Machine Learning-Based Lightning Localization Algorithm Using Lightning-Induced Voltages on Transmission Lines

In this article, we present a machine learning-based method to locate lightning flashes using calculations of lightning-induced voltages on a transmission line. The proposed approach takes advantage of the preinstalled voltage measurement systems on power transmission lines to get the data. Hence, i...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electromagnetic compatibility Vol. 62; no. 6; pp. 2512 - 2519
Main Authors: Karami, Hamidreza, Mostajabi, Amirhossein, Azadifar, Mohammad, Rubinstein, Marcos, Zhuang, Chijie, Rachidi, Farhad
Format: Journal Article
Language:English
Published: New York IEEE 01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Subjects:
ISSN:0018-9375, 1558-187X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this article, we present a machine learning-based method to locate lightning flashes using calculations of lightning-induced voltages on a transmission line. The proposed approach takes advantage of the preinstalled voltage measurement systems on power transmission lines to get the data. Hence, it does not require the installation of additional sensors such as extremely low frequency, very low frequency, or very high frequency. The proposed model is shown to yield reasonable accuracy in estimating two-dimensional geolocations for lightning strike points for different grid sizes up to 100 × 100 km 2 . The algorithm is shown to be robust against the distance between the voltage sensors, lightning peak current, lightning current rise time, and signal to noise ratio of the input signals.
AbstractList In this article, we present a machine learning-based method to locate lightning flashes using calculations of lightning-induced voltages on a transmission line. The proposed approach takes advantage of the preinstalled voltage measurement systems on power transmission lines to get the data. Hence, it does not require the installation of additional sensors such as extremely low frequency, very low frequency, or very high frequency. The proposed model is shown to yield reasonable accuracy in estimating two-dimensional geolocations for lightning strike points for different grid sizes up to 100 × 100 km 2 . The algorithm is shown to be robust against the distance between the voltage sensors, lightning peak current, lightning current rise time, and signal to noise ratio of the input signals.
In this study, we present a Machine Learning based method to locate lightning flashes using calculations of lightning-induced voltages on a transmission line. The proposed approach takes advantage of the preinstalled voltage measurement systems on power transmission lines to get the data. Hence, it does not require the installation of additional sensors such as ELF, VLF, or VHF. The proposed model is shown to yield reasonable accuracy in estimating 2D geolocations for lightning strike points in a grid of 10x10 km 2. The median location error obtained is less than 90 m when the sensors are 2 km away from each other. The algorithm is shown to be flexible when it comes to choosing the distance between the two voltage sensors. Furthermore, the changes in the risetime of the return stroke currents had negligible effect on the geolocation accuracies.
In this article, we present a machine learning-based method to locate lightning flashes using calculations of lightning-induced voltages on a transmission line. The proposed approach takes advantage of the preinstalled voltage measurement systems on power transmission lines to get the data. Hence, it does not require the installation of additional sensors such as extremely low frequency, very low frequency, or very high frequency. The proposed model is shown to yield reasonable accuracy in estimating two-dimensional geolocations for lightning strike points for different grid sizes up to 100 × 100 km2. The algorithm is shown to be robust against the distance between the voltage sensors, lightning peak current, lightning current rise time, and signal to noise ratio of the input signals.
Author Mostajabi, Amirhossein
Rubinstein, Marcos
Karami, Hamidreza
Rachidi, Farhad
Zhuang, Chijie
Azadifar, Mohammad
Author_xml – sequence: 1
  givenname: Hamidreza
  orcidid: 0000-0003-0118-6559
  surname: Karami
  fullname: Karami, Hamidreza
  email: hamidreza.karami@epfl.ch
  organization: École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
– sequence: 2
  givenname: Amirhossein
  orcidid: 0000-0001-7644-2348
  surname: Mostajabi
  fullname: Mostajabi, Amirhossein
  email: amirhossein.mostajabi@epfl.ch
  organization: École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
– sequence: 3
  givenname: Mohammad
  orcidid: 0000-0002-0489-1838
  surname: Azadifar
  fullname: Azadifar, Mohammad
  email: mohammad.azadifar@heig-vd.ch
  organization: Institute for Information and Communication Technologies, Haute Ecole d'ingénierie et de Gestion du Canton de Vaud, Yverdon-les-bains, Switzerland
– sequence: 4
  givenname: Marcos
  orcidid: 0000-0003-4806-038X
  surname: Rubinstein
  fullname: Rubinstein, Marcos
  email: rubinstein.m@gmail.com
  organization: Institute for Information and Communication Technologies, Haute Ecole d'ingénierie et de Gestion du Canton de Vaud, Yverdon-les-bains, Switzerland
– sequence: 5
  givenname: Chijie
  orcidid: 0000-0002-2579-050X
  surname: Zhuang
  fullname: Zhuang, Chijie
  email: chijie@tsinghua.edu.cn
  organization: Department of Electrical Engineering, Tsinghua University, Beijing, China
– sequence: 6
  givenname: Farhad
  orcidid: 0000-0002-2169-9549
  surname: Rachidi
  fullname: Rachidi, Farhad
  email: farhad.rachidi@epfl.ch
  organization: École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
BackLink https://hal.science/hal-03589923$$DView record in HAL
BookMark eNp9kctOAjEUhhuDiaA-gHEziSsXg73SdokEL8kYN2DcNaXTgZKh1XYw0ad3RsCFC1fN6fm-npP-A9DzwVsALhAcIgTlzWz6NBliiOEQSy4olkegjxgTORL8tQf6ECKRS8LZCRiktG5LyjDpA_-kzcp5mxVWR-_8Mr_VyZZZ4ZarpquzIhhduy_duOCzcb0M0TWrTTZPP80Dlj_6cmta8SXUjV7alLX0LGqfNi6lTi3aKekMHFe6TvZ8f56C-d10NnnIi-f7x8m4yA3hsMlZKcgCYUvoiAsuWSkthIbykUFmscCaIozLSnAriBG8lJUuNdPYYlkZTnFJTsH17t2VrtVbdBsdP1XQTj2MC9XdQcKElJh8oJa92rFvMbxvbWrUOmyjb9dTmHI4IkTijuI7ysSQUrSVMq75-ZQmalcrBFUXhOqCUF0Qah9Ea6I_5mGh_5zLneOstb-8hBQLRsk3Dj6WPw
CODEN IEMCAE
CitedBy_id crossref_primary_10_1108_COMPEL_12_2024_0521
crossref_primary_10_3390_pr13020398
crossref_primary_10_1109_TPWRD_2021_3115814
crossref_primary_10_3390_pr13010002
crossref_primary_10_1016_j_epsr_2025_111437
crossref_primary_10_1109_TEMC_2024_3375452
crossref_primary_10_3390_en16052436
crossref_primary_10_1016_j_epsr_2024_110253
crossref_primary_10_3390_s23083908
Cites_doi 10.1109/TEMC.2011.2181519
10.1109/MCAS.2006.1688199
10.5772/23937
10.1109/ICLP.2010.7845926
10.1109/TEMC.2019.2907715
10.1016/j.atmosres.2015.08.011
10.1145/2939672.2939785
10.1029/98JD00153
10.3390/s18103418
10.1007/s10712-013-9251-1
10.1109/TEMC.2009.2023450
10.1109/ICLP.2012.6344263
10.1007/s10462-009-9124-7
10.1109/TEMC.2013.2266932
10.1016/j.atmosres.2011.08.016
10.1121/1.5036725
10.1016/j.epsr.2012.05.002
10.1029/2011GL046875
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
1XC
VOOES
DOI 10.1109/TEMC.2020.2978429
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Engineering
Physics
EISSN 1558-187X
EndPage 2519
ExternalDocumentID oai:HAL:hal-03589923v1
10_1109_TEMC_2020_2978429
9042854
Genre orig-research
GrantInformation_xml – fundername: Sichuan Energy and Internet Research Institute
– fundername: European Union's Horizon 2020 research and innovation program
  grantid: 737033-LLR
– fundername: Swiss National Science Foundation
  grantid: 200020_175594
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TAF
TN5
VH1
AAYXX
CITATION
7SP
8FD
L7M
1XC
VOOES
ID FETCH-LOGICAL-c370t-5d83b12e34678795d9e00c476c1cbb2a4122df87e83c87d9fada5a2e29fc742d3
IEDL.DBID RIE
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000599506500020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9375
IngestDate Tue Oct 14 20:36:13 EDT 2025
Sun Nov 30 05:06:45 EST 2025
Tue Nov 18 21:13:13 EST 2025
Sat Nov 29 02:05:39 EST 2025
Wed Aug 27 02:33:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Lightning Localization
Transients on Transmission Lines
Machine Learning
Gradient Boosting Algorithms
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-5d83b12e34678795d9e00c476c1cbb2a4122df87e83c87d9fada5a2e29fc742d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0118-6559
0000-0002-2579-050X
0000-0002-0489-1838
0000-0001-7644-2348
0000-0002-2169-9549
0000-0003-4806-038X
OpenAccessLink https://hal.science/hal-03589923
PQID 2470633921
PQPubID 85467
PageCount 8
ParticipantIDs crossref_citationtrail_10_1109_TEMC_2020_2978429
proquest_journals_2470633921
ieee_primary_9042854
crossref_primary_10_1109_TEMC_2020_2978429
hal_primary_oai_HAL_hal_03589923v1
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on electromagnetic compatibility
PublicationTitleAbbrev TEMC
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers
References ref13
rusck (ref15) 1958
ref12
chen (ref23) 2015; 42
ref14
sekioka (ref24) 0
ref20
ref11
ref10
ref21
murphy (ref1) 2000
ref2
ref17
ref19
ref18
ref8
ref7
ref9
ref4
(ref16) 2013
ref3
ref6
ref5
(ref22) 0
References_xml – ident: ref17
  doi: 10.1109/TEMC.2011.2181519
– ident: ref20
  doi: 10.1109/MCAS.2006.1688199
– ident: ref12
  doi: 10.5772/23937
– ident: ref9
  doi: 10.1109/ICLP.2010.7845926
– year: 0
  ident: ref24
  article-title: An equivalent circuit for analysis of lightning-induced voltages on multiconductor system using an analytical expression
  publication-title: Proc Int Conf Power Syst Trans
– ident: ref11
  doi: 10.1109/TEMC.2019.2907715
– ident: ref2
  doi: 10.1016/j.atmosres.2015.08.011
– ident: ref19
  doi: 10.1145/2939672.2939785
– ident: ref5
  doi: 10.1029/98JD00153
– ident: ref14
  doi: 10.3390/s18103418
– ident: ref4
  doi: 10.1007/s10712-013-9251-1
– start-page: 65
  year: 2013
  ident: ref16
  article-title: Lightning parameters for engineering application
– ident: ref6
  doi: 10.1109/TEMC.2009.2023450
– ident: ref10
  doi: 10.1109/ICLP.2012.6344263
– year: 1958
  ident: ref15
  publication-title: Induced lightning over-voltages on power-transmission lines with special reference to the over-voltage protection of low-voltage networks
– start-page: 126
  year: 2000
  ident: ref1
  article-title: Probabilistic early warning of cloud-to-ground lightning at an airport
  publication-title: Proc 16th Conf Probability Statist Atmospheric Sci
– volume: 42
  start-page: 69
  year: 2015
  ident: ref23
  article-title: Higgs boson discovery with boosted trees
  publication-title: Proc Int Conf High-Energy Phys Mach Learn
– ident: ref21
  doi: 10.1007/s10462-009-9124-7
– ident: ref8
  doi: 10.1109/TEMC.2013.2266932
– ident: ref7
  doi: 10.1016/j.atmosres.2011.08.016
– year: 0
  ident: ref22
  article-title: xgboost·PyPI
– ident: ref13
  doi: 10.1121/1.5036725
– ident: ref18
  doi: 10.1016/j.epsr.2012.05.002
– ident: ref3
  doi: 10.1029/2011GL046875
SSID ssj0014523
Score 2.3907127
Snippet In this article, we present a machine learning-based method to locate lightning flashes using calculations of lightning-induced voltages on a transmission...
In this study, we present a Machine Learning based method to locate lightning flashes using calculations of lightning-induced voltages on a transmission line....
SourceID hal
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2512
SubjectTerms Algorithms
Electrical measurement
Extremely low frequencies
Geology
Gradient boosting algorithms
Lightning
Lightning flashes
lightning localization
Lightning strikes
Machine learning
machine learning (ML)
Machine learning algorithms
Model accuracy
Optics
Physics
Power lines
Power transmission lines
Sensors
Signal to noise ratio
transients on transmission lines
Transmission line measurements
Transmission lines
Two dimensional models
Very high frequencies
Very Low Frequencies
Voltage measurement
Title Machine Learning-Based Lightning Localization Algorithm Using Lightning-Induced Voltages on Transmission Lines
URI https://ieeexplore.ieee.org/document/9042854
https://www.proquest.com/docview/2470633921
https://hal.science/hal-03589923
Volume 62
WOSCitedRecordID wos000599506500020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1558-187X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014523
  issn: 0018-9375
  databaseCode: RIE
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS-QwFH84soIe_BbHdaUsnsRqvjppj6PoehjFg4q30ibpKIwzMlMF_3vfS2NdcBH2lpaXEvqS953fA9g3xjijKkkxABGr0hRxKi2OPNRHkUrWQOYP9NVVen-fXc_BYXsXxjnni8_cEQ19Lt9OzAuFyo4zMvAT1YGO1rq5q9VmDFQimmwyxwMsdRIymJxlxzdnl6foCQp2JNBnUt6a_NRBnQeqgPStVb7IY69kzlf-b3mrsByMyajfcH8N5tx4HZb-ghhch4U_vnXv2waML33dpIsCpOowPkENZqMBuef0HA1Ir4V7mVF_NJxMH-uHp8hXFXySxdTtw-DEu8moRmk0i5DaqzzcMhR7Q1KUn5twe352c3oRh24LsZGa1XFiU1ly4SSKTupAbjPHmFG6Z7gpS1EoLoStUu1SaVJts6qwRVIIJ7LKoH9t5RbMjydjtw1RhZ9gitseL9G9YSUaEa6sBOuZUjqWVV1gH_8_NwGKnDpijHLvkrAsJ5blxLI8sKwLB-2U5waH4zvi38jUlo4QtC_6g5zeMZmghynkK-_CBrGwpQrc68Luxx7Iw3Ge5UJpNOXQlOQ7_571ExZpAU2dyy7M19MX9wt-mNf6cTbd8zv1HcyQ5NM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9RAEJ_wZZQHVNB4gtoYn4iF_eq1fTwIeMbehYeT8LZpd7dAct6Zu0Lif-_MdikmEhLets1ss-nszvf-BuCLMcYZVUuKAYhYVaaMM2lx5KE-ykyyFjK_SMfj7OIiP1uBr91dGOecLz5zBzT0uXw7NzcUKjvMycBP1CqsJ0oJ3t7W6nIGKhFtPpnjEZZpEnKYnOWHk5PRMfqCgh0I9JqUtyfvtdDqFdVA-uYq_0lkr2ZOXz5tga9gK5iT0aDl_2tYcbNt2PwHZHAbnn3zzXv_7MBs5CsnXRRAVS_jI9RhNirIQafnqCDNFm5mRoPp5Xxx3Vz9inxdwT1ZTP0-DE48n08blEfLCKm90sNNQ9E3JEUJ-gZ-np5Mjodx6LcQG5myJk5sJisunEThST3Ibe4YMyrtG26qSpSKC2HrLHWZNFlq87q0ZVIKJ_LaoIdt5VtYm81n7h1ENX6CKW77vEIHh1VoRriqFqxvKulYXveA3f1_bQIYOfXEmGrvlLBcE8s0sUwHlvVgv5vyu0XieIz4MzK1oyMM7eGg0PSOyQR9TCFveQ92iIUdVeBeD_bu9oAOB3qphUrRmENjkr9_eNYneD6cjApdfB__2IUXtJi26mUP1prFjfsAG-a2uV4uPvpd-xfY5uga
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning-Based+Lightning+Localization+Algorithm+Using+Lightning-Induced+Voltages+on+Transmission+Lines&rft.jtitle=IEEE+transactions+on+electromagnetic+compatibility&rft.au=Karami%2C+Hamidreza&rft.au=Mostajabi%2C+Amirhossein&rft.au=Azadifar%2C+Mohammad&rft.au=Rubinstein%2C+Marcos&rft.date=2020-12-01&rft.issn=0018-9375&rft.eissn=1558-187X&rft.volume=62&rft.issue=6&rft.spage=2512&rft.epage=2519&rft_id=info:doi/10.1109%2FTEMC.2020.2978429&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEMC_2020_2978429
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9375&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9375&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9375&client=summon