Half thresholding eigenvalue algorithm for semidefinite matrix completion

The semidefinite matrix completion(SMC) problem is to recover a low-rank positive semidefinite matrix from a small subset of its entries. It is well known but NP-hard in general. We first show that under some cases, SMC problem and S1/2relaxation model share a unique solution. Then we prove that the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Mathematics Jg. 58; H. 9; S. 2015 - 2032
Hauptverfasser: Chen, YongQiang, Luo, ZiYan, Xiu, NaiHua
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Beijing Science China Press 01.09.2015
Schlagworte:
ISSN:1674-7283, 1869-1862
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The semidefinite matrix completion(SMC) problem is to recover a low-rank positive semidefinite matrix from a small subset of its entries. It is well known but NP-hard in general. We first show that under some cases, SMC problem and S1/2relaxation model share a unique solution. Then we prove that the global optimal solutions of S1/2regularization model are fixed points of a symmetric matrix half thresholding operator. We give an iterative scheme for solving S1/2regularization model and state convergence analysis of the iterative sequence.Through the optimal regularization parameter setting together with truncation techniques, we develop an HTE algorithm for S1/2regularization model, and numerical experiments confirm the efficiency and robustness of the proposed algorithm.
AbstractList The semidefinite matrix completion (SMC) problem is to recover a low-rank positive semidefinite matrix from a small subset of its entries. It is well known but NP-hard in general. We first show that under some cases, SMC problem and S sub(1/2) relaxation model share a unique solution. Then we prove that the global optimal solutions of S sub(1/2) regularization model are fixed points of a symmetric matrix half thresholding operator. We give an iterative scheme for solving S sub(1/2) regularization model and state convergence analysis of the iterative sequence. Through the optimal regularization parameter setting together with truncation techniques, we develop an HTE algorithm for S sub(1/2) regularization model, and numerical experiments confirm the efficiency and robustness of the proposed algorithm.
The semidefinite matrix completion(SMC) problem is to recover a low-rank positive semidefinite matrix from a small subset of its entries. It is well known but NP-hard in general. We first show that under some cases, SMC problem and S1/2relaxation model share a unique solution. Then we prove that the global optimal solutions of S1/2regularization model are fixed points of a symmetric matrix half thresholding operator. We give an iterative scheme for solving S1/2regularization model and state convergence analysis of the iterative sequence.Through the optimal regularization parameter setting together with truncation techniques, we develop an HTE algorithm for S1/2regularization model, and numerical experiments confirm the efficiency and robustness of the proposed algorithm.
The semidefinite matrix completion (SMC) problem is to recover a low-rank positive semidefinite matrix from a small subset of its entries. It is well known but NP-hard in general. We first show that under some cases, SMC problem and S 1/2 relaxation model share a unique solution. Then we prove that the global optimal solutions of S 1/2 regularization model are fixed points of a symmetric matrix half thresholding operator. We give an iterative scheme for solving S 1/2 regularization model and state convergence analysis of the iterative sequence. Through the optimal regularization parameter setting together with truncation techniques, we develop an HTE algorithm for S 1/2 regularization model, and numerical experiments confirm the efficiency and robustness of the proposed algorithm.
Author CHEN YongQiang LUO ZiYan XIU NaiHua
AuthorAffiliation Department of Mathematics, Beijing Jiaotong University, Beijing 100044, China College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, China The State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China
Author_xml – sequence: 1
  givenname: YongQiang
  surname: Chen
  fullname: Chen, YongQiang
  email: yongxin3388@163.com
  organization: Department of Mathematics, Beijing Jiaotong University, College of Mathematics and Information Science, Henan Normal University
– sequence: 2
  givenname: ZiYan
  surname: Luo
  fullname: Luo, ZiYan
  organization: The State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University
– sequence: 3
  givenname: NaiHua
  surname: Xiu
  fullname: Xiu, NaiHua
  organization: Department of Mathematics, Beijing Jiaotong University
BookMark eNp9kD9PwzAQxS1UJErpB2CLmFgM_pc4HlEFtFIlFpgtJ7ETV4nd2gmi3x5XrRi54e6G97une7dg5rzTANxj9IQR4s8RY0ZyiHAOc5QTeLwCc1wWAqZGZmkvOIOclPQGLGPcoVRUIMbpHGzWqjfZ2AUdO9831rWZtq1236qfdKb61gc7dkNmfMiiHmyjjXV21NmgxmB_stoP-16P1rs7cG1UH_XyMhfg6-31c7WG24_3zeplC2vK0QgLRFQjuGC8oFxVVcOqkiDKKS8bZTQmlamoUpQKjAgRDc8xz2uGDCs4MXVDF-DxfHcf_GHScZSDjbXue-W0n6LEnKXPEMFlkuKztA4-xqCN3Ac7qHCUGMlTcvKcnEzJyVNy8pgYcmZi0rpWB7nzU3Dpo3-hh4tR5117SNyfU1HkJRNCMPoLD8V-zA
Cites_doi 10.1007/s40305-014-0048-9
10.1109/TNNLS.2012.2197412
10.1007/s11425-008-0170-4
10.1137/090761471
10.1109/TSP.2013.2264814
10.1007/s40305-014-0039-x
10.1093/imanum/drq039
10.1109/TNN.2011.2157521
10.1007/s11425-013-4718-6
10.1007/978-1-4614-0769-0_30
10.1360/02ys0123
10.1007/s40305-013-0016-9
ContentType Journal Article
Copyright Science China Press and Springer-Verlag Berlin Heidelberg 2015
Copyright_xml – notice: Science China Press and Springer-Verlag Berlin Heidelberg 2015
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1007/s11425-015-5052-y
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList Civil Engineering Abstracts


DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
DocumentTitleAlternate Half thresholding eigenvalue algorithm for semidefinite matrix completion
EISSN 1869-1862
EndPage 2032
ExternalDocumentID 10_1007_s11425_015_5052_y
665849994
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0VY
1N0
2B.
2C.
2J2
2JN
2JY
2KG
2KM
2LR
2RA
2VQ
2~H
30V
4.4
406
40D
40E
5VR
5VS
8TC
8UJ
92E
92I
92L
92Q
93N
95-
95.
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABDZT
ABECU
ABFGW
ABFTV
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACBYP
ACGFO
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACTTH
ACVWB
ACWMK
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFLOW
AFNRJ
AFQWF
AFUIB
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARMRJ
AXYYD
B-.
BAPOH
BDATZ
BGNMA
CAG
CCEZO
CCVFK
CHBEP
COF
CQIGP
CSCUP
CW9
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9J
P9R
PF0
PT4
QOS
R89
RIG
ROL
RSV
S16
S3B
SAP
SCL
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
TCJ
TGP
TSG
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
ZMTXR
~A9
~WA
-SA
-S~
0R~
5XA
5XB
AACDK
AAJBT
AASML
AAXDM
AAYZH
ABAKF
ABQSL
ACDTI
ACPIV
AEFQL
AEMSY
AGQEE
AGRTI
AIGIU
BSONS
CAJEA
CJPJV
H13
Q--
U1G
U5K
AAPKM
AAYXX
ABBRH
ABDBE
ABRTQ
ADHKG
AFDZB
AFOHR
AGQPQ
AHPBZ
ATHPR
AYFIA
CITATION
7TB
8FD
FR3
KR7
ID FETCH-LOGICAL-c370t-602ad97947637abbd4b82037378dafe12bfb3aa33910229d75175c40f4672fcd3
IEDL.DBID RSV
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000359866400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1674-7283
IngestDate Thu Sep 04 15:19:36 EDT 2025
Sat Nov 29 06:02:08 EST 2025
Fri Feb 21 02:33:41 EST 2025
Wed Feb 14 10:28:56 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords semidefinite matrix completion
convergence
relaxation
90C06
half thresholding eigenvalue algorithm
90C26
90C59
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-602ad97947637abbd4b82037378dafe12bfb3aa33910229d75175c40f4672fcd3
Notes semidefinite matrix completion;S1/2relaxation;half thresholding eigenvalue algorithm;conver-gence
11-5837/O1
The semidefinite matrix completion(SMC) problem is to recover a low-rank positive semidefinite matrix from a small subset of its entries. It is well known but NP-hard in general. We first show that under some cases, SMC problem and S1/2relaxation model share a unique solution. Then we prove that the global optimal solutions of S1/2regularization model are fixed points of a symmetric matrix half thresholding operator. We give an iterative scheme for solving S1/2regularization model and state convergence analysis of the iterative sequence.Through the optimal regularization parameter setting together with truncation techniques, we develop an HTE algorithm for S1/2regularization model, and numerical experiments confirm the efficiency and robustness of the proposed algorithm.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1744730218
PQPubID 23500
PageCount 18
ParticipantIDs proquest_miscellaneous_1744730218
crossref_primary_10_1007_s11425_015_5052_y
springer_journals_10_1007_s11425_015_5052_y
chongqing_primary_665849994
PublicationCentury 2000
PublicationDate 2015-09-01
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Science China. Mathematics
PublicationTitleAbbrev Sci. China Math
PublicationTitleAlternate SCIENCE CHINA Mathematics
PublicationYear 2015
Publisher Science China Press
Publisher_xml – name: Science China Press
References Wolkowicz, Saigal, Vandenberghe (CR20) 2000
Chen, He, Yuan (CR1) 2012; 32
Xu, Guo, Wang (CR22) 2012; 38
Qi, Xiu, Yuan (CR14) 2013; 61
Rao, Peng, Xu (CR16) 2013; 43
Rakotomamonjy, Flamary, Gasso (CR15) 2011; 22
Xu, Chang, Xu (CR21) 2012; 23
Horn, Johnson (CR5) 1990
CR9
Qi (CR13) 2014; 2
Tian, Ju, Qi (CR18) 2014; 57
Salakhutdinov, Srebro (CR17) 2010; 23
Ji, Sze, Zhou (CR7) 2013; 12
Krislock, Wolkowicz, M, J (CR8) 2012
Luo, Xiu (CR10) 2009; 52
Ma (CR11) 2013; 1
Zheng (CR24) 2003; 46
Miao (CR12) 2013
Ding (CR3) 2012
Huang, Hu, Han (CR6) 2009; 52
Toh, Yun (CR19) 2010; 6
Zhang (CR23) 2014; 2
Drusvyatskiy, Pataki, Wolkowicz (CR4) 2014
Chen, Xu, Ye (CR2) 2010; 32
Z. H. Huang (5052_CR6) 2009; 52
W.M. Miao (5052_CR12) 2013
Z. B. Xu (5052_CR22) 2012; 38
D. Drusvyatskiy (5052_CR4) 2014
5052_CR9
K. C. Toh (5052_CR19) 2010; 6
X. J. Chen (5052_CR2) 2010; 32
Z. B. Xu (5052_CR21) 2012; 23
A. Rakotomamonjy (5052_CR15) 2011; 22
X. Y. Zheng (5052_CR24) 2003; 46
Y. J. Tian (5052_CR18) 2014; 57
G. Rao (5052_CR16) 2013; 43
R. Salakhutdinov (5052_CR17) 2010; 23
Y. Zhang (5052_CR23) 2014; 2
Z. Y. Luo (5052_CR10) 2009; 52
H. Wolkowicz (5052_CR20) 2000
C. H. Chen (5052_CR1) 2012; 32
S. Ji (5052_CR7) 2013; 12
H. D. Qi (5052_CR14) 2013; 61
S. Q. Ma (5052_CR11) 2013; 1
N. Krislock (5052_CR8) 2012
C. Ding (5052_CR3) 2012
R. Horn (5052_CR5) 1990
H. D. Qi (5052_CR13) 2014; 2
References_xml – year: 2014
  ident: CR4
  article-title: Coordinate shadows of semidefinite and Euclidean distance matrices
  publication-title: Preprint
– volume: 2
  start-page: 143
  year: 2014
  end-page: 170
  ident: CR13
  article-title: Conditional quadratic semidefinite programming: examples and methods
  publication-title: J Oper Res Soc China
  doi: 10.1007/s40305-014-0048-9
– volume: 23
  start-page: 1013
  year: 2012
  end-page: 1027
  ident: CR21
  article-title: L regularization: A thresholding representation theory and a fast solver
  publication-title: IEEET rans Neural Networks Learn Syst
  doi: 10.1109/TNNLS.2012.2197412
– volume: 12
  start-page: 2499
  year: 2013
  end-page: 2507
  ident: CR7
  article-title: A polynomial-time non-convex optimization approach tonetwork localization
  publication-title: 013 Proceedings IEEE INFOCOM
– volume: 23
  start-page: 2056
  year: 2010
  end-page: 2064
  ident: CR17
  article-title: Collaborative filtering in a non-uniform world: Learning with the weighted trace norm
  publication-title: Advances in Neural Information Processing Systems
– volume: 43
  start-page: 733
  year: 2013
  end-page: 748
  ident: CR16
  article-title: Robust sparse and low-rank matrix fraction based on S1/2 modeling (in Chinese)
  publication-title: Sci ChinaInform Sci
– volume: 52
  start-page: 833
  year: 2009
  end-page: 848
  ident: CR6
  article-title: Convergence of a smoothing algorithm for symmetric cone complementarity problemswith a nonmonotone line search
  publication-title: Sci China Ser A
  doi: 10.1007/s11425-008-0170-4
– volume: 52
  start-page: 1769
  year: 2009
  end-page: 1784
  ident: CR10
  article-title: Path-following interior point algorithms for the Cartesian P ( )-LCP over symmetric cones
  publication-title: SciChina Ser A
– volume: 38
  start-page: 1225
  year: 2012
  end-page: 1228
  ident: CR22
  article-title: Representation of L regularizer among L (0 < q ≤ 1) regularizer: An experimentalstudy based on phase diagram
  publication-title: Acta Automat Sin
– volume: 32
  start-page: 2832
  year: 2010
  end-page: 2852
  ident: CR2
  article-title: Lower bound theory of nonzero entries in solutions of l2-lp minimization
  publication-title: SIAM J Sci Comput
  doi: 10.1137/090761471
– year: 1990
  ident: CR5
  publication-title: Matrix Analysis
– volume: 61
  start-page: 3815
  year: 2013
  end-page: 3826
  ident: CR14
  article-title: A Lagrangian dual approach to the single source localization problem
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2013.2264814
– ident: CR9
– volume: 2
  start-page: 39
  year: 2014
  end-page: 56
  ident: CR23
  article-title: Theory of compressive sensing via l1-minimization: A non-RIP analysis and extensions
  publication-title: J Oper Res Soc China
  doi: 10.1007/s40305-014-0039-x
– volume: 32
  start-page: 227
  year: 2012
  end-page: 245
  ident: CR1
  article-title: Matrix completion via an alternating direction method
  publication-title: IMA J Numer Anal
  doi: 10.1093/imanum/drq039
– volume: 22
  start-page: 1307
  year: 2011
  end-page: 1320
  ident: CR15
  article-title: Lp-Lq penalty for sparse linear and sparse multiple kernel multitask learning
  publication-title: IEEE Trans Neural Networks
  doi: 10.1109/TNN.2011.2157521
– volume: 57
  start-page: 417
  year: 2014
  end-page: 432
  ident: CR18
  article-title: Improved twin support vector machine
  publication-title: Sci China Math
  doi: 10.1007/s11425-013-4718-6
– start-page: 879
  year: 2012
  end-page: 914
  ident: CR8
  article-title: Euclidean distance matrices and applications
  publication-title: Handbook of Semidefinite, Conic and Polynomial Optimization
  doi: 10.1007/978-1-4614-0769-0_30
– year: 2000
  ident: CR20
  article-title: Handbook of Semidefinite Programming: Theory
  publication-title: Algorithms, and Applications
– volume: 46
  start-page: 750
  year: 2003
  end-page: 763
  ident: CR24
  article-title: Error bounds for set inclusions
  publication-title: Sci China Ser A
  doi: 10.1360/02ys0123
– volume: 6
  start-page: 615
  year: 2010
  end-page: 640
  ident: CR19
  article-title: An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems
  publication-title: Pac J Optim
– year: 2012
  ident: CR3
  article-title: An introduction to a class of matrix optimization problems
  publication-title: PhD thesis
– volume: 1
  start-page: 253
  year: 2013
  end-page: 274
  ident: CR11
  article-title: Alternating direction method of multipliers for sparse principal component analysis
  publication-title: J Oper Res Soc China
  doi: 10.1007/s40305-013-0016-9
– year: 2013
  ident: CR12
  article-title: Matrix completion models with fixed basis coefficients and rank regularized problems with hard constraints
  publication-title: PhD thesis
– volume: 32
  start-page: 227
  year: 2012
  ident: 5052_CR1
  publication-title: IMA J Numer Anal
  doi: 10.1093/imanum/drq039
– start-page: 879
  volume-title: Handbook of Semidefinite, Conic and Polynomial Optimization
  year: 2012
  ident: 5052_CR8
  doi: 10.1007/978-1-4614-0769-0_30
– volume: 61
  start-page: 3815
  year: 2013
  ident: 5052_CR14
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2013.2264814
– volume: 38
  start-page: 1225
  year: 2012
  ident: 5052_CR22
  publication-title: Acta Automat Sin
– volume: 43
  start-page: 733
  year: 2013
  ident: 5052_CR16
  publication-title: Sci ChinaInform Sci
– volume: 23
  start-page: 2056
  year: 2010
  ident: 5052_CR17
  publication-title: Advances in Neural Information Processing Systems
– volume: 46
  start-page: 750
  year: 2003
  ident: 5052_CR24
  publication-title: Sci China Ser A
  doi: 10.1360/02ys0123
– volume: 2
  start-page: 39
  year: 2014
  ident: 5052_CR23
  publication-title: J Oper Res Soc China
  doi: 10.1007/s40305-014-0039-x
– volume: 52
  start-page: 833
  year: 2009
  ident: 5052_CR6
  publication-title: Sci China Ser A
  doi: 10.1007/s11425-008-0170-4
– volume: 1
  start-page: 253
  year: 2013
  ident: 5052_CR11
  publication-title: J Oper Res Soc China
  doi: 10.1007/s40305-013-0016-9
– volume: 6
  start-page: 615
  year: 2010
  ident: 5052_CR19
  publication-title: Pac J Optim
– volume: 23
  start-page: 1013
  year: 2012
  ident: 5052_CR21
  publication-title: IEEET rans Neural Networks Learn Syst
  doi: 10.1109/TNNLS.2012.2197412
– volume: 52
  start-page: 1769
  year: 2009
  ident: 5052_CR10
  publication-title: SciChina Ser A
– volume: 2
  start-page: 143
  year: 2014
  ident: 5052_CR13
  publication-title: J Oper Res Soc China
  doi: 10.1007/s40305-014-0048-9
– volume: 57
  start-page: 417
  year: 2014
  ident: 5052_CR18
  publication-title: Sci China Math
  doi: 10.1007/s11425-013-4718-6
– volume: 22
  start-page: 1307
  year: 2011
  ident: 5052_CR15
  publication-title: IEEE Trans Neural Networks
  doi: 10.1109/TNN.2011.2157521
– volume-title: Preprint
  year: 2014
  ident: 5052_CR4
– volume-title: PhD thesis
  year: 2013
  ident: 5052_CR12
– volume-title: Matrix Analysis
  year: 1990
  ident: 5052_CR5
– volume-title: PhD thesis
  year: 2012
  ident: 5052_CR3
– volume-title: Algorithms, and Applications
  year: 2000
  ident: 5052_CR20
– volume: 12
  start-page: 2499
  year: 2013
  ident: 5052_CR7
  publication-title: 013 Proceedings IEEE INFOCOM
– ident: 5052_CR9
– volume: 32
  start-page: 2832
  year: 2010
  ident: 5052_CR2
  publication-title: SIAM J Sci Comput
  doi: 10.1137/090761471
SSID ssj0000390473
Score 2.2844093
Snippet The semidefinite matrix completion(SMC) problem is to recover a low-rank positive semidefinite matrix from a small subset of its entries. It is well known...
The semidefinite matrix completion (SMC) problem is to recover a low-rank positive semidefinite matrix from a small subset of its entries. It is well known but...
SourceID proquest
crossref
springer
chongqing
SourceType Aggregation Database
Index Database
Publisher
StartPage 2015
SubjectTerms Algorithms
Applications of Mathematics
Convergence
Eigenvalues
Iterative methods
Mathematical models
Mathematics
Mathematics and Statistics
Optimization
Regularization
Robustness
全局最优解
半正定矩阵
参赛作品
对称矩阵
收敛性分析
特征值
算法
阈值
Title Half thresholding eigenvalue algorithm for semidefinite matrix completion
URI http://lib.cqvip.com/qk/60114X/201509/665849994.html
https://link.springer.com/article/10.1007/s11425-015-5052-y
https://www.proquest.com/docview/1744730218
Volume 58
WOSCitedRecordID wos000359866400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1869-1862
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000390473
  issn: 1674-7283
  databaseCode: RSV
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58HfTgW6wvInhSAt2-0hxFFAUVwQfeSrJN3IXdrm674v57Z7ptF0UPem5JykyS-abfzBeAI4T1ngyE5UpSS06gQx6Hccoj6wpPx9LEJV3wdC1ub-PnZ3lX9XHndbV7TUmWJ_W02a2F6wtT35DT5Wt8PAvzIYnNUIp-_9T8WHExiw9KZpkK7LnA-FmzmT-NQpoKnUH28oYzfo1NU8D5jSMtQ8_Fyr8-ehWWK6TJTidLYw1mTLYOSzeNTGu-AVeXqmdZge7MKxaKGVLnJAVww1TvZTDsFp0-Q2DLctPvpsZ2CaOyPgn7f7CyHt2Qazfh8eL84eySV3cr8LYv3IJHrqdSiZsRzxehtE4DjVjAF76IU2VNy9NW-0r5vqSUUKYiRJzRDlyLB6tn26m_BXPZIDPbwCLS15E6DKwmWlFqz7UiMiGOEFgv0g7sNhZOXicaGklEyAfBaeDAcW3z5uFUSpmsl6D1ErJeMnbgsPZKgtuAuA2VmcEoTzCxQqcTYHHgpHZFUu3H_PcRd_709i4seuTLssZsD-aK4cjsw0L7vejmw4NyHX4CUCrXdQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEB_8As8Hvw9XzzOCT0qgtmnTPIooK7cugh_4FpJtogtuV7dV9L93pra7eHgP3nNLUmaSmd_0N_kFYA9hfaiE9NwoOpIjbMzTOM144gMZ2lS5tKILbjqy201vb9VFfY67aLrdG0qyitSTw26HuL6w9I05Xb7G36ZhVtAtO1SiX96Mf6wEWMWLilmmBnsuMX82bOZXo5Cmwv0wv3vCGT_npgng_IsjrVLP6dJ_ffQyLNZIkx19LI0VmHL5Kiycj2VaizU4a5sHz0p0Z1GzUMyROicpgDtmHu6Go355P2AIbFnhBv3M-T5hVDYgYf9XVvWjO3LtOlyfnlwdt3l9twLvRTIoeRKEJlO4GTG-SGNtJixigUhGMs2Md4eh9TYyJooUlYQqkzHijJ4IPAbW0Pey6CfM5MPcbQBLSF9H2Vh4S7SismHgZeJiHEH4MLEt2BpbWD9-aGjohJAPglPRgv3G5uOHEyllsp5G62mynn5rwW7jFY3bgLgNk7vhc6GxsEKnE2BpwUHjCl3vx-LfI25-6-0dmG9fnXd056z7Zwt-hOTXqt_sF8yUo2e3DXO9l7JfjH5Xa_IdcqnaWQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB1RqCo4AG1BLJ-u1FMri5A4cXxEwAoErBCliJtlb2xYic3CJiD498xkk11R0QPinMhWZsb2m7yZZ4CfCOtDJaTnRlFLjrAxT-M044kPZGhT5dKKLrg8kZ1OenWlzup7Toum2r2hJEc9DaTSlJfbd5nfnjS-7WCsYRocc7qIjT9_ghmBiQzVdJ3_uRz_ZAkwoxcVy0zF9lziWdowm2-NQvoKN4P8-h5nf31OTcDnP3xpdQy1Fz78AYswXyNQtjsKma8w5fJvMHc6lm8tvsPRobn1rEQ3FzU7xRypdpIyuGPm9now7JU3fYaAlxWu38uc7xF2ZX0S_H9iVZ26I5cvwd_2wcXeIa_vXODdSAYlT4LQZAoXKe470libCYsYIZKRTDPj3U5ovY2MiSJFqaLKZIz4oysCjxtu6LtZtAzT-SB3K8AS0t1RNhbeEt2obBh4mbgYRxA-TGwL1sbW1ncjbQ2dECJC0Cpa8Kux__jhRGKZrKfRepqsp59b8KPxkMblQZyHyd3godCYcGEAEJBpwe_GLbpep8X_R1x919tb8OVsv61PjjrHazAbklurMrR1mC6HD24DPncfy14x3KzC8wUQUOM9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Half+thresholding+eigenvalue+algorithm+for+semidefinite+matrix+completion&rft.jtitle=Science+China.+Mathematics&rft.au=Chen%2C+YongQiang&rft.au=Luo%2C+ZiYan&rft.au=Xiu%2C+NaiHua&rft.date=2015-09-01&rft.pub=Science+China+Press&rft.issn=1674-7283&rft.eissn=1869-1862&rft.volume=58&rft.issue=9&rft.spage=2015&rft.epage=2032&rft_id=info:doi/10.1007%2Fs11425-015-5052-y&rft.externalDocID=10_1007_s11425_015_5052_y
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F60114X%2F60114X.jpg