Forecast Natural Gas Price by an Extreme Learning Machine Framework Based on Multi-Strategy Grey Wolf Optimizer and Signal Decomposition
Natural gas is one of the most important sources of energy in modern society. However, its strong volatility highlights the importance of accurately forecasting natural gas price trends and movements. The nonlinear nature of the natural gas price series makes it difficult to capture. Therefore, we p...
Uloženo v:
| Vydáno v: | Sustainability Ročník 17; číslo 12; s. 5249 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.06.2025
|
| Témata: | |
| ISSN: | 2071-1050, 2071-1050 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Natural gas is one of the most important sources of energy in modern society. However, its strong volatility highlights the importance of accurately forecasting natural gas price trends and movements. The nonlinear nature of the natural gas price series makes it difficult to capture. Therefore, we propose a forecasting framework based on signal decomposition and intelligent optimization algorithms to predict natural gas prices. In this forecasting framework, we implement point, probability interval, and quantile interval forecasting. First, the natural gas price sequence is decomposed into multiple Intrinsic Mode Functions (IMFs) using the Ensemble Empirical Mode Decomposition (EEMD) technique. Each decomposed sequence is then predicted using an optimized Extreme Learning Machine (ELM), and the individual results are aggregated as the final result. To improve the efficiency of the intelligent algorithm, a Multi-Strategy Grey Wolf Optimizer (MSGWO) is developed to optimize the hidden layer matrices of the ELM. The experimental results prove that the proposed framework not only provides more reliable point forecasts with good nonlinear adaptability but also describes the uncertainty of natural gas price series more accurately and completely. |
|---|---|
| AbstractList | Natural gas is one of the most important sources of energy in modern society. However, its strong volatility highlights the importance of accurately forecasting natural gas price trends and movements. The nonlinear nature of the natural gas price series makes it difficult to capture. Therefore, we propose a forecasting framework based on signal decomposition and intelligent optimization algorithms to predict natural gas prices. In this forecasting framework, we implement point, probability interval, and quantile interval forecasting. First, the natural gas price sequence is decomposed into multiple Intrinsic Mode Functions (IMFs) using the Ensemble Empirical Mode Decomposition (EEMD) technique. Each decomposed sequence is then predicted using an optimized Extreme Learning Machine (ELM), and the individual results are aggregated as the final result. To improve the efficiency of the intelligent algorithm, a Multi-Strategy Grey Wolf Optimizer (MSGWO) is developed to optimize the hidden layer matrices of the ELM. The experimental results prove that the proposed framework not only provides more reliable point forecasts with good nonlinear adaptability but also describes the uncertainty of natural gas price series more accurately and completely. |
| Audience | Academic |
| Author | Yu, Xiaobing Wu, Zhuolin Zhou, Jiaqi |
| Author_xml | – sequence: 1 givenname: Zhuolin surname: Wu fullname: Wu, Zhuolin – sequence: 2 givenname: Jiaqi surname: Zhou fullname: Zhou, Jiaqi – sequence: 3 givenname: Xiaobing surname: Yu fullname: Yu, Xiaobing |
| BookMark | eNptkc9O3DAQxi0EEhS48ASWemqlUP9J4vhIKbsgLaXqtuox8jrj1DSxF9tRWZ6Ax8ZoK1Gqjg9jjX7f5_HMG7TrvAOETig55VySD3GigrKKlXIHHTAiaEFJRXb_uu-j4xhvSQ7OqaT1AXqc-QBaxYQ_qzQFNeC5ivhLsBrwaoOVwxf3KcAIeAEqOOt6fK30T-sAz4Ia4bcPv_BHFaHD3uHraUi2WKagEvQbPA-wwT_8YPDNOtnRPkDIjh1e2t7llz6B9uPaR5usd0doz6ghwvGffIi-zy6-nV8Wi5v51fnZotBckFTUZcekptqITkhJQTaaQKNLbuoShDGNqcSqFl1NyxVrjNRK6FwRwIzpRFPxQ_R267sO_m6CmNpbP4XcTmw5Y1yWTNIyU6dbqlcDtNYZn_-k8-lgtDqP3dhcP2vKqpENozQL3r0SZCbBferVFGN7tfz6mn2_ZXXwMQYw7TrYUYVNS0n7vMn2ZZMZJv_A2ib1PLHckR3-J3kCEa2iRA |
| CitedBy_id | crossref_primary_10_3390_su17188514 |
| Cites_doi | 10.11130/jei.2012.27.3.487 10.1023/A:1008202821328 10.1007/s00521-014-1806-7 10.1016/j.jclepro.2019.118556 10.1016/j.eneco.2017.12.030 10.1098/rspa.1998.0193 10.1016/j.eswa.2025.126864 10.1016/j.scitotenv.2020.143099 10.1177/2515245920911881 10.1016/j.jnca.2023.103729 10.1142/S1793536909000047 10.1111/1467-9639.00050 10.1016/j.asoc.2017.06.044 10.1016/j.energy.2021.120797 10.1016/j.cnsns.2011.05.006 10.1017/CBO9780511755798 10.1109/ICASSP.2011.5947265 10.1016/j.engappai.2014.07.022 10.1007/s11069-012-0531-8 10.1016/j.jenvman.2023.118137 10.1016/j.ijepes.2021.107369 10.1016/j.asoc.2018.09.018 10.1016/j.eneco.2016.02.022 10.1016/j.physa.2019.122830 10.3390/math8020214 10.1016/j.irfa.2022.102286 10.1016/j.advengsoft.2016.01.008 10.1109/ICACC.2010.5486899 10.1016/j.advengsoft.2013.12.007 10.1016/j.envres.2017.01.035 10.1080/10910344.2020.1765178 10.1109/TSP.2013.2288675 10.1016/j.jenvman.2023.118446 10.1016/j.beproc.2011.09.006 10.1016/j.asoc.2024.112648 10.1016/j.eswa.2025.126535 10.1016/j.apenergy.2018.10.078 10.1016/j.energy.2021.122324 10.1016/j.jhydrol.2018.11.015 10.1016/j.ins.2014.12.031 10.1016/j.eneco.2020.104827 10.1016/j.eneco.2022.106162 10.1016/j.swevo.2025.101844 10.1016/j.atmosres.2015.03.018 10.1016/j.ymssp.2010.03.003 10.1016/j.neunet.2014.10.001 10.1155/2022/5488053 10.1016/j.techfore.2023.122348 10.1016/j.apenergy.2018.09.118 10.1109/ICASSP.2017.7952305 10.1016/j.jnca.2024.104048 10.1016/j.knosys.2015.07.006 10.3390/su13094896 10.1016/j.neucom.2007.10.008 10.1016/j.engappai.2024.109015 10.1016/j.engappai.2017.10.024 10.1016/j.neucom.2005.12.126 10.1007/s11269-015-0962-6 10.1016/j.apm.2018.03.005 10.1007/s00366-019-00837-7 10.1016/j.energy.2021.121082 10.1016/j.jclepro.2019.118671 10.1016/j.asoc.2021.108204 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ISR 4U- ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS |
| DOI | 10.3390/su17125249 |
| DatabaseName | CrossRef Gale In Context: Science University Readers ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central ProQuest One Coronavirus Research Database ProQuest Central ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database University Readers ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| EISSN | 2071-1050 |
| ExternalDocumentID | A845898211 10_3390_su17125249 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | 29Q 2WC 2XV 4P2 5VS 7XC 8FE 8FH A8Z AAHBH AAYXX ACHQT ADBBV ADMLS AENEX AFFHD AFKRA AFMMW ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION E3Z ECGQY ESTFP FRS GX1 IAO IEP ISR ITC KQ8 ML. MODMG M~E OK1 P2P PHGZM PHGZT PIMPY PROAC TR2 4U- ABUWG AZQEC COVID DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c370t-64d29c1cf7d7991e98c0e8c43f64e7ff8f57b67d614b28f9ca7c57b7e2ffd7853 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001516340700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2071-1050 |
| IngestDate | Mon Jun 30 07:17:19 EDT 2025 Tue Nov 04 18:11:04 EST 2025 Thu Nov 13 15:53:59 EST 2025 Tue Nov 18 22:16:52 EST 2025 Sat Nov 29 07:15:50 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c370t-64d29c1cf7d7991e98c0e8c43f64e7ff8f57b67d614b28f9ca7c57b7e2ffd7853 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/3223942914?pq-origsite=%requestingapplication% |
| PQID | 3223942914 |
| PQPubID | 2032327 |
| ParticipantIDs | proquest_journals_3223942914 gale_infotracacademiconefile_A845898211 gale_incontextgauss_ISR_A845898211 crossref_primary_10_3390_su17125249 crossref_citationtrail_10_3390_su17125249 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-01 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Sustainability |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Zhang (ref_15) 2021; 229 Tang (ref_64) 2023; 189 ref_57 Johnson (ref_50) 2001; 23 Peng (ref_3) 2011; 39 Wang (ref_14) 2021; 233 Mirjalili (ref_55) 2016; 95 Deo (ref_39) 2015; 161 ref_53 Long (ref_32) 2018; 60 Mirjalili (ref_54) 2015; 89 Harikrishnan (ref_2) 2012; 17 Meng (ref_42) 2019; 568 Rousselet (ref_48) 2021; 4 ref_16 Wang (ref_59) 2015; 29 Ne (ref_56) 1998; 454 Xiang (ref_43) 2018; 73 Yu (ref_4) 2011; 3 Huang (ref_17) 2006; 70 Deo (ref_20) 2017; 155 Heidari (ref_36) 2017; 60 Ergen (ref_1) 2016; 56 Wang (ref_9) 2025; 274 Seyyedabbasi (ref_31) 2021; 37 Zhang (ref_10) 2025; 271 Wu (ref_46) 2009; 1 Huang (ref_18) 2015; 61 ref_22 Muro (ref_41) 2011; 88 Guo (ref_65) 2022; 83 Amin (ref_30) 2023; 219 Acharya (ref_19) 2013; 66 Mittal (ref_35) 2016; 2016 Deng (ref_62) 2025; 170 Zhang (ref_60) 2010; 24 Sun (ref_26) 2018; 231 Wang (ref_37) 2022; 112 Storn (ref_52) 1997; 11 Lu (ref_61) 2024; 136 Long (ref_33) 2018; 68 Sun (ref_25) 2020; 243 Kung (ref_49) 2012; 27 Cihan (ref_67) 2022; 134 Huang (ref_40) 2008; 71 Mohammadi (ref_7) 2014; 36 Wang (ref_12) 2020; 90 Dragomiretskiy (ref_58) 2014; 62 Zhan (ref_13) 2022; 2022 Mirjalili (ref_29) 2014; 69 Cao (ref_38) 2023; 342 Jovanovic (ref_11) 2025; 233 Li (ref_27) 2022; 239 He (ref_47) 2020; 24 Zheng (ref_66) 2023; 344 Wang (ref_63) 2025; 93 ref_44 Hao (ref_28) 2020; 244 Saremi (ref_34) 2015; 26 Zhu (ref_24) 2018; 70 Wang (ref_45) 2021; 762 Chen (ref_8) 2015; 299 Xu (ref_21) 2020; 545 Wang (ref_51) 2019; 235 Ji (ref_23) 2022; 116 ref_5 ref_6 |
| References_xml | – volume: 27 start-page: 487 year: 2012 ident: ref_49 article-title: A bootstrap analysis of the Nikkei 225 publication-title: J. Econ. Integr. doi: 10.11130/jei.2012.27.3.487 – volume: 11 start-page: 341 year: 1997 ident: ref_52 article-title: Differential Evolution–A Simple and Efficient Heuristic for global Optimization over Continuous Spaces publication-title: J. Glob. Optim. doi: 10.1023/A:1008202821328 – volume: 26 start-page: 1257 year: 2015 ident: ref_34 article-title: Evolutionary population dynamics and grey wolf optimizer publication-title: Neural Comput. Appl. doi: 10.1007/s00521-014-1806-7 – volume: 244 start-page: 118556 year: 2020 ident: ref_28 article-title: Modelling of carbon price in two real carbon trading markets publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.118556 – volume: 70 start-page: 143 year: 2018 ident: ref_24 article-title: A novel multiscale nonlinear ensemble leaning paradigm for carbon price forecasting publication-title: Energy Econ. doi: 10.1016/j.eneco.2017.12.030 – volume: 454 start-page: 903 year: 1998 ident: ref_56 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society publication-title: Math. Phys. Eng. Sci. doi: 10.1098/rspa.1998.0193 – volume: 274 start-page: 126864 year: 2025 ident: ref_9 article-title: Decomposition combining averaging seasonal-trend with singular spectrum analysis and a marine predator algorithm embedding Adam for time series forecasting with strong volatility publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2025.126864 – volume: 762 start-page: 143099 year: 2021 ident: ref_45 article-title: An innovative random forest-based nonlinear ensemble paradigm of improved feature extraction and deep learning for carbon price forecasting publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.143099 – volume: 4 start-page: 2515245920911881 year: 2021 ident: ref_48 article-title: The percentile bootstrap: A primer with step-by-step instructions in R publication-title: Adv. Methods Pract. Psychol. Sci. doi: 10.1177/2515245920911881 – volume: 219 start-page: 103729 year: 2023 ident: ref_30 article-title: Efficient application mapping approach based on grey wolf optimization for network on chip publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2023.103729 – volume: 1 start-page: 1 year: 2009 ident: ref_46 article-title: Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method publication-title: Adv. Adapt. Data Anal. doi: 10.1142/S1793536909000047 – volume: 23 start-page: 49 year: 2001 ident: ref_50 article-title: An introduction to the bootstrap publication-title: Teach. Stat. doi: 10.1111/1467-9639.00050 – volume: 60 start-page: 115 year: 2017 ident: ref_36 article-title: An efficient modified grey wolf optimizer with Lévy flight for optimization tasks publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.06.044 – volume: 229 start-page: 120797 year: 2021 ident: ref_15 article-title: Multi-step-ahead crude oil price forecasting based on two-layer decomposition technique and extreme learning machine optimized by the particle swarm optimization algorithm publication-title: Energy doi: 10.1016/j.energy.2021.120797 – volume: 17 start-page: 263 year: 2012 ident: ref_2 article-title: Revisiting the box counting algorithm for the correlation dimension analysis of hyperchaotic time series publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2011.05.006 – ident: ref_16 doi: 10.1017/CBO9780511755798 – ident: ref_57 doi: 10.1109/ICASSP.2011.5947265 – volume: 36 start-page: 204 year: 2014 ident: ref_7 article-title: A new hybrid evolutionary based RBF networks method for forecasting time series: A case study of forecasting emergency supply demand time series publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2014.07.022 – volume: 66 start-page: 851 year: 2013 ident: ref_19 article-title: Performance of general circulation models and their ensembles for the prediction of drought indices over India during summer monsoon publication-title: Nat. Hazards doi: 10.1007/s11069-012-0531-8 – volume: 342 start-page: 118137 year: 2023 ident: ref_38 article-title: Probabilistic carbon price prediction with quantile temporal convolutional network considering uncertain factors publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2023.118137 – volume: 134 start-page: 107369 year: 2022 ident: ref_67 article-title: Impact of the COVID-19 Lockdowns on Electricity and Natural Gas Consumption in the Different Industrial Zones and Forecasting Consumption Amounts: Turkey Case Study publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2021.107369 – volume: 73 start-page: 874 year: 2018 ident: ref_43 article-title: A SVR–ANN combined model based on ensemble EMD for rainfall prediction publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.09.018 – volume: 3 start-page: 30 year: 2011 ident: ref_4 article-title: Wind speed forecasting based on aRMA-ARCH model in wind farms publication-title: Electricity – volume: 56 start-page: 64 year: 2016 ident: ref_1 article-title: Asymmetric impacts of fundamentals on the natural gas futures volatility: An augmented GARCH approach publication-title: Energy Econ. doi: 10.1016/j.eneco.2016.02.022 – volume: 39 start-page: 190 year: 2011 ident: ref_3 article-title: Mobile communication traffic forecasting with prior knowledge publication-title: Dianzi Xuebao (Acta Electron. Sin.) – volume: 545 start-page: 122830 year: 2020 ident: ref_21 article-title: Carbon price forecasting with complex network and extreme learning machine publication-title: Phys. A Stat. Mech. Its Appl. doi: 10.1016/j.physa.2019.122830 – ident: ref_44 doi: 10.3390/math8020214 – volume: 83 start-page: 102286 year: 2022 ident: ref_65 article-title: Nonlinear Effects of Climate Policy Uncertainty and Financial Speculation on the Global Prices of Oil and Gas publication-title: Int. Rev. Financ. Anal. doi: 10.1016/j.irfa.2022.102286 – volume: 95 start-page: 51 year: 2016 ident: ref_55 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – ident: ref_6 doi: 10.1109/ICACC.2010.5486899 – volume: 69 start-page: 46 year: 2014 ident: ref_29 article-title: Grey Wolf Optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 155 start-page: 141 year: 2017 ident: ref_20 article-title: Very short-term reactive forecasting of the solar ultraviolet index using an extreme learning machine integrated with the solar zenith angle publication-title: Environ. Res. doi: 10.1016/j.envres.2017.01.035 – volume: 24 start-page: 781 year: 2020 ident: ref_47 article-title: An improved decomposition algorithm of surface topography of machining publication-title: Mach. Sci. Technol. doi: 10.1080/10910344.2020.1765178 – volume: 62 start-page: 531 year: 2014 ident: ref_58 article-title: Variational Mode Decomposition publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2013.2288675 – volume: 344 start-page: 118446 year: 2023 ident: ref_66 article-title: Natural Gas Spot Price Prediction Research under the Background of Russia-Ukraine Conflict–Based on FS-GA-SVR Hybrid Model publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2023.118446 – volume: 88 start-page: 192 year: 2011 ident: ref_41 article-title: Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations publication-title: Behav. Process. doi: 10.1016/j.beproc.2011.09.006 – ident: ref_53 – volume: 170 start-page: 112648 year: 2025 ident: ref_62 article-title: An Enhanced Secondary Decomposition Model Considering Energy Price for Carbon Price Prediction publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2024.112648 – volume: 271 start-page: 126535 year: 2025 ident: ref_10 article-title: VMD-ConvTSMixer: Spatiotemporal channel mixing model for non-stationary time series forecasting publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2025.126535 – volume: 235 start-page: 10 year: 2019 ident: ref_51 article-title: Probabilistic individual load forecasting using pinball loss guided LSTM publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.10.078 – volume: 239 start-page: 122324 year: 2022 ident: ref_27 article-title: A new carbon price prediction model publication-title: Energy doi: 10.1016/j.energy.2021.122324 – volume: 568 start-page: 462 year: 2019 ident: ref_42 article-title: A robust method for non-stationary streamflow prediction based on improved EMD-SVM model publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.11.015 – volume: 299 start-page: 99 year: 2015 ident: ref_8 article-title: A weighted LS-SVM based learning system for time series forecasting publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.12.031 – volume: 90 start-page: 104827 year: 2020 ident: ref_12 article-title: Energy futures and spots prices forecasting by hybrid SW-GRU with EMD and error evaluation publication-title: Energy Econ. doi: 10.1016/j.eneco.2020.104827 – volume: 112 start-page: 106162 year: 2022 ident: ref_37 article-title: A novel framework for carbon price forecasting with uncertainties publication-title: Energy Econ. doi: 10.1016/j.eneco.2022.106162 – volume: 93 start-page: 101844 year: 2025 ident: ref_63 article-title: A Reinforcement Learning-Based Ranking Teaching-Learning-Based Optimization Algorithm for Parameters Estimation of Photovoltaic Models publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2025.101844 – volume: 161 start-page: 65 year: 2015 ident: ref_39 article-title: Application of the artificial neural network model for prediction of monthly standardized precipitation and evapotranspiration index using hydrometeorological parameters and climate indices in eastern Australia publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2015.03.018 – volume: 24 start-page: 2104 year: 2010 ident: ref_60 article-title: Performance enhancement of ensemble empirical mode decomposition publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2010.03.003 – volume: 61 start-page: 32 year: 2015 ident: ref_18 article-title: Trends in extreme learning machines: A review publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.10.001 – volume: 2022 start-page: 5488053 year: 2022 ident: ref_13 article-title: Natural Gas Price Forecasting by a New Hybrid Model Combining Quadratic Decomposition Technology and LSTM Model publication-title: Math. Probl. Eng. doi: 10.1155/2022/5488053 – volume: 189 start-page: 122348 year: 2023 ident: ref_64 article-title: Asymmetric Effects of Geopolitical Risks and Uncertainties on Green Bond Markets publication-title: Technol. Forecast. Soc. Change doi: 10.1016/j.techfore.2023.122348 – volume: 231 start-page: 1354 year: 2018 ident: ref_26 article-title: Analysis and forecasting of the carbon price using multi—Resolution singular value decomposition and extreme learning machine optimized by adaptive whale optimization algorithm publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.09.118 – ident: ref_5 doi: 10.1109/ICASSP.2017.7952305 – volume: 233 start-page: 104048 year: 2025 ident: ref_11 article-title: Particle swarm optimization tuned multi-headed long short-term memory networks approach for fuel prices forecasting publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2024.104048 – volume: 89 start-page: 228 year: 2015 ident: ref_54 article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2015.07.006 – ident: ref_22 doi: 10.3390/su13094896 – volume: 71 start-page: 3460 year: 2008 ident: ref_40 article-title: Enhanced random search based incremental extreme learning machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2007.10.008 – volume: 136 start-page: 109015 year: 2024 ident: ref_61 article-title: Natural Gas Pipeline Leak Diagnosis Based on Manifold Learning publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2024.109015 – volume: 68 start-page: 63 year: 2018 ident: ref_33 article-title: An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2017.10.024 – volume: 70 start-page: 489 year: 2006 ident: ref_17 article-title: Extreme learning machine: Theory and applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – volume: 29 start-page: 2655 year: 2015 ident: ref_59 article-title: Improving Forecasting Accuracy of Annual Runoff Time Series Using ARIMA Based on EEMD Decomposition publication-title: Water Resour. Manag. doi: 10.1007/s11269-015-0962-6 – volume: 60 start-page: 112 year: 2018 ident: ref_32 article-title: Inspired grey wolf optimizer for solving large-scale function optimization problems publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2018.03.005 – volume: 37 start-page: 509 year: 2021 ident: ref_31 article-title: I-GWO and Ex-GWO: Improved algorithms of the Grey Wolf Optimizer to solve global optimization problems publication-title: Eng. Comput. doi: 10.1007/s00366-019-00837-7 – volume: 2016 start-page: 7950348 year: 2016 ident: ref_35 article-title: Modified grey wolf optimizer for global engineering optimization publication-title: Appl. Comput. Intell. Soft Comput. – volume: 233 start-page: 121082 year: 2021 ident: ref_14 article-title: Short-term forecasting of natural gas prices by using a novel hybrid method based on a combination of the CEEMDAN-SE-and the PSO-ALS-optimized GRU network publication-title: Energy doi: 10.1016/j.energy.2021.121082 – volume: 243 start-page: 118671 year: 2020 ident: ref_25 article-title: A carbon price prediction model based on secondary decomposition algorithm and optimized back propagation neural network publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.118671 – volume: 116 start-page: 108204 year: 2022 ident: ref_23 article-title: A three-stage framework for vertical carbon price interval forecast based on decomposition–integration method publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.108204 |
| SSID | ssj0000331916 |
| Score | 2.3739398 |
| Snippet | Natural gas is one of the most important sources of energy in modern society. However, its strong volatility highlights the importance of accurately... |
| SourceID | proquest gale crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 5249 |
| SubjectTerms | Accuracy Decomposition (Mathematics) Energy Forecasting Forecasts and trends Gasoline prices Machine learning Mathematical optimization Natural gas Natural gas prices Neural networks Optimization algorithms Prices and rates Time series |
| Title | Forecast Natural Gas Price by an Extreme Learning Machine Framework Based on Multi-Strategy Grey Wolf Optimizer and Signal Decomposition |
| URI | https://www.proquest.com/docview/3223942914 |
| Volume | 17 |
| WOSCitedRecordID | wos001516340700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Bb9MwFH5iHRJcNhhMK4zJAiTEwaKJU9s5oQ3SsUNLtYEYp8hx7KrSSEadTYwDZ372nlNnBWniwrHpU2LpfXl-fnnv-wBesihixtiUlswkFM9fiirFObXDRPBCDEViZCs2ISYTeXqaTkPBzYW2yi4mtoG6rLWvkb9B4LEUg2eUvD3_Tr1qlP-6GiQ01mDdM5XFPVg_yCbT45sqy4AhxCK-5CVleL5H_0YCN_XYk2f-sRPdHo_bTWa0-b_LewAbIb0k-0s8PIQ7ptqCe930sduC7Ww12YaG4dV2j-C3F-nUyjVkolouDnKoHGlV4UlxRVRFsh-NLyaSQMk6I-O2EdOQUdfgRQ5wTyxJXZF2rpcG6tsrcoiAIV_qM0s-Yoj6Nv9pFnjHkpzMZ365743vbA_tY4_h8yj79O4DDTINVDMxaChPyjjVkbaiFJhtmlTqgZE6YZYnRlgr7VAUXJSYCBSxtKlWQuMVYWJrS4Hpwjb0qroyO0BEZDiXqqVVSxjXCrOPorAx5oCGRYXow-vOZbkOHOZeSuMsx7OMd2--cm8fXtzYni-ZO261eu49n3sqjMr32szUhXP50clxvi-ToUwlAqsPr4KRrfFxWoXRBVy0Z8_6y3K3g0cegoHLV9h48u-_n8L92MsLt0WeXeg1iwvzDO7qy2buFnsB23uwNv6V4a_p0Xj69Ron-ggf |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB1VW6Ry4aNQsVDA4kOIQ8QmdmzngFBLd9tV26Vqi9pbcBx7tVJJyiYFll_Ar-E3Ms46XZAqbj1wTUaJ5TzPjJ2Z9wBe0DCkxtgkyKlhAe6_VKAU54GNmeCZiAUzshGbEKORPD1NDpbgV9sL48oqW5_YOOq81O6M_A0CjyboPEP27vxL4FSj3N_VVkJjDotdM_uGW7bq7XALv-_LKBr0j9_vBF5VINBU9OqAszxKdKityAUmRyaRumekZtRyZoS10sYi4yLHuJVF0iZaCY1XhImszYV0KhHo8pcZZTHrwPJmf3RweHmq06MI6ZDPeVApTXqIp1BgEhE5ss4_It_V_r8JaoPb_9t03IFbPn0mG3O834UlU6zCSttdXa3CWn_RuYeG3nVV9-CnEyHVqqrJSDVcI2RbVaRRvSfZjKiC9L_X7rCUeMrZMdlvCk0NGbQFbGQTY35OyoI0fcuBp_adkW1cEOSkPLPkA7rgz5MfZopPzMnRZOyGu2Vc5b4vj7sPH69lhtagU5SFeQBEhIZzqRraOEa5VphdZZmNMMc1NMxEF163EEm152h3UiFnKe7VHJzSBZy68PzS9nzOTHKl1TOHtNRRfRSulmisLqoqHR4dphuSxTKRURh24ZU3siW-TivfmoGDduxgf1mut3BMvbOr0gUWH_779lNY2Tne30v3hqPdR3AzclLKzYHWOnTq6YV5DDf013pSTZ_4dUXg03Vj9zcmsmOx |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqFgEXHoWKhQIjHkIcoq7jrO0cEGrZ3bIqhFULorfgOPZqpZKUTQosv6C_qb-OcdbpglRx64FrMkos55uHJzPfEPKMUcqMsXGQMxMFeP5SgVKcB7YXCZ6JnoiMbIZNiCSRh4fxeIWctb0wrqyytYmNoc5L7XLkWwg8FqPxpNGW9WUR4_7w9fG3wE2Qcn9a23EaC4jsmfkPPL5Vr0Z9_NbPw3A4-PjmbeAnDASaiW4d8CgPY021FbnAQMnEUneN1BGzPDLCWml7IuMiRx-WhdLGWgmNV4QJrc2FdBMj0PyvCRZ3UbvWdgbJeP88w9NlCG_KF5yoDEUQW1RgQBE64s4_vODFvqBxcMOb__PW3CI3fFgN2ws9uE1WTLFOrrVd19U62RgsO_pQ0Ju06g45dcNJtapqSFTDQQK7qoKx41qCbA6qgMHP2iVRwVPRTuB9U4BqYNgWtsEOxgI5lAU0_cyBp_ydwy4qCnwujyx8QNP8dfrLzPCJORxMJ265feMq-n3Z3F3y6VJ2aIOsFmVh7hEQ1HAuVUMnFzGuFUZdWWZDjH0No5nokJctXFLtudvdCJGjFM9wDlrpElod8vRc9njBWHKh1BOHutRRgBQOMRN1UlXp6GA_3ZZRT8YypLRDXnghW-LrtPItG7hoxxr2l-RmC83UG8EqXeLy_r9vPyZXEbDpu1Gy94BcD92E5SbPtUlW69mJeUiu6O_1tJo98ioG5MtlQ_c3r0FsdA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecast+Natural+Gas+Price+by+an+Extreme+Learning+Machine+Framework+Based+on+Multi-Strategy+Grey+Wolf+Optimizer+and+Signal+Decomposition&rft.jtitle=Sustainability&rft.au=Wu+Zhuolin&rft.au=Zhou%2C+Jiaqi&rft.au=Yu%2C+Xiaobing&rft.date=2025-06-01&rft.pub=MDPI+AG&rft.eissn=2071-1050&rft.volume=17&rft.issue=12&rft.spage=5249&rft_id=info:doi/10.3390%2Fsu17125249&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-1050&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-1050&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-1050&client=summon |