Machine Learning-Based Lightning Localization Algorithm Using Lightning-Induced Voltages on Transmission Lines
In this article, we present a machine learning-based method to locate lightning flashes using calculations of lightning-induced voltages on a transmission line. The proposed approach takes advantage of the preinstalled voltage measurement systems on power transmission lines to get the data. Hence, i...
Saved in:
| Published in: | IEEE transactions on electromagnetic compatibility Vol. 62; no. 6; pp. 2512 - 2519 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Subjects: | |
| ISSN: | 0018-9375, 1558-187X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this article, we present a machine learning-based method to locate lightning flashes using calculations of lightning-induced voltages on a transmission line. The proposed approach takes advantage of the preinstalled voltage measurement systems on power transmission lines to get the data. Hence, it does not require the installation of additional sensors such as extremely low frequency, very low frequency, or very high frequency. The proposed model is shown to yield reasonable accuracy in estimating two-dimensional geolocations for lightning strike points for different grid sizes up to 100 × 100 km 2 . The algorithm is shown to be robust against the distance between the voltage sensors, lightning peak current, lightning current rise time, and signal to noise ratio of the input signals. |
|---|---|
| AbstractList | In this article, we present a machine learning-based method to locate lightning flashes using calculations of lightning-induced voltages on a transmission line. The proposed approach takes advantage of the preinstalled voltage measurement systems on power transmission lines to get the data. Hence, it does not require the installation of additional sensors such as extremely low frequency, very low frequency, or very high frequency. The proposed model is shown to yield reasonable accuracy in estimating two-dimensional geolocations for lightning strike points for different grid sizes up to 100 × 100 km 2 . The algorithm is shown to be robust against the distance between the voltage sensors, lightning peak current, lightning current rise time, and signal to noise ratio of the input signals. In this study, we present a Machine Learning based method to locate lightning flashes using calculations of lightning-induced voltages on a transmission line. The proposed approach takes advantage of the preinstalled voltage measurement systems on power transmission lines to get the data. Hence, it does not require the installation of additional sensors such as ELF, VLF, or VHF. The proposed model is shown to yield reasonable accuracy in estimating 2D geolocations for lightning strike points in a grid of 10x10 km 2. The median location error obtained is less than 90 m when the sensors are 2 km away from each other. The algorithm is shown to be flexible when it comes to choosing the distance between the two voltage sensors. Furthermore, the changes in the risetime of the return stroke currents had negligible effect on the geolocation accuracies. In this article, we present a machine learning-based method to locate lightning flashes using calculations of lightning-induced voltages on a transmission line. The proposed approach takes advantage of the preinstalled voltage measurement systems on power transmission lines to get the data. Hence, it does not require the installation of additional sensors such as extremely low frequency, very low frequency, or very high frequency. The proposed model is shown to yield reasonable accuracy in estimating two-dimensional geolocations for lightning strike points for different grid sizes up to 100 × 100 km2. The algorithm is shown to be robust against the distance between the voltage sensors, lightning peak current, lightning current rise time, and signal to noise ratio of the input signals. |
| Author | Mostajabi, Amirhossein Rubinstein, Marcos Karami, Hamidreza Rachidi, Farhad Zhuang, Chijie Azadifar, Mohammad |
| Author_xml | – sequence: 1 givenname: Hamidreza orcidid: 0000-0003-0118-6559 surname: Karami fullname: Karami, Hamidreza email: hamidreza.karami@epfl.ch organization: École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland – sequence: 2 givenname: Amirhossein orcidid: 0000-0001-7644-2348 surname: Mostajabi fullname: Mostajabi, Amirhossein email: amirhossein.mostajabi@epfl.ch organization: École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland – sequence: 3 givenname: Mohammad orcidid: 0000-0002-0489-1838 surname: Azadifar fullname: Azadifar, Mohammad email: mohammad.azadifar@heig-vd.ch organization: Institute for Information and Communication Technologies, Haute Ecole d'ingénierie et de Gestion du Canton de Vaud, Yverdon-les-bains, Switzerland – sequence: 4 givenname: Marcos orcidid: 0000-0003-4806-038X surname: Rubinstein fullname: Rubinstein, Marcos email: rubinstein.m@gmail.com organization: Institute for Information and Communication Technologies, Haute Ecole d'ingénierie et de Gestion du Canton de Vaud, Yverdon-les-bains, Switzerland – sequence: 5 givenname: Chijie orcidid: 0000-0002-2579-050X surname: Zhuang fullname: Zhuang, Chijie email: chijie@tsinghua.edu.cn organization: Department of Electrical Engineering, Tsinghua University, Beijing, China – sequence: 6 givenname: Farhad orcidid: 0000-0002-2169-9549 surname: Rachidi fullname: Rachidi, Farhad email: farhad.rachidi@epfl.ch organization: École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland |
| BackLink | https://hal.science/hal-03589923$$DView record in HAL |
| BookMark | eNp9kctOAjEUhhuDiaA-gHEziSsXg73SdokEL8kYN2DcNaXTgZKh1XYw0ad3RsCFC1fN6fm-npP-A9DzwVsALhAcIgTlzWz6NBliiOEQSy4olkegjxgTORL8tQf6ECKRS8LZCRiktG5LyjDpA_-kzcp5mxVWR-_8Mr_VyZZZ4ZarpquzIhhduy_duOCzcb0M0TWrTTZPP80Dlj_6cmta8SXUjV7alLX0LGqfNi6lTi3aKekMHFe6TvZ8f56C-d10NnnIi-f7x8m4yA3hsMlZKcgCYUvoiAsuWSkthIbykUFmscCaIozLSnAriBG8lJUuNdPYYlkZTnFJTsH17t2VrtVbdBsdP1XQTj2MC9XdQcKElJh8oJa92rFvMbxvbWrUOmyjb9dTmHI4IkTijuI7ysSQUrSVMq75-ZQmalcrBFUXhOqCUF0Qah9Ea6I_5mGh_5zLneOstb-8hBQLRsk3Dj6WPw |
| CODEN | IEMCAE |
| CitedBy_id | crossref_primary_10_1108_COMPEL_12_2024_0521 crossref_primary_10_3390_pr13020398 crossref_primary_10_1109_TPWRD_2021_3115814 crossref_primary_10_3390_pr13010002 crossref_primary_10_1016_j_epsr_2025_111437 crossref_primary_10_1109_TEMC_2024_3375452 crossref_primary_10_3390_en16052436 crossref_primary_10_1016_j_epsr_2024_110253 crossref_primary_10_3390_s23083908 |
| Cites_doi | 10.1109/TEMC.2011.2181519 10.1109/MCAS.2006.1688199 10.5772/23937 10.1109/ICLP.2010.7845926 10.1109/TEMC.2019.2907715 10.1016/j.atmosres.2015.08.011 10.1145/2939672.2939785 10.1029/98JD00153 10.3390/s18103418 10.1007/s10712-013-9251-1 10.1109/TEMC.2009.2023450 10.1109/ICLP.2012.6344263 10.1007/s10462-009-9124-7 10.1109/TEMC.2013.2266932 10.1016/j.atmosres.2011.08.016 10.1121/1.5036725 10.1016/j.epsr.2012.05.002 10.1029/2011GL046875 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M 1XC VOOES |
| DOI | 10.1109/TEMC.2020.2978429 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Engineering Physics |
| EISSN | 1558-187X |
| EndPage | 2519 |
| ExternalDocumentID | oai:HAL:hal-03589923v1 10_1109_TEMC_2020_2978429 9042854 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Sichuan Energy and Internet Research Institute – fundername: European Union's Horizon 2020 research and innovation program grantid: 737033-LLR – fundername: Swiss National Science Foundation grantid: 200020_175594 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS RXW TAE TAF TN5 VH1 AAYXX CITATION 7SP 8FD L7M 1XC VOOES |
| ID | FETCH-LOGICAL-c370t-5d83b12e34678795d9e00c476c1cbb2a4122df87e83c87d9fada5a2e29fc742d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000599506500020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9375 |
| IngestDate | Tue Oct 14 20:36:13 EDT 2025 Sun Nov 30 05:06:45 EST 2025 Tue Nov 18 21:13:13 EST 2025 Sat Nov 29 02:05:39 EST 2025 Wed Aug 27 02:33:27 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Lightning Localization Transients on Transmission Lines Machine Learning Gradient Boosting Algorithms |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c370t-5d83b12e34678795d9e00c476c1cbb2a4122df87e83c87d9fada5a2e29fc742d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0118-6559 0000-0002-2579-050X 0000-0002-0489-1838 0000-0001-7644-2348 0000-0002-2169-9549 0000-0003-4806-038X |
| OpenAccessLink | https://hal.science/hal-03589923 |
| PQID | 2470633921 |
| PQPubID | 85467 |
| PageCount | 8 |
| ParticipantIDs | crossref_citationtrail_10_1109_TEMC_2020_2978429 proquest_journals_2470633921 ieee_primary_9042854 crossref_primary_10_1109_TEMC_2020_2978429 hal_primary_oai_HAL_hal_03589923v1 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-12-01 |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on electromagnetic compatibility |
| PublicationTitleAbbrev | TEMC |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: Institute of Electrical and Electronics Engineers |
| References | ref13 rusck (ref15) 1958 ref12 chen (ref23) 2015; 42 ref14 sekioka (ref24) 0 ref20 ref11 ref10 ref21 murphy (ref1) 2000 ref2 ref17 ref19 ref18 ref8 ref7 ref9 ref4 (ref16) 2013 ref3 ref6 ref5 (ref22) 0 |
| References_xml | – ident: ref17 doi: 10.1109/TEMC.2011.2181519 – ident: ref20 doi: 10.1109/MCAS.2006.1688199 – ident: ref12 doi: 10.5772/23937 – ident: ref9 doi: 10.1109/ICLP.2010.7845926 – year: 0 ident: ref24 article-title: An equivalent circuit for analysis of lightning-induced voltages on multiconductor system using an analytical expression publication-title: Proc Int Conf Power Syst Trans – ident: ref11 doi: 10.1109/TEMC.2019.2907715 – ident: ref2 doi: 10.1016/j.atmosres.2015.08.011 – ident: ref19 doi: 10.1145/2939672.2939785 – ident: ref5 doi: 10.1029/98JD00153 – ident: ref14 doi: 10.3390/s18103418 – ident: ref4 doi: 10.1007/s10712-013-9251-1 – start-page: 65 year: 2013 ident: ref16 article-title: Lightning parameters for engineering application – ident: ref6 doi: 10.1109/TEMC.2009.2023450 – ident: ref10 doi: 10.1109/ICLP.2012.6344263 – year: 1958 ident: ref15 publication-title: Induced lightning over-voltages on power-transmission lines with special reference to the over-voltage protection of low-voltage networks – start-page: 126 year: 2000 ident: ref1 article-title: Probabilistic early warning of cloud-to-ground lightning at an airport publication-title: Proc 16th Conf Probability Statist Atmospheric Sci – volume: 42 start-page: 69 year: 2015 ident: ref23 article-title: Higgs boson discovery with boosted trees publication-title: Proc Int Conf High-Energy Phys Mach Learn – ident: ref21 doi: 10.1007/s10462-009-9124-7 – ident: ref8 doi: 10.1109/TEMC.2013.2266932 – ident: ref7 doi: 10.1016/j.atmosres.2011.08.016 – year: 0 ident: ref22 article-title: xgboost·PyPI – ident: ref13 doi: 10.1121/1.5036725 – ident: ref18 doi: 10.1016/j.epsr.2012.05.002 – ident: ref3 doi: 10.1029/2011GL046875 |
| SSID | ssj0014523 |
| Score | 2.3907127 |
| Snippet | In this article, we present a machine learning-based method to locate lightning flashes using calculations of lightning-induced voltages on a transmission... In this study, we present a Machine Learning based method to locate lightning flashes using calculations of lightning-induced voltages on a transmission line.... |
| SourceID | hal proquest crossref ieee |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2512 |
| SubjectTerms | Algorithms Electrical measurement Extremely low frequencies Geology Gradient boosting algorithms Lightning Lightning flashes lightning localization Lightning strikes Machine learning machine learning (ML) Machine learning algorithms Model accuracy Optics Physics Power lines Power transmission lines Sensors Signal to noise ratio transients on transmission lines Transmission line measurements Transmission lines Two dimensional models Very high frequencies Very Low Frequencies Voltage measurement |
| Title | Machine Learning-Based Lightning Localization Algorithm Using Lightning-Induced Voltages on Transmission Lines |
| URI | https://ieeexplore.ieee.org/document/9042854 https://www.proquest.com/docview/2470633921 https://hal.science/hal-03589923 |
| Volume | 62 |
| WOSCitedRecordID | wos000599506500020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1558-187X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014523 issn: 0018-9375 databaseCode: RIE dateStart: 19640101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS-QwFH84soIe_BbHdaUsnsRqvjppj6PoehjFg4q30ibpKIwzMlMF_3vfS2NdcBH2lpaXEvqS953fA9g3xjijKkkxABGr0hRxKi2OPNRHkUrWQOYP9NVVen-fXc_BYXsXxjnni8_cEQ19Lt9OzAuFyo4zMvAT1YGO1rq5q9VmDFQimmwyxwMsdRIymJxlxzdnl6foCQp2JNBnUt6a_NRBnQeqgPStVb7IY69kzlf-b3mrsByMyajfcH8N5tx4HZb-ghhch4U_vnXv2waML33dpIsCpOowPkENZqMBuef0HA1Ir4V7mVF_NJxMH-uHp8hXFXySxdTtw-DEu8moRmk0i5DaqzzcMhR7Q1KUn5twe352c3oRh24LsZGa1XFiU1ly4SSKTupAbjPHmFG6Z7gpS1EoLoStUu1SaVJts6qwRVIIJ7LKoH9t5RbMjydjtw1RhZ9gitseL9G9YSUaEa6sBOuZUjqWVV1gH_8_NwGKnDpijHLvkrAsJ5blxLI8sKwLB-2U5waH4zvi38jUlo4QtC_6g5zeMZmghynkK-_CBrGwpQrc68Luxx7Iw3Ge5UJpNOXQlOQ7_571ExZpAU2dyy7M19MX9wt-mNf6cTbd8zv1HcyQ5NM |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9RAEJ_wZZQHVNB4gtoYn4iF_eq1fTwIeMbehYeT8LZpd7dAct6Zu0Lif-_MdikmEhLets1ss-nszvf-BuCLMcYZVUuKAYhYVaaMM2lx5KE-ykyyFjK_SMfj7OIiP1uBr91dGOecLz5zBzT0uXw7NzcUKjvMycBP1CqsJ0oJ3t7W6nIGKhFtPpnjEZZpEnKYnOWHk5PRMfqCgh0I9JqUtyfvtdDqFdVA-uYq_0lkr2ZOXz5tga9gK5iT0aDl_2tYcbNt2PwHZHAbnn3zzXv_7MBs5CsnXRRAVS_jI9RhNirIQafnqCDNFm5mRoPp5Xxx3Vz9inxdwT1ZTP0-DE48n08blEfLCKm90sNNQ9E3JEUJ-gZ-np5Mjodx6LcQG5myJk5sJisunEThST3Ibe4YMyrtG26qSpSKC2HrLHWZNFlq87q0ZVIKJ_LaoIdt5VtYm81n7h1ENX6CKW77vEIHh1VoRriqFqxvKulYXveA3f1_bQIYOfXEmGrvlLBcE8s0sUwHlvVgv5vyu0XieIz4MzK1oyMM7eGg0PSOyQR9TCFveQ92iIUdVeBeD_bu9oAOB3qphUrRmENjkr9_eNYneD6cjApdfB__2IUXtJi26mUP1prFjfsAG-a2uV4uPvpd-xfY5uga |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning-Based+Lightning+Localization+Algorithm+Using+Lightning-Induced+Voltages+on+Transmission+Lines&rft.jtitle=IEEE+transactions+on+electromagnetic+compatibility&rft.au=Karami%2C+Hamidreza&rft.au=Mostajabi%2C+Amirhossein&rft.au=Azadifar%2C+Mohammad&rft.au=Rubinstein%2C+Marcos&rft.date=2020-12-01&rft.issn=0018-9375&rft.eissn=1558-187X&rft.volume=62&rft.issue=6&rft.spage=2512&rft.epage=2519&rft_id=info:doi/10.1109%2FTEMC.2020.2978429&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEMC_2020_2978429 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9375&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9375&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9375&client=summon |