa
2024050209220073569_j_amns.2020.2.00011_ref_072_w2aab3b7c80b1b6b1ab2ac72Aa
2024050209220073569_j_amns.2020.2.00011_ref_048_w2aab3b7c80b1b6b1ab2ac48Aa
2024050209220073569_j_amns.2020.2.00011_ref_084_w2aab3b7c80b1b6b1ab2ac84Aa
2024050209220073569_j_amns.2020.2.00011_ref_017_w2aab3b7c80b1b6b1ab2ac17Aa
2024050209220073569_j_amns.2020.2.00011_ref_066_w2aab3b7c80b1b6b1ab2ac66Aa
2024050209220073569_j_amns.2020.2.00011_ref_079_w2aab3b7c80b1b6b1ab2ac79Aa
2024050209220073569_j_amns.2020.2.00011_ref_040_w2aab3b7c80b1b6b1ab2ac40Aa
2024050209220073569_j_amns.2020.2.00011_ref_053_w2aab3b7c80b1b6b1ab2ac53Aa
2024050209220073569_j_amns.2020.2.00011_ref_035_w2aab3b7c80b1b6b1ab2ac35Aa
2024050209220073569_j_amns.2020.2.00011_ref_022_w2aab3b7c80b1b6b1ab2ac22Aa
2024050209220073569_j_amns.2020.2.00011_ref_071_w2aab3b7c80b1b6b1ab2ac71Aa
2024050209220073569_j_amns.2020.2.00011_ref_047_w2aab3b7c80b1b6b1ab2ac47Aa
2024050209220073569_j_amns.2020.2.00011_ref_029_w2aab3b7c80b1b6b1ab2ac29Aa
2024050209220073569_j_amns.2020.2.00011_ref_016_w2aab3b7c80b1b6b1ab2ac16Aa
2024050209220073569_j_amns.2020.2.00011_ref_065_w2aab3b7c80b1b6b1ab2ac65Aa
2024050209220073569_j_amns.2020.2.00011_ref_007_w2aab3b7c80b1b6b1ab2ab7Aa
2024050209220073569_j_amns.2020.2.00011_ref_078_w2aab3b7c80b1b6b1ab2ac78Aa
2024050209220073569_j_amns.2020.2.00011_ref_021_w2aab3b7c80b1b6b1ab2ac21Aa
2024050209220073569_j_amns.2020.2.00011_ref_070_w2aab3b7c80b1b6b1ab2ac70Aa
2024050209220073569_j_amns.2020.2.00011_ref_034_w2aab3b7c80b1b6b1ab2ac34Aa
2024050209220073569_j_amns.2020.2.00011_ref_083_w2aab3b7c80b1b6b1ab2ac83Aa
2024050209220073569_j_amns.2020.2.00011_ref_052_w2aab3b7c80b1b6b1ab2ac52Aa
2024050209220073569_j_amns.2020.2.00011_ref_086_w2aab3b7c80b1b6b1ab2ac86Aa
2024050209220073569_j_amns.2020.2.00011_ref_004_w2aab3b7c80b1b6b1ab2ab4Aa
2024050209220073569_j_amns.2020.2.00011_ref_019_w2aab3b7c80b1b6b1ab2ac19Aa
2024050209220073569_j_amns.2020.2.00011_ref_068_w2aab3b7c80b1b6b1ab2ac68Aa
2024050209220073569_j_amns.2020.2.00011_ref_055_w2aab3b7c80b1b6b1ab2ac55Aa
2024050209220073569_j_amns.2020.2.00011_ref_037_w2aab3b7c80b1b6b1ab2ac37Aa
2024050209220073569_j_amns.2020.2.00011_ref_011_w2aab3b7c80b1b6b1ab2ac11Aa
2024050209220073569_j_amns.2020.2.00011_ref_060_w2aab3b7c80b1b6b1ab2ac60Aa
2024050209220073569_j_amns.2020.2.00011_ref_024_w2aab3b7c80b1b6b1ab2ac24Aa
2024050209220073569_j_amns.2020.2.00011_ref_073_w2aab3b7c80b1b6b1ab2ac73Aa
2024050209220073569_j_amns.2020.2.00011_ref_042_w2aab3b7c80b1b6b1ab2ac42Aa
2024050209220073569_j_amns.2020.2.00011_ref_076_w2aab3b7c80b1b6b1ab2ac76Aa
2024050209220073569_j_amns.2020.2.00011_ref_058_w2aab3b7c80b1b6b1ab2ac58Aa
2024050209220073569_j_amns.2020.2.00011_ref_045_w2aab3b7c80b1b6b1ab2ac45Aa
2024050209220073569_j_amns.2020.2.00011_ref_027_w2aab3b7c80b1b6b1ab2ac27Aa
2024050209220073569_j_amns.2020.2.00011_ref_050_w2aab3b7c80b1b6b1ab2ac50Aa
2024050209220073569_j_amns.2020.2.00011_ref_063_w2aab3b7c80b1b6b1ab2ac63Aa
2024050209220073569_j_amns.2020.2.00011_ref_032_w2aab3b7c80b1b6b1ab2ac32Aa
2024050209220073569_j_amns.2020.2.00011_ref_014_w2aab3b7c80b1b6b1ab2ac14Aa
2024050209220073569_j_amns.2020.2.00011_ref_081_w2aab3b7c80b1b6b1ab2ac81Aa
2024050209220073569_j_amns.2020.2.00011_ref_057_w2aab3b7c80b1b6b1ab2ac57Aa
2024050209220073569_j_amns.2020.2.00011_ref_039_w2aab3b7c80b1b6b1ab2ac39Aa
2024050209220073569_j_amns.2020.2.00011_ref_026_w2aab3b7c80b1b6b1ab2ac26Aa
2024050209220073569_j_amns.2020.2.00011_ref_075_w2aab3b7c80b1b6b1ab2ac75Aa
2024050209220073569_j_amns.2020.2.00011_ref_008_w2aab3b7c80b1b6b1ab2ab8Aa
2024050209220073569_j_amns.2020.2.00011_ref_088_w2aab3b7c80b1b6b1ab2ac88Aa
2024050209220073569_j_amns.2020.2.00011_ref_002_w2aab3b7c80b1b6b1ab2ab2Aa
2024050209220073569_j_amns.2020.2.00011_ref_031_w2aab3b7c80b1b6b1ab2ac31Aa
2024050209220073569_j_amns.2020.2.00011_ref_044_w2aab3b7c80b1b6b1ab2ac44Aa
2024050209220073569_j_amns.2020.2.00011_ref_005_w2aab3b7c80b1b6b1ab2ab5Aa
2024050209220073569_j_amns.2020.2.00011_ref_013_w2aab3b7c80b1b6b1ab2ac13Aa
2024050209220073569_j_amns.2020.2.00011_ref_080_w2aab3b7c80b1b6b1ab2ac80Aa
2024050209220073569_j_amns.2020.2.00011_ref_062_w2aab3b7c80b1b6b1ab2ac62Aa
References_xml – volume: 51
  start-page: 479
  year: 2013
  end-page: 497
  ident: j_amns.2020.2.00011_ref_004_w2aab3b7c80b1b6b1ab2ab4Aa
  article-title: Fractional calculus in hydrologicmodeling: a numerical perspective
  publication-title: Adv. Water Resour
– volume: 199
  start-page: 504
  year: 2008
  end-page: 511
  ident: j_amns.2020.2.00011_ref_083_w2aab3b7c80b1b6b1ab2ac83Aa
  article-title: On the solutions of certain fractional kinetic equations
  publication-title: Appl. Math. Comput
– volume: 156
  start-page: 45
  issue: 1
  year: 2013
  end-page: 55
  ident: j_amns.2020.2.00011_ref_009_w2aab3b7c80b1b6b1ab2ab9Aa
  article-title: Conditional optimization problems: fractional order case
  publication-title: J. Optim. Theory App
– volume: 108
  start-page: 231
  year: 1969
  end-page: 234
  ident: j_amns.2020.2.00011_ref_046_w2aab3b7c80b1b6b1ab2ac46Aa
  article-title: Integral operators involving hypergeometric functions
  publication-title: Math. Z
– volume: 45
  start-page: 192
  year: 2017
  end-page: 204
  ident: j_amns.2020.2.00011_ref_003_w2aab3b7c80b1b6b1ab2ab3Aa
  article-title: An efficient analytical technique for fractional model of vibration equation
  publication-title: Appl. Math. Model
– volume: 24
  start-page: 377
  issue: 4
  year: 1979
  end-page: 385
  ident: j_amns.2020.2.00011_ref_049_w2aab3b7c80b1b6b1ab2ac49Aa
  article-title: A certain boundary value problem for the Euler-Darboux equation I
  publication-title: Math. Japonica
– volume: 13
  start-page: 9
  issue: 2
  year: 2017
  ident: j_amns.2020.2.00011_ref_026_w2aab3b7c80b1b6b1ab2ac26Aa
  article-title: An efficient nonstandard finite difference scheme for a class of fractional chaotic systems
  publication-title: Journal of Computational and Nonlinear Dynamics
  doi: 10.1115/1.4038444
– volume: 25
  start-page: 211
  issue: 2
  year: 1980
  end-page: 220
  ident: j_amns.2020.2.00011_ref_050_w2aab3b7c80b1b6b1ab2ac50Aa
  article-title: A certain boundary value problem for the Euler-Darboux equation II
  publication-title: Math. Japonica
– volume: 133
  start-page: 248
  ident: j_amns.2020.2.00011_ref_018_w2aab3b7c80b1b6b1ab2ac18Aa
  article-title: Optical solitons for the calogero-bogoyavlenskii-schiff equation in (2 + 1) dimensions with time-fractional conformable derivative
  publication-title: The European Physical Journal Plus
– volume: 7
  start-page: 180
  issue: 1
  year: 2013
  end-page: 192
  ident: j_amns.2020.2.00011_ref_058_w2aab3b7c80b1b6b1ab2ac58Aa
  article-title: New integral forms of generalized mathieu series and related applications
  publication-title: Applicable Analysis and Discrete Mathematics
– volume: 16
  start-page: 911
  issue: 4
  year: 2013
  end-page: 936
  ident: j_amns.2020.2.00011_ref_015_w2aab3b7c80b1b6b1ab2ac15Aa
  article-title: New relationships connecting a class of fractal objects and fractional integrals in space
  publication-title: Fractional Calculus and Applied Analysis
– volume: 24
  start-page: 31
  year: 1974
  end-page: 36
  ident: j_amns.2020.2.00011_ref_047_w2aab3b7c80b1b6b1ab2ac47Aa
  article-title: Integral operators involving hypergeometric functions ii
  publication-title: Univ. Nac. Tucuman, Rev. Ser. A
– volume: 1
  start-page: 238
  year: 2012
  end-page: 258
  ident: j_amns.2020.2.00011_ref_063_w2aab3b7c80b1b6b1ab2ac63Aa
  article-title: A class of extended fractional derivative operators and associated generating relations involving hypergeometric functions
  publication-title: Axioms
– ident: j_amns.2020.2.00011_ref_025_w2aab3b7c80b1b6b1ab2ac25Aa
  article-title: A modified numerical scheme and convergence analysis for fractional model of lienard’s equation
  publication-title: Journal of Computational and Applied Mathematics
  doi: 10.1016/j.cam.2017.03.011
– volume: 121
  start-page: 247
  year: 1949
  end-page: 326
  ident: j_amns.2020.2.00011_ref_056_w2aab3b7c80b1b6b1ab2ac56Aa
  article-title: Das problem der eingespannten rechteckigen elastischen platte i.die biharmonische randwertaufgabe furdas rechteck
  publication-title: Math. Anal
– volume: 5
  issue: 2
  year: 2004
  ident: j_amns.2020.2.00011_ref_062_w2aab3b7c80b1b6b1ab2ac62Aa
  article-title: Some problems and solutions involving Mathieu’s series and its generalizations
  publication-title: JIPAM
– volume: 32
  start-page: 181
  issue: 1
  year: 2014
  end-page: 189
  ident: j_amns.2020.2.00011_ref_077_w2aab3b7c80b1b6b1ab2ac77Aa
  article-title: On solutions of generalized kinetic equations of fractional order
  publication-title: Bol. Soc. Paran. Mat
– volume: 73
  start-page: 1262
  issue: 6
  year: 2017
  end-page: 1269
  ident: j_amns.2020.2.00011_ref_007_w2aab3b7c80b1b6b1ab2ab7Aa
  article-title: A stable three-level explicit spline finite difference scheme for a class of nonlinear time variable order fractional partial differential equations
  publication-title: Comput. Math. Appl
– volume: 61
  start-page: 1172
  issue: 7–8
  year: 2016
  end-page: 1179
  ident: j_amns.2020.2.00011_ref_013_w2aab3b7c80b1b6b1ab2ac13Aa
  article-title: A new application of the fractional logistic map
  publication-title: Rom J Phys
– volume: 7
  start-page: 359
  year: 1969
  end-page: 393
  ident: j_amns.2020.2.00011_ref_035_w2aab3b7c80b1b6b1ab2ac35Aa
  article-title: Generating functions
  publication-title: Fibonacci Quart
– volume: 5
  start-page: 899
  issue: 19
  year: 2011
  end-page: 910
  ident: j_amns.2020.2.00011_ref_076_w2aab3b7c80b1b6b1ab2ac76Aa
  article-title: On the solutions of generalized fractional kinetic equations
  publication-title: Appl. Math. Sci
– volume: 492
  start-page: 155
  year: 2018
  end-page: 167
  ident: j_amns.2020.2.00011_ref_023_w2aab3b7c80b1b6b1ab2ac23Aa
  article-title: Analysis of regularized long-wave equation associated with a new fractional operator with mittag-leffler type kernel
  publication-title: Physica A
– start-page: 58
  ident: j_amns.2020.2.00011_ref_036_w2aab3b7c80b1b6b1ab2ac36Aa
  article-title: Fractional differential equations for the generalized Mittag-Leffler function
  publication-title: Advances in difference equations
  doi: 10.1186/s13662-018-1500-7
– volume: 118
  start-page: 1
  year: 2001
  end-page: 52
  ident: j_amns.2020.2.00011_ref_088_w2aab3b7c80b1b6b1ab2ac88Aa
  article-title: Operators of fractional integration and their applications
  publication-title: Appl. Math. Comput
– volume: 20
  start-page: 763
  year: 2016
  end-page: 769
  ident: j_amns.2020.2.00011_ref_042_w2aab3b7c80b1b6b1ab2ac42Aa
  article-title: New fractional derivatives with nonlocal and non-singular kernel, theory and application to heat transfer model
  publication-title: Thermal Science
– volume: 40
  start-page: 255
  year: 2017
  end-page: 273
  ident: j_amns.2020.2.00011_ref_069_w2aab3b7c80b1b6b1ab2ac69Aa
  article-title: Integral transform and fractional derivative formulas involving the extended generalized hypergeometric functions and probability distributions
  publication-title: Math. Method Appl. Sci
– volume: 19
  start-page: 869
  year: 2008
  end-page: 883
  ident: j_amns.2020.2.00011_ref_054_w2aab3b7c80b1b6b1ab2ac54Aa
  article-title: Generalized fractional integration of bessel function of the first kind
  publication-title: Int Transf Spec Funct
– ident: j_amns.2020.2.00011_ref_021_w2aab3b7c80b1b6b1ab2ac21Aa
  article-title: Modified kawahara equation within a fractional derivative with non-singular kernel
  publication-title: Thermal Science
  doi: 10.2298/TSCI160826008K
– volume: 131
  start-page: 1561
  issue: 6
  year: 2017
  end-page: 1564
  ident: j_amns.2020.2.00011_ref_028_w2aab3b7c80b1b6b1ab2ac28Aa
  article-title: The motion of a bead sliding on a wire in fractional sense
  publication-title: Acta Physica Polonica A
– volume: 273
  start-page: 948
  year: 2016
  end-page: 956
  ident: j_amns.2020.2.00011_ref_041_w2aab3b7c80b1b6b1ab2ac41Aa
  article-title: On the new fractional derivative and application to nonlinear Fisher’s reaction diffusion equation
  publication-title: Applied Mathematics and Computation
– volume: 44
  start-page: 497
  year: 2017
  end-page: 507
  ident: j_amns.2020.2.00011_ref_006_w2aab3b7c80b1b6b1ab2ab6Aa
  article-title: Unsteady marangoni convection heat transfer of fractional maxwell fluid with cattaneo heat flux
  publication-title: Appl. Math. Model
– volume: 14
  start-page: 89
  issue: 1
  year: 2016
  end-page: 99
  ident: j_amns.2020.2.00011_ref_014_w2aab3b7c80b1b6b1ab2ac14Aa
  article-title: Integral inequalities involving generalized Erdélyi-Kober fractional integral operators
  publication-title: Open Mathematics
  doi: 10.1515/math-2016-0007
– volume: 99
  start-page: 285
  year: 2017
  end-page: 296
  ident: j_amns.2020.2.00011_ref_029_w2aab3b7c80b1b6b1ab2ac29Aa
  article-title: New aspects of the adaptive synchronization and hyperchaos suppression of a financial model
  publication-title: Chaos, Solitons and Fractals
– volume: 317
  start-page: 213
  year: 2008
  end-page: 219
  ident: j_amns.2020.2.00011_ref_073_w2aab3b7c80b1b6b1ab2ac73Aa
  article-title: On the new computable solution of the generalized fractional kinetic equations involving the generalized function for the fractional calculus and related functions
  publication-title: Astrophys. Space Sci
– volume: 9
  start-page: 159
  year: 2006
  end-page: 176
  ident: j_amns.2020.2.00011_ref_067_w2aab3b7c80b1b6b1ab2ac67Aa
  article-title: On two saigo’s fractional integral operators in the class of univalent functions
  publication-title: Fract. Calc. Appl. Anal
– volume: 67
  start-page: 773
  issue: 3
  year: 2015
  end-page: 791
  ident: j_amns.2020.2.00011_ref_005_w2aab3b7c80b1b6b1ab2ab5Aa
  article-title: Numerical Simulation Of Time Variable Fractional Order Mobile-Immobile Advection-Dispersion Model
  publication-title: Rom. Rep. Phys
– volume: 11
  start-page: 203
  issue: 2
  year: 2008
  end-page: 220
  ident: j_amns.2020.2.00011_ref_052_w2aab3b7c80b1b6b1ab2ac52Aa
  article-title: A brief story about the operators of the generalized fractional calculus
  publication-title: Fract. Calc. Appl. Anal
– volume: 282
  start-page: 281
  year: 2002
  end-page: 28
  ident: j_amns.2020.2.00011_ref_080_w2aab3b7c80b1b6b1ab2ac80Aa
  article-title: On fractional kinetic equations
  publication-title: Astrophys. Space Sci
– volume: 13
  start-page: 309
  issue: 1
  year: 2019
  end-page: 324
  ident: j_amns.2020.2.00011_ref_065_w2aab3b7c80b1b6b1ab2ac65Aa
  article-title: On a new (p,q)-Mathieu-type power series and its applications
  publication-title: Applicable Analysis and Discrete Mathematics
– volume: 327
  start-page: 53
  year: 2000
  end-page: 63
  ident: j_amns.2020.2.00011_ref_078_w2aab3b7c80b1b6b1ab2ac78Aa
  article-title: The fractional kinetic equation and thermonuclear functions
  publication-title: Astrophys. Space Sci
– volume: 47
  start-page: 114
  year: 2017
  end-page: 127
  ident: j_amns.2020.2.00011_ref_008_w2aab3b7c80b1b6b1ab2ab8Aa
  article-title: Unsteady flow of viscoelastic fluid with the fractional K-BKZ model between two parallel plates
  publication-title: Appl. Math. Model
– volume: 24
  start-page: 415
  issue: 4
  year: 2017
  end-page: 425
  ident: j_amns.2020.2.00011_ref_039_w2aab3b7c80b1b6b1ab2ac39Aa
  article-title: Further extended caputo fractional derivative operator and its applications
  publication-title: Russian Journal of Mathematical physics
– volume: 45
  start-page: 519
  year: 1982
  end-page: 546
  ident: j_amns.2020.2.00011_ref_043_w2aab3b7c80b1b6b1ab2ac43Aa
  article-title: Fractional powers of a class of ordinary differential operators
  publication-title: Proc. London Math. Soc. (III)
– volume: 20
  start-page: 113
  year: 2015
  end-page: 123
  ident: j_amns.2020.2.00011_ref_072_w2aab3b7c80b1b6b1ab2ac72Aa
  article-title: Solutions of generalized fractional kinetic equations involving Aleph functions
  publication-title: Math. Commun
– ident: j_amns.2020.2.00011_ref_017_w2aab3b7c80b1b6b1ab2ac17Aa
  article-title: Fractional kinetic equations involving generalized k-Bessel function via Sumudu transform
  publication-title: Alexandria Engineering journal
  doi: 10.1016/j.aej.2017.03.046
– volume: 31
  start-page: 125
  year: 2017
  end-page: 140
  ident: j_amns.2020.2.00011_ref_070_w2aab3b7c80b1b6b1ab2ac70Aa
  article-title: A family of the incomplete hypergeometric functions and associated integral transform and fractional derivative formulas
  publication-title: Filomat
– volume: 32
  start-page: 1
  issue: 1
  year: 2004
  end-page: 104
  ident: j_amns.2020.2.00011_ref_002_w2aab3b7c80b1b6b1ab2ab2Aa
  article-title: Fractional calculus in bioengineering
  publication-title: Crit. Rev. Biomed. Eng
– start-page: 7
  year: 2015
  ident: j_amns.2020.2.00011_ref_079_w2aab3b7c80b1b6b1ab2ac79Aa
  publication-title: On Generalized Fractional Kinetic Equations Involving Generalized Bessel Function of the First Kind, Mathematical Problems in Engineering
– volume: 305
  start-page: 305
  year: 2006
  end-page: 313
  ident: j_amns.2020.2.00011_ref_082_w2aab3b7c80b1b6b1ab2ac82Aa
  article-title: Haubold, Solution of generalized fractional reaction-diffusion equations
  publication-title: Astrophys. Space Sci
– volume: 7
  start-page: 753
  year: 1997
  end-page: 764
  ident: j_amns.2020.2.00011_ref_084_w2aab3b7c80b1b6b1ab2ac84Aa
  article-title: Fractional kinetic equations: solutions and applications
  publication-title: Caos
– volume: 20
  start-page: 753
  year: 2016
  end-page: 756
  ident: j_amns.2020.2.00011_ref_034_w2aab3b7c80b1b6b1ab2ac34Aa
  article-title: A new fractional derivative without singular kernel: Application to the modelling of the steady heat flow
  publication-title: Thermal Science
– volume: 159
  start-page: 589
  issue: 2
  year: 2004
  end-page: 602
  ident: j_amns.2020.2.00011_ref_064_w2aab3b7c80b1b6b1ab2ac64Aa
  article-title: Extended hypergeometric and conuent hypergeometric functions
  publication-title: Appl. Math. Comput
– volume: 4
  start-page: 1
  issue: 5
  year: 2003
  end-page: 11
  ident: j_amns.2020.2.00011_ref_061_w2aab3b7c80b1b6b1ab2ac61Aa
  article-title: On integral forms of generalized Mathieu series
  publication-title: J. Inequal. Pure Appl. Math
– volume: 20
  start-page: 973
  year: 2017
  end-page: 986
  ident: j_amns.2020.2.00011_ref_066_w2aab3b7c80b1b6b1ab2ac66Aa
  article-title: Some families of generalized Mathieu-type power series associated probability distributions and related functional inequalities involving complete monotonicity and log-convexity
  publication-title: Math. Inequal. Appl
– volume: 76
  start-page: 110
  year: 1994
  end-page: 122
  ident: j_amns.2020.2.00011_ref_085_w2aab3b7c80b1b6b1ab2ac85Aa
  article-title: Fractional kinetic equation for hamiltonian chaos
  publication-title: Physica D
– volume: 250
  start-page: 95
  year: 1980
  end-page: 98
  ident: j_amns.2020.2.00011_ref_057_w2aab3b7c80b1b6b1ab2ac57Aa
  article-title: Some inequalities related to an inequality of mathieu
  publication-title: Math. Ann
– volume: 4
  start-page: 1
  issue: 2
  year: 2003
  end-page: 7
  ident: j_amns.2020.2.00011_ref_060_w2aab3b7c80b1b6b1ab2ac60Aa
  article-title: On an open problem of Bai-Ni Guo and Feng Qi
  publication-title: J. Inequal. Pure Appl. Math
– volume: 344
  start-page: 657
  year: 2004
  end-page: 664
  ident: j_amns.2020.2.00011_ref_081_w2aab3b7c80b1b6b1ab2ac81Aa
  article-title: On generalized fractional kinetic equations
  publication-title: Physica A
– volume: 37
  start-page: 299
  issue: 2
  year: 2013
  end-page: 306
  ident: j_amns.2020.2.00011_ref_075_w2aab3b7c80b1b6b1ab2ac75Aa
  article-title: An alternative method for solving generalized differential equations of fractional order
  publication-title: Kragujevac J. Math
– volume: 11
  start-page: 135
  issue: 2
  year: 1978
  end-page: 143
  ident: j_amns.2020.2.00011_ref_048_w2aab3b7c80b1b6b1ab2ac48Aa
  article-title: A remark on integral operators involving the gauss hypergeometric functions
  publication-title: Math. Rep. Kyushu Univ
– volume: 24
  start-page: 213
  year: 2019
  end-page: 244
  ident: j_amns.2020.2.00011_ref_019_w2aab3b7c80b1b6b1ab2ac19Aa
  article-title: Certain fractional integrals and solutions of fractional kinetic equations involving the product of s-function
  publication-title: Mathematical Methods in Engineering. Nonlinear Systems and Complexity
– volume: 55
  start-page: 3053
  issue: 4
  year: 2016
  end-page: 3059
  ident: j_amns.2020.2.00011_ref_016_w2aab3b7c80b1b6b1ab2ac16Aa
  article-title: Certain fractional kinetic equations involving the product of generalized k-Bessel function
  publication-title: Alexandria Engineering journal
– ident: j_amns.2020.2.00011_ref_053_w2aab3b7c80b1b6b1ab2ac53Aa
  article-title: Generalized fractional integrals of product of two h-functions and a general class of polynomials
  publication-title: International Journal of Computer Mathematics
  doi: 10.1080/00207160.2015.1045886
– volume: 2
  start-page: 813
  issue: 2
  year: 2012
  end-page: 818
  ident: j_amns.2020.2.00011_ref_074_w2aab3b7c80b1b6b1ab2ac74Aa
  article-title: On solution of generalized kinetic equation of fractional order
  publication-title: Int. J. Math. Sci. Appl
– ident: j_amns.2020.2.00011_ref_022_w2aab3b7c80b1b6b1ab2ac22Aa
  article-title: A new fractional model for convective straight fins with temperature-dependent thermal conductivity
  publication-title: Therm. Sci
  doi: 10.2298/TSCI170129096K
– volume: 175
  start-page: 718
  issue: 3
  year: 2017
  end-page: 737
  ident: j_amns.2020.2.00011_ref_027_w2aab3b7c80b1b6b1ab2ac27Aa
  article-title: A new formulation of the fractional optimal control problems involving mittagleffler nonsingular kernel
  publication-title: Journal of Optimization Theory and Applications
– volume: 8
  start-page: 333
  issue: 2
  year: 2013
  end-page: 345
  ident: j_amns.2020.2.00011_ref_037_w2aab3b7c80b1b6b1ab2ac37Aa
  article-title: Certain fractional integral operators and the generalized incomplete hypergeometric functions
  publication-title: Appl. Appl. Math
– volume: 3
  start-page: 117
  year: 1969
  end-page: 122
  ident: j_amns.2020.2.00011_ref_044_w2aab3b7c80b1b6b1ab2ac44Aa
  article-title: Integral operators involving Fox’s H-function I
  publication-title: Acta Mexicana Cienc. Tecn
– volume: 51
  start-page: 995
  issue: 4
  year: 2014
  end-page: 1003
  ident: j_amns.2020.2.00011_ref_038_w2aab3b7c80b1b6b1ab2ac38Aa
  article-title: Certain new integral formulas involving the generalized Bessel functions
  publication-title: Bull. Korean Math. Soc
– volume: 91
  start-page: 307
  year: 2018
  end-page: 317
  ident: j_amns.2020.2.00011_ref_024_w2aab3b7c80b1b6b1ab2ac24Aa
  article-title: New numerical algorithm for fractional fitzhugh-nagumo equation arising in transmission of nerve impulses
  publication-title: Nonlinear Dynamics
– volume: 12
  start-page: 163
  issue: 1
  year: 2018
  end-page: 174
  ident: j_amns.2020.2.00011_ref_059_w2aab3b7c80b1b6b1ab2ac59Aa
  article-title: Tomovski, New inequalities for some generalized Mathieu type series and the Riemann Zeta function
  publication-title: Journal of Mathematical Inequalities
– volume: 4
  start-page: 101
  ident: j_amns.2020.2.00011_ref_020_w2aab3b7c80b1b6b1ab2ac20Aa
  article-title: Certain sequences involving product of k-Bessel function
  publication-title: International Journal of Applied and Computational Mathematics
– volume: 7
  start-page: 72
  year: 1969
  end-page: 79
  ident: j_amns.2020.2.00011_ref_045_w2aab3b7c80b1b6b1ab2ac45Aa
  article-title: Integral operators involving Fox’s H-function II
  publication-title: Acta Mexicana Cienc. Tecn
– volume: 1
  start-page: 73
  year: 2015
  end-page: 85
  ident: j_amns.2020.2.00011_ref_040_w2aab3b7c80b1b6b1ab2ac40Aa
  article-title: A new definition of fractional derivative without singular kernel
  publication-title: Progr. Fract. Differ. Appl
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_043_w2aab3b7c80b1b6b1ab2ac43Aa
  doi: 10.1112/plms/s3-45.3.519
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_070_w2aab3b7c80b1b6b1ab2ac70Aa
  doi: 10.2298/FIL1701125S
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_037_w2aab3b7c80b1b6b1ab2ac37Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_005_w2aab3b7c80b1b6b1ab2ab5Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_006_w2aab3b7c80b1b6b1ab2ab6Aa
  doi: 10.1016/j.apm.2017.02.021
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_035_w2aab3b7c80b1b6b1ab2ac35Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_058_w2aab3b7c80b1b6b1ab2ac58Aa
  doi: 10.2298/AADM121227028M
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_084_w2aab3b7c80b1b6b1ab2ac84Aa
  doi: 10.1063/1.166272
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_053_w2aab3b7c80b1b6b1ab2ac53Aa
  doi: 10.1080/00207160.2015.1045886
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_083_w2aab3b7c80b1b6b1ab2ac83Aa
  doi: 10.1016/j.amc.2007.10.005
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_088_w2aab3b7c80b1b6b1ab2ac88Aa
  doi: 10.1016/S0096-3003(99)00208-8
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_033_w2aab3b7c80b1b6b1ab2ac33Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_031_w2aab3b7c80b1b6b1ab2ac31Aa
  doi: 10.1007/978-90-481-3293-5
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_007_w2aab3b7c80b1b6b1ab2ab7Aa
  doi: 10.1016/j.camwa.2016.07.010
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_014_w2aab3b7c80b1b6b1ab2ac14Aa
  doi: 10.1515/math-2016-0007
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_016_w2aab3b7c80b1b6b1ab2ac16Aa
  doi: 10.1016/j.aej.2016.07.025
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_039_w2aab3b7c80b1b6b1ab2ac39Aa
  doi: 10.1134/S106192081704001X
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_064_w2aab3b7c80b1b6b1ab2ac64Aa
  doi: 10.1016/j.amc.2003.09.017
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_086_w2aab3b7c80b1b6b1ab2ac86Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_004_w2aab3b7c80b1b6b1ab2ab4Aa
  doi: 10.1016/j.advwatres.2012.04.005
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_013_w2aab3b7c80b1b6b1ab2ac13Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_076_w2aab3b7c80b1b6b1ab2ac76Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_081_w2aab3b7c80b1b6b1ab2ac81Aa
  doi: 10.1016/j.physa.2004.06.048
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_011_w2aab3b7c80b1b6b1ab2ac11Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_009_w2aab3b7c80b1b6b1ab2ab9Aa
  doi: 10.1007/s10957-012-0211-6
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_068_w2aab3b7c80b1b6b1ab2ac68Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_036_w2aab3b7c80b1b6b1ab2ac36Aa
  doi: 10.1186/s13662-018-1500-7
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_085_w2aab3b7c80b1b6b1ab2ac85Aa
  doi: 10.1016/0167-2789(94)90254-2
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_010_w2aab3b7c80b1b6b1ab2ac10Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_067_w2aab3b7c80b1b6b1ab2ac67Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_027_w2aab3b7c80b1b6b1ab2ac27Aa
  doi: 10.1007/s10957-017-1186-0
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_023_w2aab3b7c80b1b6b1ab2ac23Aa
  doi: 10.1016/j.physa.2017.10.002
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_012_w2aab3b7c80b1b6b1ab2ac12Aa
  doi: 10.1142/9789814355216
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_018_w2aab3b7c80b1b6b1ab2ac18Aa
  doi: 10.1140/epjp/i2018-12096-8
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_049_w2aab3b7c80b1b6b1ab2ac49Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_061_w2aab3b7c80b1b6b1ab2ac61Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_034_w2aab3b7c80b1b6b1ab2ac34Aa
  doi: 10.2298/TSCI151224222Y
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_062_w2aab3b7c80b1b6b1ab2ac62Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_066_w2aab3b7c80b1b6b1ab2ac66Aa
  doi: 10.7153/mia-2017-20-61
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_001_w2aab3b7c80b1b6b1ab2ab1Aa
  doi: 10.1142/9789812817747
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_059_w2aab3b7c80b1b6b1ab2ac59Aa
  doi: 10.7153/jmi-2018-12-13
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_048_w2aab3b7c80b1b6b1ab2ac48Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_060_w2aab3b7c80b1b6b1ab2ac60Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_056_w2aab3b7c80b1b6b1ab2ac56Aa
  doi: 10.1007/BF01329629
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_021_w2aab3b7c80b1b6b1ab2ac21Aa
  doi: 10.2298/TSCI160826008K
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_020_w2aab3b7c80b1b6b1ab2ac20Aa
  doi: 10.1007/s40819-018-0532-8
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_047_w2aab3b7c80b1b6b1ab2ac47Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_077_w2aab3b7c80b1b6b1ab2ac77Aa
  doi: 10.5269/bspm.v32i1.18146
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_045_w2aab3b7c80b1b6b1ab2ac45Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_002_w2aab3b7c80b1b6b1ab2ab2Aa
  doi: 10.1615/CritRevBiomedEng.v32.i1.10
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_024_w2aab3b7c80b1b6b1ab2ac24Aa
  doi: 10.1007/s11071-017-3870-x
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_015_w2aab3b7c80b1b6b1ab2ac15Aa
  doi: 10.2478/s13540-013-0056-1
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_040_w2aab3b7c80b1b6b1ab2ac40Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_065_w2aab3b7c80b1b6b1ab2ac65Aa
  doi: 10.2298/AADM190427005M
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_008_w2aab3b7c80b1b6b1ab2ab8Aa
  doi: 10.1016/j.apm.2017.03.029
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_032_w2aab3b7c80b1b6b1ab2ac32Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_029_w2aab3b7c80b1b6b1ab2ac29Aa
  doi: 10.1016/j.chaos.2017.04.025
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_042_w2aab3b7c80b1b6b1ab2ac42Aa
  doi: 10.2298/TSCI160111018A
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_030_w2aab3b7c80b1b6b1ab2ac30Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_087_w2aab3b7c80b1b6b1ab2ac87Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_079_w2aab3b7c80b1b6b1ab2ac79Aa
  doi: 10.1155/2015/289387
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_082_w2aab3b7c80b1b6b1ab2ac82Aa
  doi: 10.1007/s10509-006-9191-z
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_063_w2aab3b7c80b1b6b1ab2ac63Aa
  doi: 10.3390/axioms1030238
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_074_w2aab3b7c80b1b6b1ab2ac74Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_073_w2aab3b7c80b1b6b1ab2ac73Aa
  doi: 10.1007/s10509-008-9880-x
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_075_w2aab3b7c80b1b6b1ab2ac75Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_019_w2aab3b7c80b1b6b1ab2ac19Aa
  doi: 10.1007/978-3-319-90972-1_14
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_072_w2aab3b7c80b1b6b1ab2ac72Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_069_w2aab3b7c80b1b6b1ab2ac69Aa
  doi: 10.1002/mma.3986
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_078_w2aab3b7c80b1b6b1ab2ac78Aa
  doi: 10.1023/A:1002695807970
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_071_w2aab3b7c80b1b6b1ab2ac71Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_026_w2aab3b7c80b1b6b1ab2ac26Aa
  doi: 10.1115/1.4038444
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_054_w2aab3b7c80b1b6b1ab2ac54Aa
  doi: 10.1080/10652460802295978
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_028_w2aab3b7c80b1b6b1ab2ac28Aa
  doi: 10.12693/APhysPolA.131.1561
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_055_w2aab3b7c80b1b6b1ab2ac55Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_022_w2aab3b7c80b1b6b1ab2ac22Aa
  doi: 10.2298/TSCI170129096K
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_025_w2aab3b7c80b1b6b1ab2ac25Aa
  doi: 10.1016/j.cam.2017.03.011
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_080_w2aab3b7c80b1b6b1ab2ac80Aa
  doi: 10.1023/A:1021175108964
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_044_w2aab3b7c80b1b6b1ab2ac44Aa
  doi: 10.1007/BF01112023
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_017_w2aab3b7c80b1b6b1ab2ac17Aa
  doi: 10.1016/j.aej.2017.03.046
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_038_w2aab3b7c80b1b6b1ab2ac38Aa
  doi: 10.4134/BKMS.2014.51.4.995
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_052_w2aab3b7c80b1b6b1ab2ac52Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_003_w2aab3b7c80b1b6b1ab2ab3Aa
  doi: 10.1016/j.apm.2016.12.008
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_046_w2aab3b7c80b1b6b1ab2ac46Aa
  doi: 10.1007/BF01112023
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_050_w2aab3b7c80b1b6b1ab2ac50Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_057_w2aab3b7c80b1b6b1ab2ac57Aa
  doi: 10.1007/BF02599788
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_041_w2aab3b7c80b1b6b1ab2ac41Aa
  doi: 10.1016/j.amc.2015.10.021
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_051_w2aab3b7c80b1b6b1ab2ac51Aa
SSID ssj0002313662
Score 2.3901172
Snippet Aim of the present paper is to establish fractional integral formulas by using fractional calculus operators involving the generalized ( , )-Mathieu type...
Aim of the present paper is to establish fractional integral formulas by using fractional calculus operators involving the generalized ( p , q )-Mathieu type...
Aim of the present paper is to establish fractional integral formulas by using fractional calculus operators involving the generalized (p, q)-Mathieu type...
SourceID proquest
crossref
walterdegruyter
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 15
SubjectTerms Extended generalized Mathieu series
Fractional derivative operators
Fractional integral operators
Integral transforms
Title Fractional Calculus involving (p, q)-Mathieu Type Series
URI https://reference-global.com/article/10.2478/amns.2020.2.00011
https://www.proquest.com/docview/3191239238
Volume 5
WOSCitedRecordID wos000664173100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2444-8656
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002313662
  issn: 2444-8656
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2444-8656
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002313662
  issn: 2444-8656
  databaseCode: BENPR
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2444-8656
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002313662
  issn: 2444-8656
  databaseCode: PIMPY
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-xsoe9lDE2UT6mPPAw0DyK4zjJE2KICh6oKrRJ8BTZZxchQWibFsR_z13iUg1pvCBFiiLZVnTnu_v57nwHsJMqm6NLpEBtUJAkSmGk0kJmFmVmENN4WDebSPv97PIyHwSHWxXSKuc6sVbU7h7ZR75PW4WULMGR7HA0Ftw1iqOroYXGB1jmSmWqBcu_T_qDixcvC6GXWGvZhDOlSrN9c1dylW5Jn79qQPSvQVqgzPZjHa92_noye5rO46O12emtvPeHP0M7AM7oqNkhq7Dkyy-wEsBnFES7WoOsN2nuONDgY3PLXsEquilJe7HLIfox-hmNd8U5Jyv6WcTH14g9a776Cn97J3-OT0VoqyAwTrtToXVifD50yKXojZfW-NRl0mHiPdGQmITqIDXSGBe7mMx5jkqlufU-xq6l4803aJX3pV-HiPCb8vSg7iKHUK3iTh5Dpa2yQ5fYDnTntC0w1Bzn1he3BZ09mB0Fs6NgdhSyjoMfdGDvZcqoKbjx1uCtOe2LIHtVsSB8B_QrJi5G_XdNwjPJxtvrbsInntFk7W5BazqZ-W34iA_Tm2ryPexBeg_OzgdXz5j_5x4
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dSxwxEB_kLLQv2mpLr7Wahwq2NHpms8nug4ioh4fecQ8W7NM2X1cEu563dxX_qf6NndkPDwv1zYfCvgSSEHYmk9_MJPMD-KilTZ2PBXfKOI47UXAjpOIisU4kxjkdjUqyCT0YJBcX6XABfjdvYehaZWMTS0Ptrx3FyHdQVdDIIhxJ9sc3nFijKLvaUGhUanEa7m7RZSv2ekco300husfnhye8ZhXgLtKdKVcqNiEdeUeV2E0Q1gTtE-FdHAJ69LhGJ3e1Ecb4yEd4mqVOSp3aECLXsZpYItDkL0pU9qQFi8Nef_jtPqqDaClSSlTpUyF1smN-5lQVXGBzuwRgDw_AOapdui3z4z78mMzupk0-tjzmusv_2w96CUs1oGYH1Q54BQshX4HlGlyz2nQVq5B0J9UbDux8aK4o6lmwyxytM4VU2Nb4C7v5xPt0GTPMGLnnjCKHoXgNX59k_W-glV_n4S0wxKcy4OdUx1GK2EpiKhlJZaUd-di2odPIMnN1TXWi9rjK0Lci8Wck_ozEn4kyz7_bhs_3Q8ZVQZHHOq81ss5q21Jkc0G3Qf2lNPNe_5wT8Vr87vF5N-D5yXn_LDvrDU7fwwsaXd1QXoPWdDILH-CZ-zW9LCbrtf4z-P7UGvUH8ENFFA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fractional+Calculus+involving+%28p%2C+q%29-Mathieu+Type+Series&rft.jtitle=Applied+mathematics+and+nonlinear+sciences&rft.au=Kaur%2C+Daljeet&rft.au=Agarwal%2C+Praveen&rft.au=Rakshit%2C+Madhuchanda&rft.au=Chand%2C+Mehar&rft.date=2020-07-01&rft.pub=Sciendo&rft.eissn=2444-8656&rft.volume=5&rft.issue=2&rft.spage=15&rft.epage=34&rft_id=info:doi/10.2478%2Famns.2020.2.00011&rft.externalDBID=n%2Fa&rft.externalDocID=10_2478_amns_2020_2_000115215
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2444-8656&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2444-8656&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2444-8656&client=summon