On coding without restrictions for the AWGN channel
Many coded modulation constructions, such as lattice codes, are visualized as restricted subsets of an infinite constellation (IC) of points in the n-dimensional Euclidean space. The author regards an IC as a code without restrictions employed for the AWGN channel. For an IC the concept of coding ra...
Uloženo v:
| Vydáno v: | IEEE transactions on information theory Ročník 40; číslo 2; s. 409 - 417 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.03.1994
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0018-9448, 1557-9654 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Many coded modulation constructions, such as lattice codes, are visualized as restricted subsets of an infinite constellation (IC) of points in the n-dimensional Euclidean space. The author regards an IC as a code without restrictions employed for the AWGN channel. For an IC the concept of coding rate is meaningless and the author uses, instead of coding rate, the normalized logarithmic density (NLD). The maximum value C/sub /spl infin// such that, for any NLD less than C/sub /spl infin//, it is possible to construct an PC with arbitrarily small decoding error probability, is called the generalized capacity of the AWGN channel without restrictions. The author derives exponential upper and lower bounds for the decoding error probability of an IC, expressed in terms of the NLD. The upper bound is obtained by means of a random coding method and it is very similar to the usual random coding bound for the AWGN channel. The exponents of these upper and lower bounds coincide for high values of the NLD, thereby enabling derivation of the generalized capacity of the AWGN channel without restrictions. It is also shown that the exponent of the random coding bound can be attained by linear ICs (lattices), implying that lattices play the same role with respect to the AWGN channel as linear-codes do with respect to a discrete symmetric channel.< > |
|---|---|
| AbstractList | Many coded modulation constructions, such as lattice codes, are visualized as restricted subsets of an infinite constellation (IC) of points in the n-dimensional Euclidean space. The author regards an IC as a code without restrictions employed for the AWGN channel. For an IC the concept of coding rate is meaningless and the author uses, instead of coding rate, the normalized logarithmic density (NLD). The maximum value C({infinity}) such that, for any NLD less than C({infinity}), it is possible to construct an PC with arbitrarily small decoding error probability, is called the generalized capacity of the AWGN channel without restrictions. The author derives exponential upper and lower bounds for the decoding error probability of an IC, expressed in terms of the NLD. The upper bound is obtained by means of a random coding method and it is very similar to the usual random coding bound for the AWGN channel. The exponents of these upper and lower bounds coincide for high values of the NLD, thereby enabling derivation of the generalized capacity of the AWGN channel without restrictions. It is also shown that the exponent of the random coding bound can be attained by linear ICs (lattices), implying that lattices play the same role with respect to the AWGN channel as linear-codes do with respect to a discrete symmetric channel Many coded modulation constructions, such as lattice codes, are visualized as restricted subsets of an infinite constellation (IC) of points in the n-dimensional Euclidean space. The author regards an IC as a code without restrictions employed for the AWGN channel. For an IC the concept of coding rate is meaningless and the author uses, instead of coding rate, the normalized logarithmic density (NLD). The maximum value C/sub /spl infin// such that, for any NLD less than C/sub /spl infin//, it is possible to construct an PC with arbitrarily small decoding error probability, is called the generalized capacity of the AWGN channel without restrictions. The author derives exponential upper and lower bounds for the decoding error probability of an IC, expressed in terms of the NLD. The upper bound is obtained by means of a random coding method and it is very similar to the usual random coding bound for the AWGN channel. The exponents of these upper and lower bounds coincide for high values of the NLD, thereby enabling derivation of the generalized capacity of the AWGN channel without restrictions. It is also shown that the exponent of the random coding bound can be attained by linear ICs (lattices), implying that lattices play the same role with respect to the AWGN channel as linear-codes do with respect to a discrete symmetric channel.< > Exponential upper and lower bounds for the decoding error probability of an infinite constellation are derived, expressed in terms of the normalized logarithmic density. |
| Author | Poltyrev, G. |
| Author_xml | – sequence: 1 givenname: G. surname: Poltyrev fullname: Poltyrev, G. organization: Dept. of Electr. Eng., Tel Aviv Univ., Israel |
| BookMark | eNptkM1LAzEQxYNUsK0evHpaPAge1uZjkybHUrQKxV4UjyHNJjZlm9Qki_jfu2WLh-JpGOb3Hm_eCAx88AaAawQfEIJigvgDQRgxcgaGiNJpKRitBmAIIeKlqCp-AUYpbbu1oggPAVn5Qofa-c_i2-VNaHMRTcrR6eyCT4UNscgbU8w-Fq-F3ijvTXMJzq1qkrk6zjF4f3p8mz-Xy9XiZT5blppMYS4pZZQQYTGrRU1qy6f1WnFtbYVRTZmmDHOL15CwSjHMFK21EMYoZdBaaK3IGNz1vvsYvtouldy5pE3TKG9CmyTmnRNiqANvT8BtaKPvskkkqIAQYtxBkx7SMaQUjZXaZXX4MkflGomgPDQoEZd9g53i_kSxj26n4s-_7E3POmPMH3c8_gJXC3jx |
| CODEN | IETTAW |
| CitedBy_id | crossref_primary_10_1007_s11277_016_3596_y crossref_primary_10_1109_TIT_2018_2875004 crossref_primary_10_1109_TIT_2015_2451623 crossref_primary_10_1049_iet_com_2015_0713 crossref_primary_10_1109_TIT_2015_2394782 crossref_primary_10_1017_jpr_2016_60 crossref_primary_10_1002_ett_1507 crossref_primary_10_1239_aap_1427814578 crossref_primary_10_1134_S003294601701001X crossref_primary_10_1049_iet_com_2014_0590 crossref_primary_10_1215_00127094_2018_0018 crossref_primary_10_1109_ACCESS_2017_2654064 crossref_primary_10_1109_TIT_2011_2158876 crossref_primary_10_1109_TIT_2022_3189542 crossref_primary_10_1109_TIT_2018_2883119 crossref_primary_10_1109_TIT_2023_3260950 crossref_primary_10_1109_TIT_2013_2259139 crossref_primary_10_1109_TIT_2022_3148196 crossref_primary_10_1109_TIT_2004_834753 crossref_primary_10_1109_TIT_2015_2494061 crossref_primary_10_1109_TIT_2023_3334032 crossref_primary_10_1109_TIT_2018_2794327 crossref_primary_10_1109_TIT_2011_2165816 crossref_primary_10_1109_TIT_2017_2721421 crossref_primary_10_1109_TCOMM_2018_2876113 crossref_primary_10_1109_TIT_2017_2778158 crossref_primary_10_1109_JCN_2009_6388387 crossref_primary_10_1109_TCOMM_2017_2672662 crossref_primary_10_1109_TIT_2019_2938990 crossref_primary_10_1109_TIT_2008_917684 crossref_primary_10_1109_TIT_2002_1003821 crossref_primary_10_1002_ett_2688 crossref_primary_10_1109_LCOMM_2014_2354362 crossref_primary_10_1109_TCOMM_2017_2762323 crossref_primary_10_1007_s11265_021_01735_2 crossref_primary_10_1109_TCOMM_2016_2594286 crossref_primary_10_1017_S0001867800007679 crossref_primary_10_1109_ACCESS_2016_2632038 crossref_primary_10_1109_TCOMM_2013_042313_120746 crossref_primary_10_1109_TIT_2015_2453348 crossref_primary_10_1109_TIT_2015_2496352 crossref_primary_10_1109_TIT_2004_834787 crossref_primary_10_4304_jnw_8_6_1440_1447 crossref_primary_10_1109_TIT_2013_2292533 crossref_primary_10_1186_s13638_016_0763_5 crossref_primary_10_1109_18_841165 crossref_primary_10_1109_TIT_2018_2875541 crossref_primary_10_1109_TWC_2014_2338863 crossref_primary_10_1109_TCOMM_2017_2736563 crossref_primary_10_1007_s10623_017_0451_4 crossref_primary_10_1109_TIT_2016_2571719 crossref_primary_10_4304_jnw_8_8_1899_1905 crossref_primary_10_1186_1687_1499_2014_196 crossref_primary_10_1109_TIT_2019_2933219 crossref_primary_10_1109_TIT_2010_2068750 crossref_primary_10_1109_TIT_2014_2332343 crossref_primary_10_1109_TIT_2012_2224145 crossref_primary_10_1109_TCOMM_2016_2633343 crossref_primary_10_1109_TCOMM_2016_2638839 crossref_primary_10_1109_TIT_2011_2170102 crossref_primary_10_1109_TIT_2017_2788873 crossref_primary_10_1109_TIT_2018_2839181 crossref_primary_10_1109_TIT_2014_2343226 crossref_primary_10_1109_TIT_2014_2359192 crossref_primary_10_1109_LCOMM_2016_2610961 crossref_primary_10_1109_TIT_2022_3147834 crossref_primary_10_1109_TIT_2010_2069150 crossref_primary_10_1109_TCOMM_2013_061913_120278 crossref_primary_10_1109_TIT_2005_855591 crossref_primary_10_1109_TIT_2012_2184075 crossref_primary_10_1109_TIT_2016_2515720 crossref_primary_10_1186_s13638_015_0483_2 crossref_primary_10_1016_j_dsp_2025_105088 crossref_primary_10_1109_TIT_2015_2496308 crossref_primary_10_1109_TIT_2009_2032853 crossref_primary_10_1109_TIT_2011_2181938 crossref_primary_10_1109_TIT_2020_3008973 crossref_primary_10_1007_s10623_018_0573_3 crossref_primary_10_1109_JPROC_2010_2094170 crossref_primary_10_1109_18_641543 crossref_primary_10_1109_TCOMM_2016_2597852 crossref_primary_10_1109_TIT_2005_862077 |
| Cites_doi | 10.1109/49.29612 10.1016/S0924-6509(08)70411-2 10.1109/18.21245 10.1109/18.133243 10.1007/978-1-4757-2016-7 10.1109/18.335935 10.1002/j.1538-7305.1959.tb03905.x 10.1109/18.335901 |
| ContentType | Journal Article |
| Copyright | Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 1994 |
| Copyright_xml | – notice: Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 1994 |
| DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/18.312163 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1557-9654 |
| EndPage | 417 |
| ExternalDocumentID | 2701186 10_1109_18_312163 312163 |
| Genre | Feature |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACGOD ACIWK AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 VJK AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D RIG |
| ID | FETCH-LOGICAL-c370t-5565339f26d9d3df87dba8cff421d56c5628f2b0364a626a5dc99eeaae1b9cca3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 72 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=10_1109_18_312163&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9448 |
| IngestDate | Sun Sep 28 04:31:52 EDT 2025 Fri Jul 25 03:21:52 EDT 2025 Tue Nov 18 21:24:06 EST 2025 Sat Nov 29 02:54:41 EST 2025 Tue Aug 26 16:39:26 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c370t-5565339f26d9d3df87dba8cff421d56c5628f2b0364a626a5dc99eeaae1b9cca3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| PQID | 195900022 |
| PQPubID | 36024 |
| PageCount | 9 |
| ParticipantIDs | ieee_primary_312163 proquest_journals_195900022 proquest_miscellaneous_28421161 crossref_citationtrail_10_1109_18_312163 crossref_primary_10_1109_18_312163 |
| PublicationCentury | 1900 |
| PublicationDate | 1994-03-01 |
| PublicationDateYYYYMMDD | 1994-03-01 |
| PublicationDate_xml | – month: 03 year: 1994 text: 1994-03-01 day: 01 |
| PublicationDecade | 1990 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on information theory |
| PublicationTitleAbbrev | TIT |
| PublicationYear | 1994 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref8 ref7 conway (ref1) 1988 angot (ref9) 1957 ref4 ref3 ref6 ref10 gallager (ref5) 1968 ref2 |
| References_xml | – year: 1957 ident: ref9 publication-title: Complements de mathematiques – ident: ref8 doi: 10.1109/49.29612 – ident: ref6 doi: 10.1016/S0924-6509(08)70411-2 – ident: ref2 doi: 10.1109/18.21245 – ident: ref3 doi: 10.1109/18.133243 – year: 1988 ident: ref1 publication-title: Sphere Packings Lattices and Groups doi: 10.1007/978-1-4757-2016-7 – ident: ref10 doi: 10.1109/18.335935 – ident: ref4 doi: 10.1002/j.1538-7305.1959.tb03905.x – year: 1968 ident: ref5 publication-title: Information Theory and Reliable Communication – ident: ref7 doi: 10.1109/18.335901 |
| SSID | ssj0014512 |
| Score | 1.8729179 |
| Snippet | Many coded modulation constructions, such as lattice codes, are visualized as restricted subsets of an infinite constellation (IC) of points in the... Exponential upper and lower bounds for the decoding error probability of an infinite constellation are derived, expressed in terms of the normalized... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 409 |
| SubjectTerms | AWGN channels Capacity planning Constellation diagram Cryptography Decoding Error probability Lattices Modular construction Modulation coding Probability Upper bound Visualization |
| Title | On coding without restrictions for the AWGN channel |
| URI | https://ieeexplore.ieee.org/document/312163 https://www.proquest.com/docview/195900022 https://www.proquest.com/docview/28421161 |
| Volume | 40 |
| WOSCitedRecordID | wos10_1109_18_312163&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9654 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014512 issn: 0018-9448 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbYxAEODAaIMR4R4sCl29JnckSIwWlwALFblSapNGlq0dry-3HSh0Dswq1q3aqy6_pzHH8GuPVdnfCZ7W5PheMLHjiMC0xV_ChiCM9VoqQdNhEtFmy55K8Nz7bthdFa281nemIObS1f5bIyS2VTj7oIH3rQi6KwbtXqCgZ-QGticIr-iylHQyJEZ3xK2aS-8VfosbNU_vyAbVSZD_71Podw0IBHcl9b-wh2dDaEQTuYgTR-OoT9HyyDx-C9ZETmJkYRs-qaVyUxAzk2K9vSUBCErQRhILn_eFoQ0wic6fUJvM8f3x6enWZWgiO9aFY6AQIzz-OpGyquPJWySCWCyTT1XaqCUCLMYambmKqjwBxGBEpyrrUQmiYcreidQj_LM30GJEglV1r6qQi0TzFeIcISCpGZzzQCGjqCu1aNsWyIxM08i3VsE4oZjymLa9WM4KYT_azZM7YJDY1qO4H27Lg1Tdy4VREbJhxL2TOC6-4q-oMpcohM51URY7jFnDak51ufOoa9mgzZbCK7gH65qfQl7MqvclVsruwn9Q0l-MkM |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4ScCBxwAxBixCHLiULW26JkeEeIkxOAyxW5UmqTRpatHW8vtx0m4CsQu3qnWryq7rz3H8GeCS-SYRXdfdnkqPSRF6XEhMVVgUcYTnOtHKDZuIBgM-Gom3mmfb9cIYY9zmM3NtD10tX-eqtEtlnYD6CB9WYT1kmPZUzVqLkgELaUUNTtGDMemoaYRoV3Qov65u_RV83DSVP79gF1fud__1RnuwU8NHclPZex9WTNaA3floBlJ7agO2f_AMHkDwmhGV2yhF7LprXhbEjuSYjl1Tw4wgcCUIBMnNx8OA2FbgzEwO4f3-bnj76NXTEjwVRN3CCxGaBYFI_Z4WOtApj3QiuUpT5lMd9hQCHZ76ia07SsxiZKiVEMZIaWgi0I7BEaxleWaOgYSpEtoolsrQMIoRCzGW1IjNGDcIaWgTruZqjFVNJW4nWkxil1J0RUx5XKmmCRcL0c-KP2OZUMOqdiEwP9uamyauHWsWWy4cR9rThPbiKnqELXPIzOTlLMaAi1ltj54sfWobNh-HL_24_zR4bsFWRY1st5SdwloxLc0ZbKivYjybnrvP6xvDucxT |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+coding+without+restrictions+for+the+AWGN+channel&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Poltyrev%2C+G.&rft.date=1994-03-01&rft.pub=IEEE&rft.issn=0018-9448&rft.volume=40&rft.issue=2&rft.spage=409&rft.epage=417&rft_id=info:doi/10.1109%2F18.312163&rft.externalDocID=312163 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon |