Forecast Natural Gas Price by an Extreme Learning Machine Framework Based on Multi-Strategy Grey Wolf Optimizer and Signal Decomposition

Natural gas is one of the most important sources of energy in modern society. However, its strong volatility highlights the importance of accurately forecasting natural gas price trends and movements. The nonlinear nature of the natural gas price series makes it difficult to capture. Therefore, we p...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sustainability Ročník 17; číslo 12; s. 5249
Hlavní autoři: Wu, Zhuolin, Zhou, Jiaqi, Yu, Xiaobing
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.06.2025
Témata:
ISSN:2071-1050, 2071-1050
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Natural gas is one of the most important sources of energy in modern society. However, its strong volatility highlights the importance of accurately forecasting natural gas price trends and movements. The nonlinear nature of the natural gas price series makes it difficult to capture. Therefore, we propose a forecasting framework based on signal decomposition and intelligent optimization algorithms to predict natural gas prices. In this forecasting framework, we implement point, probability interval, and quantile interval forecasting. First, the natural gas price sequence is decomposed into multiple Intrinsic Mode Functions (IMFs) using the Ensemble Empirical Mode Decomposition (EEMD) technique. Each decomposed sequence is then predicted using an optimized Extreme Learning Machine (ELM), and the individual results are aggregated as the final result. To improve the efficiency of the intelligent algorithm, a Multi-Strategy Grey Wolf Optimizer (MSGWO) is developed to optimize the hidden layer matrices of the ELM. The experimental results prove that the proposed framework not only provides more reliable point forecasts with good nonlinear adaptability but also describes the uncertainty of natural gas price series more accurately and completely.
AbstractList Natural gas is one of the most important sources of energy in modern society. However, its strong volatility highlights the importance of accurately forecasting natural gas price trends and movements. The nonlinear nature of the natural gas price series makes it difficult to capture. Therefore, we propose a forecasting framework based on signal decomposition and intelligent optimization algorithms to predict natural gas prices. In this forecasting framework, we implement point, probability interval, and quantile interval forecasting. First, the natural gas price sequence is decomposed into multiple Intrinsic Mode Functions (IMFs) using the Ensemble Empirical Mode Decomposition (EEMD) technique. Each decomposed sequence is then predicted using an optimized Extreme Learning Machine (ELM), and the individual results are aggregated as the final result. To improve the efficiency of the intelligent algorithm, a Multi-Strategy Grey Wolf Optimizer (MSGWO) is developed to optimize the hidden layer matrices of the ELM. The experimental results prove that the proposed framework not only provides more reliable point forecasts with good nonlinear adaptability but also describes the uncertainty of natural gas price series more accurately and completely.
Audience Academic
Author Yu, Xiaobing
Wu, Zhuolin
Zhou, Jiaqi
Author_xml – sequence: 1
  givenname: Zhuolin
  surname: Wu
  fullname: Wu, Zhuolin
– sequence: 2
  givenname: Jiaqi
  surname: Zhou
  fullname: Zhou, Jiaqi
– sequence: 3
  givenname: Xiaobing
  surname: Yu
  fullname: Yu, Xiaobing
BookMark eNptkc9O3DAQxi0EEhS48ASWemqlUP9J4vhIKbsgLaXqtuox8jrj1DSxF9tRWZ6Ax8ZoK1Gqjg9jjX7f5_HMG7TrvAOETig55VySD3GigrKKlXIHHTAiaEFJRXb_uu-j4xhvSQ7OqaT1AXqc-QBaxYQ_qzQFNeC5ivhLsBrwaoOVwxf3KcAIeAEqOOt6fK30T-sAz4Ia4bcPv_BHFaHD3uHraUi2WKagEvQbPA-wwT_8YPDNOtnRPkDIjh1e2t7llz6B9uPaR5usd0doz6ghwvGffIi-zy6-nV8Wi5v51fnZotBckFTUZcekptqITkhJQTaaQKNLbuoShDGNqcSqFl1NyxVrjNRK6FwRwIzpRFPxQ_R267sO_m6CmNpbP4XcTmw5Y1yWTNIyU6dbqlcDtNYZn_-k8-lgtDqP3dhcP2vKqpENozQL3r0SZCbBferVFGN7tfz6mn2_ZXXwMQYw7TrYUYVNS0n7vMn2ZZMZJv_A2ib1PLHckR3-J3kCEa2iRA
CitedBy_id crossref_primary_10_3390_su17188514
Cites_doi 10.11130/jei.2012.27.3.487
10.1023/A:1008202821328
10.1007/s00521-014-1806-7
10.1016/j.jclepro.2019.118556
10.1016/j.eneco.2017.12.030
10.1098/rspa.1998.0193
10.1016/j.eswa.2025.126864
10.1016/j.scitotenv.2020.143099
10.1177/2515245920911881
10.1016/j.jnca.2023.103729
10.1142/S1793536909000047
10.1111/1467-9639.00050
10.1016/j.asoc.2017.06.044
10.1016/j.energy.2021.120797
10.1016/j.cnsns.2011.05.006
10.1017/CBO9780511755798
10.1109/ICASSP.2011.5947265
10.1016/j.engappai.2014.07.022
10.1007/s11069-012-0531-8
10.1016/j.jenvman.2023.118137
10.1016/j.ijepes.2021.107369
10.1016/j.asoc.2018.09.018
10.1016/j.eneco.2016.02.022
10.1016/j.physa.2019.122830
10.3390/math8020214
10.1016/j.irfa.2022.102286
10.1016/j.advengsoft.2016.01.008
10.1109/ICACC.2010.5486899
10.1016/j.advengsoft.2013.12.007
10.1016/j.envres.2017.01.035
10.1080/10910344.2020.1765178
10.1109/TSP.2013.2288675
10.1016/j.jenvman.2023.118446
10.1016/j.beproc.2011.09.006
10.1016/j.asoc.2024.112648
10.1016/j.eswa.2025.126535
10.1016/j.apenergy.2018.10.078
10.1016/j.energy.2021.122324
10.1016/j.jhydrol.2018.11.015
10.1016/j.ins.2014.12.031
10.1016/j.eneco.2020.104827
10.1016/j.eneco.2022.106162
10.1016/j.swevo.2025.101844
10.1016/j.atmosres.2015.03.018
10.1016/j.ymssp.2010.03.003
10.1016/j.neunet.2014.10.001
10.1155/2022/5488053
10.1016/j.techfore.2023.122348
10.1016/j.apenergy.2018.09.118
10.1109/ICASSP.2017.7952305
10.1016/j.jnca.2024.104048
10.1016/j.knosys.2015.07.006
10.3390/su13094896
10.1016/j.neucom.2007.10.008
10.1016/j.engappai.2024.109015
10.1016/j.engappai.2017.10.024
10.1016/j.neucom.2005.12.126
10.1007/s11269-015-0962-6
10.1016/j.apm.2018.03.005
10.1007/s00366-019-00837-7
10.1016/j.energy.2021.121082
10.1016/j.jclepro.2019.118671
10.1016/j.asoc.2021.108204
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
4U-
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.3390/su17125249
DatabaseName CrossRef
Gale In Context: Science
University Readers
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
ProQuest One
Coronavirus Research Database
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
University Readers
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 2071-1050
ExternalDocumentID A845898211
10_3390_su17125249
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 29Q
2WC
2XV
4P2
5VS
7XC
8FE
8FH
A8Z
AAHBH
AAYXX
ACHQT
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFMMW
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
E3Z
ECGQY
ESTFP
FRS
GX1
IAO
IEP
ISR
ITC
KQ8
ML.
MODMG
M~E
OK1
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
4U-
ABUWG
AZQEC
COVID
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c370t-64d29c1cf7d7991e98c0e8c43f64e7ff8f57b67d614b28f9ca7c57b7e2ffd7853
IEDL.DBID BENPR
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001516340700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2071-1050
IngestDate Mon Jun 30 07:17:19 EDT 2025
Tue Nov 04 18:11:04 EST 2025
Thu Nov 13 15:53:59 EST 2025
Tue Nov 18 22:16:52 EST 2025
Sat Nov 29 07:15:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-64d29c1cf7d7991e98c0e8c43f64e7ff8f57b67d614b28f9ca7c57b7e2ffd7853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3223942914?pq-origsite=%requestingapplication%
PQID 3223942914
PQPubID 2032327
ParticipantIDs proquest_journals_3223942914
gale_infotracacademiconefile_A845898211
gale_incontextgauss_ISR_A845898211
crossref_primary_10_3390_su17125249
crossref_citationtrail_10_3390_su17125249
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sustainability
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zhang (ref_15) 2021; 229
Tang (ref_64) 2023; 189
ref_57
Johnson (ref_50) 2001; 23
Peng (ref_3) 2011; 39
Wang (ref_14) 2021; 233
Mirjalili (ref_55) 2016; 95
Deo (ref_39) 2015; 161
ref_53
Long (ref_32) 2018; 60
Mirjalili (ref_54) 2015; 89
Harikrishnan (ref_2) 2012; 17
Meng (ref_42) 2019; 568
Rousselet (ref_48) 2021; 4
ref_16
Wang (ref_59) 2015; 29
Ne (ref_56) 1998; 454
Xiang (ref_43) 2018; 73
Yu (ref_4) 2011; 3
Huang (ref_17) 2006; 70
Deo (ref_20) 2017; 155
Heidari (ref_36) 2017; 60
Ergen (ref_1) 2016; 56
Wang (ref_9) 2025; 274
Seyyedabbasi (ref_31) 2021; 37
Zhang (ref_10) 2025; 271
Wu (ref_46) 2009; 1
Huang (ref_18) 2015; 61
ref_22
Muro (ref_41) 2011; 88
Guo (ref_65) 2022; 83
Amin (ref_30) 2023; 219
Acharya (ref_19) 2013; 66
Mittal (ref_35) 2016; 2016
Deng (ref_62) 2025; 170
Zhang (ref_60) 2010; 24
Sun (ref_26) 2018; 231
Wang (ref_37) 2022; 112
Storn (ref_52) 1997; 11
Lu (ref_61) 2024; 136
Long (ref_33) 2018; 68
Sun (ref_25) 2020; 243
Kung (ref_49) 2012; 27
Cihan (ref_67) 2022; 134
Huang (ref_40) 2008; 71
Mohammadi (ref_7) 2014; 36
Wang (ref_12) 2020; 90
Dragomiretskiy (ref_58) 2014; 62
Zhan (ref_13) 2022; 2022
Mirjalili (ref_29) 2014; 69
Cao (ref_38) 2023; 342
Jovanovic (ref_11) 2025; 233
Li (ref_27) 2022; 239
He (ref_47) 2020; 24
Zheng (ref_66) 2023; 344
Wang (ref_63) 2025; 93
ref_44
Hao (ref_28) 2020; 244
Saremi (ref_34) 2015; 26
Zhu (ref_24) 2018; 70
Wang (ref_45) 2021; 762
Chen (ref_8) 2015; 299
Xu (ref_21) 2020; 545
Wang (ref_51) 2019; 235
Ji (ref_23) 2022; 116
ref_5
ref_6
References_xml – volume: 27
  start-page: 487
  year: 2012
  ident: ref_49
  article-title: A bootstrap analysis of the Nikkei 225
  publication-title: J. Econ. Integr.
  doi: 10.11130/jei.2012.27.3.487
– volume: 11
  start-page: 341
  year: 1997
  ident: ref_52
  article-title: Differential Evolution–A Simple and Efficient Heuristic for global Optimization over Continuous Spaces
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008202821328
– volume: 26
  start-page: 1257
  year: 2015
  ident: ref_34
  article-title: Evolutionary population dynamics and grey wolf optimizer
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-014-1806-7
– volume: 244
  start-page: 118556
  year: 2020
  ident: ref_28
  article-title: Modelling of carbon price in two real carbon trading markets
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.118556
– volume: 70
  start-page: 143
  year: 2018
  ident: ref_24
  article-title: A novel multiscale nonlinear ensemble leaning paradigm for carbon price forecasting
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2017.12.030
– volume: 454
  start-page: 903
  year: 1998
  ident: ref_56
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society
  publication-title: Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.1998.0193
– volume: 274
  start-page: 126864
  year: 2025
  ident: ref_9
  article-title: Decomposition combining averaging seasonal-trend with singular spectrum analysis and a marine predator algorithm embedding Adam for time series forecasting with strong volatility
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2025.126864
– volume: 762
  start-page: 143099
  year: 2021
  ident: ref_45
  article-title: An innovative random forest-based nonlinear ensemble paradigm of improved feature extraction and deep learning for carbon price forecasting
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.143099
– volume: 4
  start-page: 2515245920911881
  year: 2021
  ident: ref_48
  article-title: The percentile bootstrap: A primer with step-by-step instructions in R
  publication-title: Adv. Methods Pract. Psychol. Sci.
  doi: 10.1177/2515245920911881
– volume: 219
  start-page: 103729
  year: 2023
  ident: ref_30
  article-title: Efficient application mapping approach based on grey wolf optimization for network on chip
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2023.103729
– volume: 1
  start-page: 1
  year: 2009
  ident: ref_46
  article-title: Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method
  publication-title: Adv. Adapt. Data Anal.
  doi: 10.1142/S1793536909000047
– volume: 23
  start-page: 49
  year: 2001
  ident: ref_50
  article-title: An introduction to the bootstrap
  publication-title: Teach. Stat.
  doi: 10.1111/1467-9639.00050
– volume: 60
  start-page: 115
  year: 2017
  ident: ref_36
  article-title: An efficient modified grey wolf optimizer with Lévy flight for optimization tasks
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.06.044
– volume: 229
  start-page: 120797
  year: 2021
  ident: ref_15
  article-title: Multi-step-ahead crude oil price forecasting based on two-layer decomposition technique and extreme learning machine optimized by the particle swarm optimization algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120797
– volume: 17
  start-page: 263
  year: 2012
  ident: ref_2
  article-title: Revisiting the box counting algorithm for the correlation dimension analysis of hyperchaotic time series
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2011.05.006
– ident: ref_16
  doi: 10.1017/CBO9780511755798
– ident: ref_57
  doi: 10.1109/ICASSP.2011.5947265
– volume: 36
  start-page: 204
  year: 2014
  ident: ref_7
  article-title: A new hybrid evolutionary based RBF networks method for forecasting time series: A case study of forecasting emergency supply demand time series
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2014.07.022
– volume: 66
  start-page: 851
  year: 2013
  ident: ref_19
  article-title: Performance of general circulation models and their ensembles for the prediction of drought indices over India during summer monsoon
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-012-0531-8
– volume: 342
  start-page: 118137
  year: 2023
  ident: ref_38
  article-title: Probabilistic carbon price prediction with quantile temporal convolutional network considering uncertain factors
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2023.118137
– volume: 134
  start-page: 107369
  year: 2022
  ident: ref_67
  article-title: Impact of the COVID-19 Lockdowns on Electricity and Natural Gas Consumption in the Different Industrial Zones and Forecasting Consumption Amounts: Turkey Case Study
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2021.107369
– volume: 73
  start-page: 874
  year: 2018
  ident: ref_43
  article-title: A SVR–ANN combined model based on ensemble EMD for rainfall prediction
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.09.018
– volume: 3
  start-page: 30
  year: 2011
  ident: ref_4
  article-title: Wind speed forecasting based on aRMA-ARCH model in wind farms
  publication-title: Electricity
– volume: 56
  start-page: 64
  year: 2016
  ident: ref_1
  article-title: Asymmetric impacts of fundamentals on the natural gas futures volatility: An augmented GARCH approach
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2016.02.022
– volume: 39
  start-page: 190
  year: 2011
  ident: ref_3
  article-title: Mobile communication traffic forecasting with prior knowledge
  publication-title: Dianzi Xuebao (Acta Electron. Sin.)
– volume: 545
  start-page: 122830
  year: 2020
  ident: ref_21
  article-title: Carbon price forecasting with complex network and extreme learning machine
  publication-title: Phys. A Stat. Mech. Its Appl.
  doi: 10.1016/j.physa.2019.122830
– ident: ref_44
  doi: 10.3390/math8020214
– volume: 83
  start-page: 102286
  year: 2022
  ident: ref_65
  article-title: Nonlinear Effects of Climate Policy Uncertainty and Financial Speculation on the Global Prices of Oil and Gas
  publication-title: Int. Rev. Financ. Anal.
  doi: 10.1016/j.irfa.2022.102286
– volume: 95
  start-page: 51
  year: 2016
  ident: ref_55
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– ident: ref_6
  doi: 10.1109/ICACC.2010.5486899
– volume: 69
  start-page: 46
  year: 2014
  ident: ref_29
  article-title: Grey Wolf Optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 155
  start-page: 141
  year: 2017
  ident: ref_20
  article-title: Very short-term reactive forecasting of the solar ultraviolet index using an extreme learning machine integrated with the solar zenith angle
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2017.01.035
– volume: 24
  start-page: 781
  year: 2020
  ident: ref_47
  article-title: An improved decomposition algorithm of surface topography of machining
  publication-title: Mach. Sci. Technol.
  doi: 10.1080/10910344.2020.1765178
– volume: 62
  start-page: 531
  year: 2014
  ident: ref_58
  article-title: Variational Mode Decomposition
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2288675
– volume: 344
  start-page: 118446
  year: 2023
  ident: ref_66
  article-title: Natural Gas Spot Price Prediction Research under the Background of Russia-Ukraine Conflict–Based on FS-GA-SVR Hybrid Model
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2023.118446
– volume: 88
  start-page: 192
  year: 2011
  ident: ref_41
  article-title: Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations
  publication-title: Behav. Process.
  doi: 10.1016/j.beproc.2011.09.006
– ident: ref_53
– volume: 170
  start-page: 112648
  year: 2025
  ident: ref_62
  article-title: An Enhanced Secondary Decomposition Model Considering Energy Price for Carbon Price Prediction
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2024.112648
– volume: 271
  start-page: 126535
  year: 2025
  ident: ref_10
  article-title: VMD-ConvTSMixer: Spatiotemporal channel mixing model for non-stationary time series forecasting
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2025.126535
– volume: 235
  start-page: 10
  year: 2019
  ident: ref_51
  article-title: Probabilistic individual load forecasting using pinball loss guided LSTM
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.10.078
– volume: 239
  start-page: 122324
  year: 2022
  ident: ref_27
  article-title: A new carbon price prediction model
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122324
– volume: 568
  start-page: 462
  year: 2019
  ident: ref_42
  article-title: A robust method for non-stationary streamflow prediction based on improved EMD-SVM model
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.11.015
– volume: 299
  start-page: 99
  year: 2015
  ident: ref_8
  article-title: A weighted LS-SVM based learning system for time series forecasting
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.12.031
– volume: 90
  start-page: 104827
  year: 2020
  ident: ref_12
  article-title: Energy futures and spots prices forecasting by hybrid SW-GRU with EMD and error evaluation
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2020.104827
– volume: 112
  start-page: 106162
  year: 2022
  ident: ref_37
  article-title: A novel framework for carbon price forecasting with uncertainties
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2022.106162
– volume: 93
  start-page: 101844
  year: 2025
  ident: ref_63
  article-title: A Reinforcement Learning-Based Ranking Teaching-Learning-Based Optimization Algorithm for Parameters Estimation of Photovoltaic Models
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2025.101844
– volume: 161
  start-page: 65
  year: 2015
  ident: ref_39
  article-title: Application of the artificial neural network model for prediction of monthly standardized precipitation and evapotranspiration index using hydrometeorological parameters and climate indices in eastern Australia
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2015.03.018
– volume: 24
  start-page: 2104
  year: 2010
  ident: ref_60
  article-title: Performance enhancement of ensemble empirical mode decomposition
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2010.03.003
– volume: 61
  start-page: 32
  year: 2015
  ident: ref_18
  article-title: Trends in extreme learning machines: A review
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.10.001
– volume: 2022
  start-page: 5488053
  year: 2022
  ident: ref_13
  article-title: Natural Gas Price Forecasting by a New Hybrid Model Combining Quadratic Decomposition Technology and LSTM Model
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2022/5488053
– volume: 189
  start-page: 122348
  year: 2023
  ident: ref_64
  article-title: Asymmetric Effects of Geopolitical Risks and Uncertainties on Green Bond Markets
  publication-title: Technol. Forecast. Soc. Change
  doi: 10.1016/j.techfore.2023.122348
– volume: 231
  start-page: 1354
  year: 2018
  ident: ref_26
  article-title: Analysis and forecasting of the carbon price using multi—Resolution singular value decomposition and extreme learning machine optimized by adaptive whale optimization algorithm
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.09.118
– ident: ref_5
  doi: 10.1109/ICASSP.2017.7952305
– volume: 233
  start-page: 104048
  year: 2025
  ident: ref_11
  article-title: Particle swarm optimization tuned multi-headed long short-term memory networks approach for fuel prices forecasting
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2024.104048
– volume: 89
  start-page: 228
  year: 2015
  ident: ref_54
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2015.07.006
– ident: ref_22
  doi: 10.3390/su13094896
– volume: 71
  start-page: 3460
  year: 2008
  ident: ref_40
  article-title: Enhanced random search based incremental extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2007.10.008
– volume: 136
  start-page: 109015
  year: 2024
  ident: ref_61
  article-title: Natural Gas Pipeline Leak Diagnosis Based on Manifold Learning
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2024.109015
– volume: 68
  start-page: 63
  year: 2018
  ident: ref_33
  article-title: An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2017.10.024
– volume: 70
  start-page: 489
  year: 2006
  ident: ref_17
  article-title: Extreme learning machine: Theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 29
  start-page: 2655
  year: 2015
  ident: ref_59
  article-title: Improving Forecasting Accuracy of Annual Runoff Time Series Using ARIMA Based on EEMD Decomposition
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-015-0962-6
– volume: 60
  start-page: 112
  year: 2018
  ident: ref_32
  article-title: Inspired grey wolf optimizer for solving large-scale function optimization problems
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2018.03.005
– volume: 37
  start-page: 509
  year: 2021
  ident: ref_31
  article-title: I-GWO and Ex-GWO: Improved algorithms of the Grey Wolf Optimizer to solve global optimization problems
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-019-00837-7
– volume: 2016
  start-page: 7950348
  year: 2016
  ident: ref_35
  article-title: Modified grey wolf optimizer for global engineering optimization
  publication-title: Appl. Comput. Intell. Soft Comput.
– volume: 233
  start-page: 121082
  year: 2021
  ident: ref_14
  article-title: Short-term forecasting of natural gas prices by using a novel hybrid method based on a combination of the CEEMDAN-SE-and the PSO-ALS-optimized GRU network
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121082
– volume: 243
  start-page: 118671
  year: 2020
  ident: ref_25
  article-title: A carbon price prediction model based on secondary decomposition algorithm and optimized back propagation neural network
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.118671
– volume: 116
  start-page: 108204
  year: 2022
  ident: ref_23
  article-title: A three-stage framework for vertical carbon price interval forecast based on decomposition–integration method
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.108204
SSID ssj0000331916
Score 2.3739398
Snippet Natural gas is one of the most important sources of energy in modern society. However, its strong volatility highlights the importance of accurately...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 5249
SubjectTerms Accuracy
Decomposition (Mathematics)
Energy
Forecasting
Forecasts and trends
Gasoline prices
Machine learning
Mathematical optimization
Natural gas
Natural gas prices
Neural networks
Optimization algorithms
Prices and rates
Time series
Title Forecast Natural Gas Price by an Extreme Learning Machine Framework Based on Multi-Strategy Grey Wolf Optimizer and Signal Decomposition
URI https://www.proquest.com/docview/3223942914
Volume 17
WOSCitedRecordID wos001516340700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Bb9MwFH5iHRJcNhhMK4zJAiTEwaKJU9s5oQ3SsUNLtYEYp8hx7KrSSEadTYwDZ372nlNnBWniwrHpU2LpfXl-fnnv-wBesihixtiUlswkFM9fiirFObXDRPBCDEViZCs2ISYTeXqaTkPBzYW2yi4mtoG6rLWvkb9B4LEUg2eUvD3_Tr1qlP-6GiQ01mDdM5XFPVg_yCbT45sqy4AhxCK-5CVleL5H_0YCN_XYk2f-sRPdHo_bTWa0-b_LewAbIb0k-0s8PIQ7ptqCe930sduC7Ww12YaG4dV2j-C3F-nUyjVkolouDnKoHGlV4UlxRVRFsh-NLyaSQMk6I-O2EdOQUdfgRQ5wTyxJXZF2rpcG6tsrcoiAIV_qM0s-Yoj6Nv9pFnjHkpzMZ365743vbA_tY4_h8yj79O4DDTINVDMxaChPyjjVkbaiFJhtmlTqgZE6YZYnRlgr7VAUXJSYCBSxtKlWQuMVYWJrS4Hpwjb0qroyO0BEZDiXqqVVSxjXCrOPorAx5oCGRYXow-vOZbkOHOZeSuMsx7OMd2--cm8fXtzYni-ZO261eu49n3sqjMr32szUhXP50clxvi-ToUwlAqsPr4KRrfFxWoXRBVy0Z8_6y3K3g0cegoHLV9h48u-_n8L92MsLt0WeXeg1iwvzDO7qy2buFnsB23uwNv6V4a_p0Xj69Ron-ggf
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB1VW6Ry4aNQsVDA4kOIQ8QmdmzngFBLd9tV26Vqi9pbcBx7tVJJyiYFll_Ar-E3Ms46XZAqbj1wTUaJ5TzPjJ2Z9wBe0DCkxtgkyKlhAe6_VKAU54GNmeCZiAUzshGbEKORPD1NDpbgV9sL48oqW5_YOOq81O6M_A0CjyboPEP27vxL4FSj3N_VVkJjDotdM_uGW7bq7XALv-_LKBr0j9_vBF5VINBU9OqAszxKdKityAUmRyaRumekZtRyZoS10sYi4yLHuJVF0iZaCY1XhImszYV0KhHo8pcZZTHrwPJmf3RweHmq06MI6ZDPeVApTXqIp1BgEhE5ss4_It_V_r8JaoPb_9t03IFbPn0mG3O834UlU6zCSttdXa3CWn_RuYeG3nVV9-CnEyHVqqrJSDVcI2RbVaRRvSfZjKiC9L_X7rCUeMrZMdlvCk0NGbQFbGQTY35OyoI0fcuBp_adkW1cEOSkPLPkA7rgz5MfZopPzMnRZOyGu2Vc5b4vj7sPH69lhtagU5SFeQBEhIZzqRraOEa5VphdZZmNMMc1NMxEF163EEm152h3UiFnKe7VHJzSBZy68PzS9nzOTHKl1TOHtNRRfRSulmisLqoqHR4dphuSxTKRURh24ZU3siW-TivfmoGDduxgf1mut3BMvbOr0gUWH_779lNY2Tne30v3hqPdR3AzclLKzYHWOnTq6YV5DDf013pSTZ_4dUXg03Vj9zcmsmOx
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqFgEXHoWKhQIjHkIcoq7jrO0cEGrZ3bIqhFULorfgOPZqpZKUTQosv6C_qb-OcdbpglRx64FrMkos55uHJzPfEPKMUcqMsXGQMxMFeP5SgVKcB7YXCZ6JnoiMbIZNiCSRh4fxeIWctb0wrqyytYmNoc5L7XLkWwg8FqPxpNGW9WUR4_7w9fG3wE2Qcn9a23EaC4jsmfkPPL5Vr0Z9_NbPw3A4-PjmbeAnDASaiW4d8CgPY021FbnAQMnEUneN1BGzPDLCWml7IuMiRx-WhdLGWgmNV4QJrc2FdBMj0PyvCRZ3UbvWdgbJeP88w9NlCG_KF5yoDEUQW1RgQBE64s4_vODFvqBxcMOb__PW3CI3fFgN2ws9uE1WTLFOrrVd19U62RgsO_pQ0Ju06g45dcNJtapqSFTDQQK7qoKx41qCbA6qgMHP2iVRwVPRTuB9U4BqYNgWtsEOxgI5lAU0_cyBp_ydwy4qCnwujyx8QNP8dfrLzPCJORxMJ265feMq-n3Z3F3y6VJ2aIOsFmVh7hEQ1HAuVUMnFzGuFUZdWWZDjH0No5nokJctXFLtudvdCJGjFM9wDlrpElod8vRc9njBWHKh1BOHutRRgBQOMRN1UlXp6GA_3ZZRT8YypLRDXnghW-LrtPItG7hoxxr2l-RmC83UG8EqXeLy_r9vPyZXEbDpu1Gy94BcD92E5SbPtUlW69mJeUiu6O_1tJo98ioG5MtlQ_c3r0FsdA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecast+Natural+Gas+Price+by+an+Extreme+Learning+Machine+Framework+Based+on+Multi-Strategy+Grey+Wolf+Optimizer+and+Signal+Decomposition&rft.jtitle=Sustainability&rft.au=Wu+Zhuolin&rft.au=Zhou%2C+Jiaqi&rft.au=Yu%2C+Xiaobing&rft.date=2025-06-01&rft.pub=MDPI+AG&rft.eissn=2071-1050&rft.volume=17&rft.issue=12&rft.spage=5249&rft_id=info:doi/10.3390%2Fsu17125249&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-1050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-1050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-1050&client=summon