IntAct: A 96-Core Processor With Six Chiplets 3D-Stacked on an Active Interposer With Distributed Interconnects and Integrated Power Management

In the context of high-performance computing, the integration of more computing capabilities with generic cores or dedicated accelerators for artificial intelligence (AI) application is raising more and more challenges. Due to the increasing costs of advanced nodes and the difficulties of shrinking...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of solid-state circuits Jg. 56; H. 1; S. 79 - 97
Hauptverfasser: Vivet, Pascal, Guthmuller, Eric, Thonnart, Yvain, Pillonnet, Gael, Fuguet, Cesar, Miro-Panades, Ivan, Moritz, Guillaume, Durupt, Jean, Bernard, Christian, Varreau, Didier, Pontes, Julian, Thuries, Sebastien, Coriat, David, Harrand, Michel, Dutoit, Denis, Lattard, Didier, Arnaud, Lucile, Charbonnier, Jean, Coudrain, Perceval, Garnier, Arnaud, Berger, Frederic, Gueugnot, Alain, Greiner, Alain, Meunier, Quentin L., Farcy, Alexis, Arriordaz, Alexandre, Cheramy, Severine, Clermidy, Fabien
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Schlagworte:
ISSN:0018-9200, 1558-173X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In the context of high-performance computing, the integration of more computing capabilities with generic cores or dedicated accelerators for artificial intelligence (AI) application is raising more and more challenges. Due to the increasing costs of advanced nodes and the difficulties of shrinking analog and circuit input output signals (IOs), alternative architecture solutions to single die are becoming mainstream. Chiplet-based systems using 3D technologies enable modular and scalable architecture and technology partitioning. Nevertheless, there are still limitations due to chiplet integration on passive interposers-silicon or organic. In this article we present the first CMOS active interposer, integrating: 1) power management without any external components; 2) distributed interconnects enabling any chiplet-to-chiplet communication; and3) system infrastructure, design-for-test, and circuit IOs. The IntAct circuit prototype integrates six chiplets in FDSOI 28-nm technology, which are 3D-stacked onto this active interposer in 65-nm process, offering a total of 96 computing cores. Full scalability of the computing system is achieved using an innovative scalable cache-coherent memory hierarchy, enabled by distributed network-on-chips, with 3-Tbit/s/mm 2 high bandwidth 3D-plug interfaces using 20-<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> pitch micro-bumps, 0.6-ns/mm low latency asynchronous interconnects, while the six chiplets are locally power-supplied with 156-mW/mm2 at 82%-peak-efficiency dc-dc converters through the active interposer. Thermal dissipation is studied showing the feasibility of such approach.
AbstractList In the context of high-performance computing, the integration of more computing capabilities with generic cores or dedicated accelerators for artificial intelligence (AI) application is raising more and more challenges. Due to the increasing costs of advanced nodes and the difficulties of shrinking analog and circuit input output signals (IOs), alternative architecture solutions to single die are becoming mainstream. Chiplet-based systems using 3D technologies enable modular and scalable architecture and technology partitioning. Nevertheless, there are still limitations due to chiplet integration on passive interposers—silicon or organic. In this article we present the first CMOS active interposer, integrating: 1) power management without any external components; 2) distributed interconnects enabling any chiplet-to-chiplet communication; and3) system infrastructure, design-for-test, and circuit IOs. The IntAct circuit prototype integrates six chiplets in FDSOI 28-nm technology, which are 3D-stacked onto this active interposer in 65-nm process, offering a total of 96 computing cores. Full scalability of the computing system is achieved using an innovative scalable cache-coherent memory hierarchy, enabled by distributed network-on-chips, with 3-Tbit/s/mm2 high bandwidth 3D-plug interfaces using 20-[Formula Omitted] pitch micro-bumps, 0.6-ns/mm low latency asynchronous interconnects, while the six chiplets are locally power-supplied with 156-mW/mm2 at 82%-peak-efficiency dc–dc converters through the active interposer. Thermal dissipation is studied showing the feasibility of such approach.
In the context of high-performance computing, the integration of more computing capabilities with generic cores or dedicated accelerators for artificial intelligence (AI) application is raising more and more challenges. Due to the increasing costs of advanced nodes and the difficulties of shrinking analog and circuit input output signals (IOs), alternative architecture solutions to single die are becoming mainstream. Chiplet-based systems using 3D technologies enable modular and scalable architecture and technology partitioning. Nevertheless, there are still limitations due to chiplet integration on passive interposers-silicon or organic. In this article we present the first CMOS active interposer, integrating: 1) power management without any external components; 2) distributed interconnects enabling any chiplet-to-chiplet communication; and3) system infrastructure, design-for-test, and circuit IOs. The IntAct circuit prototype integrates six chiplets in FDSOI 28-nm technology, which are 3D-stacked onto this active interposer in 65-nm process, offering a total of 96 computing cores. Full scalability of the computing system is achieved using an innovative scalable cache-coherent memory hierarchy, enabled by distributed network-on-chips, with 3-Tbit/s/mm 2 high bandwidth 3D-plug interfaces using 20-<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> pitch micro-bumps, 0.6-ns/mm low latency asynchronous interconnects, while the six chiplets are locally power-supplied with 156-mW/mm2 at 82%-peak-efficiency dc-dc converters through the active interposer. Thermal dissipation is studied showing the feasibility of such approach.
Author Dutoit, Denis
Arriordaz, Alexandre
Meunier, Quentin L.
Coudrain, Perceval
Gueugnot, Alain
Farcy, Alexis
Fuguet, Cesar
Cheramy, Severine
Moritz, Guillaume
Bernard, Christian
Garnier, Arnaud
Greiner, Alain
Miro-Panades, Ivan
Vivet, Pascal
Guthmuller, Eric
Clermidy, Fabien
Charbonnier, Jean
Harrand, Michel
Thuries, Sebastien
Pontes, Julian
Berger, Frederic
Thonnart, Yvain
Coriat, David
Arnaud, Lucile
Lattard, Didier
Durupt, Jean
Varreau, Didier
Pillonnet, Gael
Author_xml – sequence: 1
  givenname: Pascal
  orcidid: 0000-0002-7413-8243
  surname: Vivet
  fullname: Vivet, Pascal
  email: pascal.vivet@cea.fr
  organization: CEA, University Grenoble Alpes, Grenoble, France
– sequence: 2
  givenname: Eric
  surname: Guthmuller
  fullname: Guthmuller, Eric
  organization: CEA, University Grenoble Alpes, Grenoble, France
– sequence: 3
  givenname: Yvain
  orcidid: 0000-0001-7721-5796
  surname: Thonnart
  fullname: Thonnart, Yvain
  organization: CEA, University Grenoble Alpes, Grenoble, France
– sequence: 4
  givenname: Gael
  orcidid: 0000-0003-0539-7185
  surname: Pillonnet
  fullname: Pillonnet, Gael
  organization: CEA, University Grenoble Alpes, Grenoble, France
– sequence: 5
  givenname: Cesar
  surname: Fuguet
  fullname: Fuguet, Cesar
  organization: CEA, University Grenoble Alpes, Grenoble, France
– sequence: 6
  givenname: Ivan
  orcidid: 0000-0001-7719-661X
  surname: Miro-Panades
  fullname: Miro-Panades, Ivan
  organization: CEA, University Grenoble Alpes, Grenoble, France
– sequence: 7
  givenname: Guillaume
  surname: Moritz
  fullname: Moritz, Guillaume
  organization: CEA, University Grenoble Alpes, Grenoble, France
– sequence: 8
  givenname: Jean
  surname: Durupt
  fullname: Durupt, Jean
  organization: CEA, University Grenoble Alpes, Grenoble, France
– sequence: 9
  givenname: Christian
  surname: Bernard
  fullname: Bernard, Christian
  organization: CEA Grenoble, Grenoble, France
– sequence: 10
  givenname: Didier
  surname: Varreau
  fullname: Varreau, Didier
  organization: CEA Grenoble, Grenoble, France
– sequence: 11
  givenname: Julian
  orcidid: 0000-0002-1249-1631
  surname: Pontes
  fullname: Pontes, Julian
  organization: CEA Grenoble, Grenoble, France
– sequence: 12
  givenname: Sebastien
  surname: Thuries
  fullname: Thuries, Sebastien
  organization: CEA, University Grenoble Alpes, Grenoble, France
– sequence: 13
  givenname: David
  surname: Coriat
  fullname: Coriat, David
  organization: CEA, University Grenoble Alpes, Grenoble, France
– sequence: 14
  givenname: Michel
  orcidid: 0000-0003-4423-4805
  surname: Harrand
  fullname: Harrand, Michel
  organization: CEA, University Grenoble Alpes, Grenoble, France
– sequence: 15
  givenname: Denis
  surname: Dutoit
  fullname: Dutoit, Denis
  organization: CEA, University Grenoble Alpes, Grenoble, France
– sequence: 16
  givenname: Didier
  surname: Lattard
  fullname: Lattard, Didier
  organization: CEA, University Grenoble Alpes, Grenoble, France
– sequence: 17
  givenname: Lucile
  surname: Arnaud
  fullname: Arnaud, Lucile
  organization: CEA, University Grenoble Alpes, Grenoble, France
– sequence: 18
  givenname: Jean
  orcidid: 0000-0003-3769-3712
  surname: Charbonnier
  fullname: Charbonnier, Jean
  organization: CEA, University Grenoble Alpes, Grenoble, France
– sequence: 19
  givenname: Perceval
  orcidid: 0000-0003-1727-4529
  surname: Coudrain
  fullname: Coudrain, Perceval
  organization: CEA, University Grenoble Alpes, Grenoble, France
– sequence: 20
  givenname: Arnaud
  surname: Garnier
  fullname: Garnier, Arnaud
  organization: CEA, University Grenoble Alpes, Grenoble, France
– sequence: 21
  givenname: Frederic
  surname: Berger
  fullname: Berger, Frederic
  organization: CEA, University Grenoble Alpes, Grenoble, France
– sequence: 22
  givenname: Alain
  surname: Gueugnot
  fullname: Gueugnot, Alain
  organization: CEA, University Grenoble Alpes, Grenoble, France
– sequence: 23
  givenname: Alain
  surname: Greiner
  fullname: Greiner, Alain
  organization: LIP6 Lab, University Paris Sorbonne, Paris, France
– sequence: 24
  givenname: Quentin L.
  orcidid: 0000-0001-8848-8079
  surname: Meunier
  fullname: Meunier, Quentin L.
  organization: LIP6 Lab, University Paris Sorbonne, Paris, France
– sequence: 25
  givenname: Alexis
  surname: Farcy
  fullname: Farcy, Alexis
  organization: STMicroelectronics, Crolles, France
– sequence: 26
  givenname: Alexandre
  orcidid: 0000-0001-7926-3513
  surname: Arriordaz
  fullname: Arriordaz, Alexandre
  organization: Mentor, A Siemens Business, Montbonnot, France
– sequence: 27
  givenname: Severine
  orcidid: 0000-0002-1473-5572
  surname: Cheramy
  fullname: Cheramy, Severine
  organization: CEA, University Grenoble Alpes, Grenoble, France
– sequence: 28
  givenname: Fabien
  surname: Clermidy
  fullname: Clermidy, Fabien
  organization: CEA, University Grenoble Alpes, Grenoble, France
BackLink https://hal.science/hal-03072959$$DView record in HAL
BookMark eNp9kcFu1DAQhi3USmwLD4C4WOLEIcs4juOY2yoFWrRVKy0IbpaTnXRdtvbW9hZ4Cl4ZhywceuBkeeb7fo30n5Aj5x0S8oLBnDFQbz6uVu28hBLmHHjNK_aEzJgQTcEk_3pEZgCsKVQJ8JScxHibv1XVsBn5deHSok9v6YKqumh9QHodfI8x-kC_2LShK_uDthu722KKlJ8Vq2T6b7im3lHjaHbtA9KcgmHnIx6kMxtTsN0-ZfDPrvfOYZ8TjJsmN8GMy2v_PTuXxpkbvEOXnpHjwWwjPj-8p-Tz-3ef2vNiefXhol0si55LSIUQqhMc1wqQNR2HemDYibWqu1KKqhZgAKq16aTsB8VlBWoYGqlAYtl0Rgz8lLyecjdmq3fB3pnwU3tj9fliqccZcJClEuqBZfbVxO6Cv99jTPrW74PL5-mykiVnTVPLTMmJ6oOPMeCge5tMst6lYOxWM9BjU3psSo9N6UNT2WSPzL8H_c95OTkWEf_xqlQAquG_AXsln9o
CODEN IJSCBC
CitedBy_id crossref_primary_10_1109_JSSC_2024_3522355
crossref_primary_10_1109_MCAS_2023_3234727
crossref_primary_10_1145_3608098
crossref_primary_10_1145_3718487
crossref_primary_10_1109_TCPMT_2022_3174608
crossref_primary_10_3390_mi14020344
crossref_primary_10_1109_JSSC_2023_3283961
crossref_primary_10_1109_TPEL_2025_3580737
crossref_primary_10_1145_3729215
crossref_primary_10_1109_TCAD_2024_3447210
crossref_primary_10_1145_3762644
crossref_primary_10_1142_S0218126624410032
crossref_primary_10_1109_ACCESS_2024_3368152
crossref_primary_10_1109_TVLSI_2025_3583289
crossref_primary_10_1109_TCAD_2022_3197500
crossref_primary_10_1109_TC_2024_3457740
crossref_primary_10_1016_j_icheatmasstransfer_2022_106161
crossref_primary_10_1109_TCAD_2024_3455242
crossref_primary_10_1109_JSSC_2024_3401213
crossref_primary_10_1109_TVLSI_2024_3433429
crossref_primary_10_1115_1_4068767
crossref_primary_10_3390_electronics12071604
crossref_primary_10_1016_j_microrel_2023_115006
crossref_primary_10_1109_TCAD_2025_3531348
crossref_primary_10_1007_s11432_023_3800_9
crossref_primary_10_1109_TCAD_2023_3332832
crossref_primary_10_1109_TVLSI_2025_3567824
crossref_primary_10_1109_TPEL_2025_3581838
crossref_primary_10_1109_TVLSI_2025_3529699
crossref_primary_10_1016_j_rineng_2025_105965
crossref_primary_10_1016_j_vlsi_2024_102149
crossref_primary_10_1109_TCAD_2022_3168257
crossref_primary_10_3390_mi13020205
crossref_primary_10_1109_MDAT_2023_3309730
crossref_primary_10_1109_OJCAS_2024_3518754
crossref_primary_10_1109_JETCAS_2025_3592984
crossref_primary_10_1109_TCAD_2024_3399660
crossref_primary_10_1109_TED_2022_3205144
crossref_primary_10_1109_JMMCT_2024_3386842
crossref_primary_10_1109_TCSI_2021_3059228
crossref_primary_10_22399_ijcesen_2556
crossref_primary_10_1109_JSSC_2023_3343457
crossref_primary_10_1109_ACCESS_2022_3224451
crossref_primary_10_1109_TED_2023_3302825
crossref_primary_10_1007_s11432_023_3926_8
Cites_doi 10.1109/ISSCC.2018.8310173
10.1109/ECCE.2011.6064205
10.1109/TEST.2013.6651893
10.1109/ASAP.2018.8445107
10.1109/ASYNC.2019.00014
10.1109/3DIC48104.2019.9058905
10.1109/3DIC.2014.7152182
10.1145/2830772.2830832
10.1109/ISCA.2018.00066
10.23919/VLSIC.2019.8778161
10.1109/MSPEC.2019.8847587
10.1109/3DIC.2014.7152163
10.1109/TPEL.2015.2478850
10.1109/ACSSC.2014.7094761
10.1109/TCSI.2017.2767585
10.1109/DSD.2019.00068
10.1109/S3S.2017.8309222
10.1109/TPEL.2016.2530745
10.1109/NEWCAS.2017.8010109
10.1109/IOLTS.2017.8046240
10.1109/ETS.2013.6569349
10.1145/3313231.3352380
10.1109/ISSCC19947.2020.9063103
10.1109/TCSII.2020.2970724
10.1109/ISSCC19947.2020.9062927
10.1109/ISSCC19947.2020.9062957
10.1109/ISSCC.2018.8310172
10.1109/ASPDAC.2015.7058997
10.1109/JSSC.2016.2611497
10.1109/ISVLSI.2012.36
10.1109/JSSC.2014.2369503
10.1109/VLSI-SoC.2013.6673297
10.1109/ECTC.2019.00092
10.1109/ESSCIRC.2018.8494275
10.1109/ECTC.2019.00095
10.1109/ETS.2016.7519310
10.1109/MDAT.2015.2413759
10.1109/MDAT.2015.2424422
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
– notice: licence_http://creativecommons.org/publicdomain/zero
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
1XC
VOOES
DOI 10.1109/JSSC.2020.3036341
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-173X
EndPage 97
ExternalDocumentID oai:HAL:hal-03072959v1
10_1109_JSSC_2020_3036341
9290098
Genre orig-research
GrantInformation_xml – fundername: MASTER3D CT312 CATRENE Project
– fundername: SHARP CA109 CATRENE Project
– fundername: Hubeo+ CARNOT Project
– fundername: French National Program Programme d’Investissements d’Avenir, IRT Nanoelec
  grantid: ANR-10-AIRT-05
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
41~
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PZZ
RIA
RIE
RNS
TAE
TN5
UKR
VH1
AAYXX
CITATION
7SP
8FD
L7M
1XC
VOOES
ID FETCH-LOGICAL-c370t-559b53ed90e18b306f1eb5d96b2754650a004dab77cf937409ff87907e28ba5f3
IEDL.DBID RIE
ISICitedReferencesCount 87
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000602700400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9200
IngestDate Sat Nov 22 06:20:27 EST 2025
Mon Jun 30 10:23:35 EDT 2025
Sat Nov 29 02:50:20 EST 2025
Tue Nov 18 22:43:57 EST 2025
Wed Aug 27 02:32:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-559b53ed90e18b306f1eb5d96b2754650a004dab77cf937409ff87907e28ba5f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3769-3712
0000-0002-1473-5572
0000-0002-7413-8243
0000-0001-7719-661X
0000-0001-8848-8079
0000-0002-1249-1631
0000-0001-7721-5796
0000-0001-7926-3513
0000-0003-1727-4529
0000-0003-4423-4805
0000-0003-0539-7185
0000-0003-0656-2023
OpenAccessLink https://hal.science/hal-03072959
PQID 2472318867
PQPubID 85482
PageCount 19
ParticipantIDs proquest_journals_2472318867
crossref_citationtrail_10_1109_JSSC_2020_3036341
crossref_primary_10_1109_JSSC_2020_3036341
ieee_primary_9290098
hal_primary_oai_HAL_hal_03072959v1
PublicationCentury 2000
PublicationDate 2021-Jan.
2021-1-00
20210101
2021-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-Jan.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE journal of solid-state circuits
PublicationTitleAbbrev JSSC
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers
References ref13
ref15
ref53
chéramy (ref18) 2014; 5
ref54
santos (ref56) 2017
ref16
ref19
hellings (ref17) 2015
ref46
ref45
ref48
ref42
ref41
(ref51) 2014
ref43
ref7
sohn (ref11) 2016
ramm (ref2) 2008; 1
ref4
ref3
ref5
martinez (ref47) 2020
ref40
greenhill (ref6) 2017
wu (ref12) 2019
(ref8) 2017
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
torregiani (ref52) 2009
(ref50) 2011
ref1
ref39
ref38
(ref14) 2019
reiter (ref49) 2015
(ref44) 2020
graphics (ref55) 2017
quinne (ref10) 0
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
(ref9) 2020
References_xml – ident: ref4
  doi: 10.1109/ISSCC.2018.8310173
– ident: ref33
  doi: 10.1109/ECCE.2011.6064205
– year: 2017
  ident: ref8
  publication-title: CHIPS Program
– year: 2017
  ident: ref56
  article-title: Thermal exploration and sign-off analysis for advanced 3D integration
  publication-title: Proc Design Track DAC Conf
– year: 2019
  ident: ref14
  publication-title: Open Computer Project
– ident: ref43
  doi: 10.1109/TEST.2013.6651893
– ident: ref25
  doi: 10.1109/ASAP.2018.8445107
– ident: ref37
  doi: 10.1109/ASYNC.2019.00014
– ident: ref13
  doi: 10.1109/3DIC48104.2019.9058905
– ident: ref53
  doi: 10.1109/3DIC.2014.7152182
– volume: 1
  year: 2008
  ident: ref2
  publication-title: Handbook of 3D Integration Technology and Applications of 3D
– ident: ref27
  doi: 10.1145/2830772.2830832
– ident: ref19
  doi: 10.1109/ISCA.2018.00066
– volume: 5
  start-page: 35
  year: 2014
  ident: ref18
  article-title: The active-interposer concept for high-performance chip-to-chip connections
  publication-title: Chip Scale Rev
– year: 2020
  ident: ref9
  publication-title: 3 Ways Chiplets are Remaking Processors
– ident: ref5
  doi: 10.23919/VLSIC.2019.8778161
– ident: ref7
  doi: 10.1109/MSPEC.2019.8847587
– ident: ref54
  doi: 10.1109/3DIC.2014.7152163
– start-page: 222
  year: 2015
  ident: ref17
  article-title: Active-lite interposer for 2.5 & 3D integration
  publication-title: Proc Symp VLSI Technol Circuits
– ident: ref35
  doi: 10.1109/TPEL.2015.2478850
– year: 2019
  ident: ref12
  article-title: 14.3 a 43pJ/Cycle non-volatile microcontroller with 4.7s Shutdown/Wake-up integrating 2.3-bit/Cell resistive RAM and resilience techniques
  publication-title: IEEE Int Solid-State Circuits Conf (ISSCC) Dig Tech Papers
– ident: ref48
  doi: 10.1109/ACSSC.2014.7094761
– ident: ref32
  doi: 10.1109/TCSI.2017.2767585
– ident: ref1
  doi: 10.1109/DSD.2019.00068
– ident: ref22
  doi: 10.1109/S3S.2017.8309222
– ident: ref34
  doi: 10.1109/TPEL.2016.2530745
– ident: ref26
  doi: 10.1109/NEWCAS.2017.8010109
– ident: ref30
  doi: 10.1109/IOLTS.2017.8046240
– year: 2014
  ident: ref51
– ident: ref41
  doi: 10.1109/ETS.2013.6569349
– year: 2020
  ident: ref44
  publication-title: IEEE 1838 WG
– ident: ref20
  doi: 10.1145/3313231.3352380
– ident: ref15
  doi: 10.1109/ISSCC19947.2020.9063103
– start-page: 55
  year: 2009
  ident: ref52
  article-title: Thermal analysis of hot spots in advanced 3D-stacked structures
  publication-title: Proc Int Workshop Therm Invest ICs Syst
– ident: ref40
  doi: 10.1109/TCSII.2020.2970724
– ident: ref21
  doi: 10.1109/ISSCC19947.2020.9062927
– ident: ref16
  doi: 10.1109/ISSCC19947.2020.9062957
– start-page: 54
  year: 2017
  ident: ref6
  article-title: A 14nm 1GHz FPGA with 2.5D transceiver integration
  publication-title: IEEE Int Solid-State Circuits Conf (ISSCC) Dig Tech Papers
– ident: ref31
  doi: 10.1109/ISSCC.2018.8310172
– ident: ref38
  doi: 10.1109/ASPDAC.2015.7058997
– ident: ref36
  doi: 10.1109/JSSC.2016.2611497
– ident: ref28
  doi: 10.1109/ISVLSI.2012.36
– year: 2011
  ident: ref50
  publication-title: Calibre 3D STACK
– ident: ref46
  doi: 10.1109/JSSC.2014.2369503
– ident: ref29
  doi: 10.1109/VLSI-SoC.2013.6673297
– start-page: 1
  year: 2015
  ident: ref49
  article-title: Multi-Die IC Design Tutorial
  publication-title: Proc 3D ASIP Conf
– year: 2020
  ident: ref47
  article-title: ExaNoDe: Combined integration of chiplets on active interposer with bare dice in a multi-chip-module for heterogeneous and scalable high performance compute nodes
  publication-title: Proc IEEE VLSI Conf
– ident: ref23
  doi: 10.1109/ECTC.2019.00092
– ident: ref24
  doi: 10.1109/ESSCIRC.2018.8494275
– start-page: 1
  year: 0
  ident: ref10
  article-title: Quality in 3D assembly-Is, known good die good enough?
  publication-title: Proc IEEE Int 3D Syst Integr Conf (3DIC)
– ident: ref3
  doi: 10.1109/ECTC.2019.00095
– start-page: 316
  year: 2016
  ident: ref11
  article-title: 18.2 a 1.2 V 20nm 307GB/s HBM DRAM with at-speed wafer-level I/O test scheme and adaptive refresh considering temperature distribution
  publication-title: IEEE Int Solid-State Circuits Conf (ISSCC) Dig Tech Papers
– ident: ref45
  doi: 10.1109/ETS.2016.7519310
– year: 2017
  ident: ref55
  article-title: A complete guide to 3D chip-package thermal co-design, 10 key considerations
– ident: ref39
  doi: 10.1109/MDAT.2015.2413759
– ident: ref42
  doi: 10.1109/MDAT.2015.2424422
SSID ssj0014481
Score 2.626407
Snippet In the context of high-performance computing, the integration of more computing capabilities with generic cores or dedicated accelerators for artificial...
SourceID hal
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 79
SubjectTerms 3D technology
Accelerators
active interposer
Analog circuits
Artificial intelligence
Bridge circuits
chiplet
Circuit design
CMOS
CMOS technology
Communications systems
Computation
Computer architecture
Computer networks
Converters
Distributed memory
Electric power distribution
Energy conversion efficiency
Engineering Sciences
Input output
Integrated circuit interconnections
Interconnections
Memory management
Micro and nanotechnologies
Microelectronics
Microprocessors
Network latency
network-on-chip (NoC)
Power management
Power system management
Substrates
thermal dissipation
Three-dimensional displays
Title IntAct: A 96-Core Processor With Six Chiplets 3D-Stacked on an Active Interposer With Distributed Interconnects and Integrated Power Management
URI https://ieeexplore.ieee.org/document/9290098
https://www.proquest.com/docview/2472318867
https://hal.science/hal-03072959
Volume 56
WOSCitedRecordID wos000602700400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-173X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014481
  issn: 0018-9200
  databaseCode: RIE
  dateStart: 19660101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB96xQd98KuKp1UW8UmMzW4-drdv4dpSRUrhFPsWsl_cgSRylxb_C_9lZzZprFQE38JmNgR-Ozvz25mdAXgjA7caTV2iBRXVdjJPVBNCImxpfShVaYyKzSbk2Zm6uNDnO_BuugvjvY_JZ_49PcZYvuvsJR2VHaApp_qXM5hJWQ53taaIAdKMoTseRwVG6McIJk_1wcflcoFMUCBBpbBlzv-wQbMVZUDG1iq39uNoZE4e_N_vPYT7ozPJqgH9R7Dj28dw70aJwT34-aHtK9sfsorpMlngJ9l4N6DbsK_rfsWW6x9ssaLz9n7LsqME3U_UbMe6ljUtq-J-yIbcxA7X6zDpiOrtUqssFIzvLCXMWPxC0w4jsQaFY-fUhY39TrJ5Al9Ojj8vTpOxCUNiM5n2CTIOU2Te6dRzZZBgBO5N4XRphKRG6mmDauYaI6UN6OogXQxBSaTcXijTFCF7Crtt1_pnwJyzJm8KzYXTuRC8UUEVRebQQpaZ48Uc0mtYajtWKKdGGd_qyFRSXROSNSFZj0jO4e005ftQnuNfwq8R60mOCmufVp9qGqOtTuhCX6HQHiE7SY2gzmH_emnUo5Zva5FLdI-VKuXzv896AXcF5cDEI5t92O03l_4l3LFX_Xq7eRUX8C-Qf-vL
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA93p6A--HWKq6cG8Ums16RNk_hW9jz2dF0O9sR7C20-2AVpZbd3-F_4LzuT9qqiCL6VdFIKv0xmfpnJDCEvZWBWg6lLNMei2k7miapCSLgtrA-FKupaxWYTcrFQ5-f6dIe8Hu_CeO9j8pl_g48xlu9ae4FHZYdgyrH-5S65JvKcp_1trTFmAESj74_HQIUB_CGGyVJ9-H65nAIX5EBRMXCZs9-s0O4KcyBjc5U_duRoZo7v_N8P3iW3B3eSlj3-98iOb-6TW78UGdwn30-arrTdW1pSXSRT-CQdbge0G_p53a3ocv2NTld44t5taXaUgAMKuu1o29CqoWXcEWmfndjCiu0nHWHFXWyWBYLxncWUGQtfqJp-JFahcPQU-7DRn2k2D8in43dn01kytGFIbCbTLgHOUYvMO516pmqgGIH5Wjhd1FxiK_W0AkVzVS2lDeDsAGEMQUkg3Z6ruhIhe0j2mrbxjwh1ztZ5JTTjTuecs0oFJUTmwEYWmWNiQtIrWIwdapRjq4wvJnKVVBtE0iCSZkByQl6NU772BTr-JfwCsB7lsLT2rJwbHMPNjmuhL0FoH5EdpQZQJ-TgammYQc-3hucSHGSlCvn477Oekxuzs49zMz9ZfHhCbnLMiIkHOAdkr9tc-Kfkur3s1tvNs7iYfwD5nu8S
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IntAct%3A+A+96-Core+Processor+With+Six+Chiplets+3D-Stacked+on+an+Active+Interposer+With+Distributed+Interconnects+and+Integrated+Power+Management&rft.jtitle=IEEE+journal+of+solid-state+circuits&rft.au=Vivet%2C+Pascal&rft.au=Guthmuller%2C+Eric&rft.au=Thonnart%2C+Yvain&rft.au=Pillonnet%2C+Gael&rft.date=2021-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9200&rft.eissn=1558-173X&rft.volume=56&rft.issue=1&rft.spage=79&rft_id=info:doi/10.1109%2FJSSC.2020.3036341&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9200&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9200&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9200&client=summon