Deep and Machine Learning for Acute Lymphoblastic Leukemia Diagnosis: A Comprehensive Review

The medical condition known as acute lymphoblastic leukemia (ALL) is characterized by an excess of immature lymphocyte production, and it can affect people across all age ranges. Detecting it at an early stage is extremely important to increase the chances of successful treatment. Conventional diagn...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advances in distributed computing and artificial intelligence journal Ročník 13; s. e31420
Hlavní autori: Faiz, Mohammad, Gari Mounika, Bakkanarappa, Akbar, Mohd, Srivastava, Swapnita
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Salamanca Ediciones Universidad de Salamanca 01.01.2024
Predmet:
ISSN:2255-2863, 2255-2863
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The medical condition known as acute lymphoblastic leukemia (ALL) is characterized by an excess of immature lymphocyte production, and it can affect people across all age ranges. Detecting it at an early stage is extremely important to increase the chances of successful treatment. Conventional diagnostic techniques for ALL, such as bone marrow and blood tests, can be expensive and time-consuming. They may be less useful in places with scarce resources. The primary objective of this research is to investigate automated techniques that can be employed to detect ALL at an early stage. This analysis covers both machine learning models (ML), such as support vector machine (SVM) & random forest (RF), as well as deep learning algorithms (DL), including convolution neural network (CNN), AlexNet, ResNet50, ShuffleNet, MobileNet, RNN. The effectiveness of these models in detecting ALL is evident through their ability to enhance accuracy and minimize human errors, which is essential for early diagnosis and successful treatment. In addition, the study also highlights several challenges and limitations in this field, including the scarcity of data available for ALL types, and the significant computational resources required to train and operate deep learning models.
AbstractList The medical condition known as acute lymphoblastic leukemia (ALL) is characterized by an excess of immature lymphocyte production, and it can affect people across all age ranges. Detecting it at an early stage is extremely important to increase the chances of successful treatment. Conventional diagnostic techniques for ALL, such as bone marrow and blood tests, can be expensive and time-consuming. They may be less useful in places with scarce resources. The primary objective of this research is to investigate automated techniques that can be employed to detect ALL at an early stage. This analysis covers both machine learning models (ML), such as support vector machine (SVM) & random forest (RF), as well as deep learning algorithms (DL), including convolution neural network (CNN), AlexNet, ResNet50, ShuffleNet, MobileNet, RNN. The effectiveness of these models in detecting ALL is evident through their ability to enhance accuracy and minimize human errors, which is essential for early diagnosis and successful treatment. In addition, the study also highlights several challenges and limitations in this field, including the scarcity of data available for ALL types, and the significant computational resources required to train and operate deep learning models.
Author Akbar, Mohd
Srivastava, Swapnita
Faiz, Mohammad
Gari Mounika, Bakkanarappa
Author_xml – sequence: 1
  givenname: Mohammad
  surname: Faiz
  fullname: Faiz, Mohammad
– sequence: 2
  givenname: Bakkanarappa
  surname: Gari Mounika
  fullname: Gari Mounika, Bakkanarappa
– sequence: 3
  givenname: Mohd
  surname: Akbar
  fullname: Akbar, Mohd
– sequence: 4
  givenname: Swapnita
  surname: Srivastava
  fullname: Srivastava, Swapnita
BookMark eNptkUFrGzEQhUVJoUmaY--CnDeVNNKunJtxkjbgUijtrSBmtWNbri1tpHVK_n233gZKyGlmHt88HrwzdhJTJMY-SHEltRLyI3Yew_YK_l5v2KlSxlTK1nDy3_6OXZSyFUJIUEbJ5pT9vCHqOcaOf0G_CZH4kjDHENd8lTKf-8MwSk_7fpPaHZYh-BE4_KJ9QH4TcB1TCeWaz_ki7ftMG4olPBL_Ro-Bfr9nb1e4K3Txb56zH3e33xefq-XXT_eL-bLy0IihMlb6DlczWxtQ0LZiZq32oBQg2qYVZGtNJLXo0BstZq2pyXqyMwFCN20L5-x-8u0Sbl2fwx7zk0sY3FFIee0wj9F35LSBzgtoQQnUjfK2szWBkhbB6KaRo9fl5NXn9HCgMrhtOuQ4xncgG6VqM1EwUT6nUjKtnA8DDiHFIWPYOSncsRU3teKOrYxf1Yuv56yv838AOP6PeA
CitedBy_id crossref_primary_10_31466_kfbd_1597865
Cites_doi 10.1007/978-981-16-0666-3_35
10.1109/ACCESS.2022.3196037
10.1109/TNNLS.2018.2790388
10.1016/j.bspc.2016.11.021
10.1016/j.cmpb.2019.105020
10.1109/CoDIT.2019.8820299
10.1007/978-981-15-0798-4_3
10.1155/2020/6648574
10.1016/j.eswa.2021.115311
10.1016/j.measurement.2022.110762
10.1007/s13246-021-00993-5
10.1016/j.clml.2021.06.025
10.1016/j.bspc.2018.08.012
10.1109/NCC52529.2021.9530010
10.1109/TCYB.2021.3062152
10.1109/ICASSP39728.2021.9414362
10.1155/2021/5478157
10.3390/healthcare10101812
10.1016/j.cca.2020.10.039
10.1177/1533033818802789
10.1515/jtim-2016-0040
10.1109/ICTC46691.2019.8939959
10.1109/ACCESS.2023.3245128
10.1002/jemt.23139
10.1016/j.cmpb.2019.06.014
10.1155/2022/2801227
10.1016/j.bspc.2021.102690
10.1007/978-981-33-6393-9_22
10.1016/j.cmpb.2019.104987
10.1016/j.irbm.2021.05.005
10.1162/neco_a_01199
10.1145/3065386
10.1109/TIP.2017.2662206
10.1007/978-981-16-0289-4_32
10.1016/j.cmpb.2018.02.005
10.1109/BIBM55620.2022.9995131
10.1056/NEJM199506013322216
10.1109/TENCON50793.2020.9293925
10.1109/CAIDA51941.2021.9425264
10.1016/j.eswa.2020.114161
10.1016/j.bspc.2018.01.020
ContentType Journal Article
Copyright 2024. This work is licensed under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is licensed under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.14201/adcaij.31420
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2255-2863
EndPage e31420
ExternalDocumentID oai_doaj_org_article_453dc03b320a472c8d86e3218a354771
10_14201_adcaij_31420
GroupedDBID 3J0
8FE
8FG
AAYXX
ADBBV
AFFHD
AFKRA
AGVNC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
KQ8
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
R9V
R9Y
ABUWG
AZQEC
COVID
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c370t-581cdaf9865323bb09884c3223aa87b0e864ee140dac5409b56e8ce8903047bb3
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001272393600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2255-2863
IngestDate Mon Nov 10 04:32:34 EST 2025
Fri Jul 25 21:42:39 EDT 2025
Sat Nov 29 06:45:06 EST 2025
Tue Nov 18 21:53:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-581cdaf9865323bb09884c3223aa87b0e864ee140dac5409b56e8ce8903047bb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/453dc03b320a472c8d86e3218a354771
PQID 3172265771
PQPubID 2049104
ParticipantIDs doaj_primary_oai_doaj_org_article_453dc03b320a472c8d86e3218a354771
proquest_journals_3172265771
crossref_citationtrail_10_14201_adcaij_31420
crossref_primary_10_14201_adcaij_31420
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Salamanca
PublicationPlace_xml – name: Salamanca
PublicationTitle Advances in distributed computing and artificial intelligence journal
PublicationYear 2024
Publisher Ediciones Universidad de Salamanca
Publisher_xml – name: Ediciones Universidad de Salamanca
References 456522
456544
456523
456545
456524
456546
456525
456547
456526
456548
456527
456549
456528
456529
456550
456551
456530
456552
456531
456553
456532
456554
456533
456555
456534
456556
456535
456557
456536
456558
456537
456559
456516
456538
456517
456539
456518
456519
456540
456541
456520
456542
456521
456543
References_xml – ident: 456553
  doi: 10.1007/978-981-16-0666-3_35
– ident: 456526
  doi: 10.1109/ACCESS.2022.3196037
– ident: 456543
  doi: 10.1109/TNNLS.2018.2790388
– ident: 456546
  doi: 10.1016/j.bspc.2016.11.021
– ident: 456516
  doi: 10.1016/j.cmpb.2019.105020
– ident: 456522
  doi: 10.1109/CoDIT.2019.8820299
– ident: 456555
  doi: 10.1007/978-981-15-0798-4_3
– ident: 456523
  doi: 10.1155/2020/6648574
– ident: 456528
  doi: 10.1016/j.eswa.2021.115311
– ident: 456530
  doi: 10.1016/j.measurement.2022.110762
– ident: 456544
  doi: 10.1007/s13246-021-00993-5
– ident: 456532
  doi: 10.1016/j.clml.2021.06.025
– ident: 456534
– ident: 456545
  doi: 10.1016/j.bspc.2018.08.012
– ident: 456527
  doi: 10.1109/NCC52529.2021.9530010
– ident: 456529
  doi: 10.1109/TCYB.2021.3062152
– ident: 456533
  doi: 10.1109/ICASSP39728.2021.9414362
– ident: 456551
  doi: 10.1155/2021/5478157
– ident: 456552
  doi: 10.3390/healthcare10101812
– ident: 456549
  doi: 10.1016/j.cca.2020.10.039
– ident: 456554
  doi: 10.1177/1533033818802789
– ident: 456557
  doi: 10.1515/jtim-2016-0040
– ident: 456538
  doi: 10.1109/ICTC46691.2019.8939959
– ident: 456548
  doi: 10.1109/ACCESS.2023.3245128
– ident: 456542
– ident: 456550
  doi: 10.1002/jemt.23139
– ident: 456547
  doi: 10.1016/j.cmpb.2019.06.014
– ident: 456524
  doi: 10.1155/2022/2801227
– ident: 456539
  doi: 10.1016/j.bspc.2021.102690
– ident: 456519
  doi: 10.1007/978-981-33-6393-9_22
– ident: 456537
  doi: 10.1016/j.cmpb.2019.104987
– ident: 456521
  doi: 10.1016/j.irbm.2021.05.005
– ident: 456556
– ident: 456558
  doi: 10.1162/neco_a_01199
– ident: 456540
  doi: 10.1145/3065386
– ident: 456559
  doi: 10.1109/TIP.2017.2662206
– ident: 456531
  doi: 10.1007/978-981-16-0289-4_32
– ident: 456520
  doi: 10.1016/j.cmpb.2018.02.005
– ident: 456525
  doi: 10.1109/BIBM55620.2022.9995131
– ident: 456536
  doi: 10.1056/NEJM199506013322216
– ident: 456518
  doi: 10.1109/TENCON50793.2020.9293925
– ident: 456517
  doi: 10.1109/CAIDA51941.2021.9425264
– ident: 456535
  doi: 10.1016/j.eswa.2020.114161
– ident: 456541
  doi: 10.1016/j.bspc.2018.01.020
SSID ssj0001325217
Score 2.3236444
SecondaryResourceType review_article
Snippet The medical condition known as acute lymphoblastic leukemia (ALL) is characterized by an excess of immature lymphocyte production, and it can affect people...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage e31420
SubjectTerms acute lymphoblastic leukemia
Algorithms
Artificial neural networks
blood smear images
Bone marrow
Deep learning
Diagnosis
Human error
Leukemia
Lymphocytes
Machine learning
Support vector machines
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5aPXixPrFaJQfx5NLtJrtJvEi1Fg9aelAoIix5tdZHW_sQ_PdOdtNWEL24l4XdISz7JZlvJsN8CB0bCNA0NzSQxAgIUHQcSPDkgQL2qoiCS9JMbII1m7zdFi2fcBv7ssrZnpht1GagXY68An4OmELMWPV8-B441Sh3uuolNJbRiuuS4KQbWvHDIsdCIvBOzLfWpODrKtJo2XuGSJU6he9vrijr2P9jQ868TKP43-_bQOueX-JaPiE20ZLtb6HiTLsB-6W8jR7r1g6x7Bt8m5VTWuw7rXYx0Fhc02CObz4B64ECgg2jgcH0xb71JK7n5Xm98RmuYTf0yD7ldfA4P2rYQfeNq7vL68ArLQSasHASxLyqjewInsQkAoRCwTnVsNaJlJyp0PKEWguxmJEaKJ5QcWK5tly4g1WmFNlFhf6gb_cQFh2bVKWEyFpoqoBfyogwAzcRwrDVpIROZz891b4NuVPDeE1dOOIwSnOM0gyjEjqZmw_z_hu_GV44BOdGrm129mAw6qZ-FaY0JkaHRJEolJRFMEl5YgmwHEliCtCVUHkGburX8jhdILv_9-sDtBYB5ckTNGVUmIym9hCt6o9Jbzw6yqbmF9Hz7Zw
  priority: 102
  providerName: ProQuest
Title Deep and Machine Learning for Acute Lymphoblastic Leukemia Diagnosis: A Comprehensive Review
URI https://www.proquest.com/docview/3172265771
https://doaj.org/article/453dc03b320a472c8d86e3218a354771
Volume 13
WOSCitedRecordID wos001272393600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2255-2863
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325217
  issn: 2255-2863
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2255-2863
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325217
  issn: 2255-2863
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 2255-2863
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325217
  issn: 2255-2863
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2255-2863
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325217
  issn: 2255-2863
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2255-2863
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325217
  issn: 2255-2863
  databaseCode: PIMPY
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA-iPvjitzi_yIP4ZFnXJE3i2_xCwY0iClOEkqSZ1o9Ntin433tJujEQ8cU-tJAe13JJer9fcr1DaL8AgmZEQSNFCgkExbBIgSePNKBXTTQcivpiE7zdFp2OzKZKfbmYsJAeOBiuThkpTEw0SWJFeQJ6RWoJOCZFGOX-7_Ek5nKKTPnVFZKAX-JVUk0KXq6uCqPKZ-Co1NX2nnJCPlf_j0-x9y_ny2ixAoa4GV5oBc3Y3ipaGhddwNUcXEMPp9a-Y-D_uOXjIC2uUqQ-YsCfuGlAHF99QSf1NSBj0AYCHy_2rVT4NMTVlcMj3MRO9cA-hQB2HPYI1tHt-dnNyUVUlUiIDOHxKGKiYQrVlSJlJAHTxlIIamCSEqUE17EVKbUWSFShDGAzqVlqhbFCuh1RrjXZQLO9fs9uIiy7Nm0oBZRYGqoBGKqE8AIuMga1jbSGDsc2y02VP9yVsXjNHY9wJs6DiXNv4ho6mIi_h8QZvwkeuw6YCLl8174BRkFejYL8r1FQQzvj7surSTgE9RzAJYPbW__xjG20kACiCesvO2h2NPiwu2jefI7K4WAPzR2ftbPrPT8O4Zyxe2jLLlvZ3TdG_eJJ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH8a3SS4MGBDdBvgA3BatDR2YnsSQoUyrVpb9bBJmzTJ-GujwNrSdqD9U_yNPCfONgnBbQdyiZQ8PSXxz-_Dfnk_gFcOEzQrHEs0dRITFJsnGj15YjB6NdTgoVlJNsEHA3F8LIdL8Kv-FyaUVdY2sTTUbmLDGvkO-jmMFHLOW--m35PAGhV2V2sKjQoWB_7qJ6Zs87fdDo7v6yzb-3j4YT-JrAKJpTxdJLloWafPpChymuHTpFIIZhHXVGvBTepFwbzHvMNpi-GMNHnhhfVChk1EbgxFvfdgmQWwN2B52O0PT25WdWiG_pDHZp4MveuOdlaPvmBuzAKn-C3nV3IE_OECSr-2t_q_fZFH8DBG0KRdQf4xLPnxE1it2SlINFZrcNrxfkr02JF-WTDqSewle04wUCdti-Kkd4VonhhMIVAbClx-9RcjTTpVAeJovkvaJKie-c9VpT-pNlPW4ehO3vEpNMaTsX8GRJ75oqU1F0JaZjCC1hnlDk8yRbWtognb9SArGxutB76PbyokXAETqsKEKjHRhDfX4tOqw8jfBN8HxFwLhcbg5YXJ7FxFO6NYTp1NqaFZqhnPcBqKwlOM4zTNGUKlCVs1mFS0VnN1g6SNf99-Cff3D_s91esODjbhQYYBXrUctQWNxezSP4cV-2Mxms9exIlB4NNdI-83IJ1Kkg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+and+Machine+Learning+for+Acute+Lymphoblastic+Leukemia+Diagnosis%3A+A+Comprehensive+Review&rft.jtitle=Advances+in+distributed+computing+and+artificial+intelligence+journal&rft.au=Faiz%2C+Mohammad&rft.au=Gari+Mounika%2C+Bakkanarappa&rft.au=Akbar%2C+Mohd&rft.au=Srivastava%2C+Swapnita&rft.date=2024-01-01&rft.issn=2255-2863&rft.eissn=2255-2863&rft.volume=13&rft.spage=e31420&rft_id=info:doi/10.14201%2Fadcaij.31420&rft.externalDBID=n%2Fa&rft.externalDocID=10_14201_adcaij_31420
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2255-2863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2255-2863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2255-2863&client=summon