Isogeometric local h-refinement strategy based on multigrids

This paper presents an isogeometric local h-refinement algorithm based on localized multigrid resolution dedicated to computational mechanics. This algorithm leads to a solution on a quasi-optimal refined mesh initially unknown for a given precision criterion. Moreover, it allows us to circumvent th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Finite elements in analysis and design Ročník 100; s. 77 - 90
Hlavní autoři: Chemin, Alexandre, Elguedj, Thomas, Gravouil, Anthony
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.08.2015
Elsevier
Témata:
ISSN:0168-874X, 1872-6925
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper presents an isogeometric local h-refinement algorithm based on localized multigrid resolution dedicated to computational mechanics. This algorithm leads to a solution on a quasi-optimal refined mesh initially unknown for a given precision criterion. Moreover, it allows us to circumvent the obstacle of refinement of non-straight geometric boundaries existing in full multigrid algorithms with isoparametric finite element analysis. •An isogeometric local h-refinement based on multigrid resolution is proposed.•It leads to a solution on a quasi-optimal mesh for a given precision criterion.•It solves the problem of non-straight boundaries in multigrid resolution with FEA.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0168-874X
1872-6925
DOI:10.1016/j.finel.2015.02.007