Deep Representation-Based Feature Extraction and Recovering for Finger-Vein Verification

Finger-vein biometrics has been extensively investigated for personal verification. Despite recent advances in finger-vein verification, current solutions completely depend on domain knowledge and still lack the robustness to extract finger-vein features from raw images. This paper proposes a deep l...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on information forensics and security Ročník 12; číslo 8; s. 1816 - 1829
Hlavní autoři: Qin, Huafeng, El-Yacoubi, Mounim A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.08.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Témata:
ISSN:1556-6013, 1556-6021
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Finger-vein biometrics has been extensively investigated for personal verification. Despite recent advances in finger-vein verification, current solutions completely depend on domain knowledge and still lack the robustness to extract finger-vein features from raw images. This paper proposes a deep learning model to extract and recover vein features using limited a priori knowledge. First, based on a combination of the known state-of-the-art handcrafted finger-vein image segmentation techniques, we automatically identify two regions: a clear region with high separability between finger-vein patterns and background, and an ambiguous region with low separability between them. The first is associated with pixels on which all the above-mentioned segmentation techniques assign the same segmentation label (either foreground or background), while the second corresponds to all the remaining pixels. This scheme is used to automatically discard the ambiguous region and to label the pixels of the clear region as foreground or background. A training data set is constructed based on the patches centered on the labeled pixels. Second, a convolutional neural network (CNN) is trained on the resulting data set to predict the probability of each pixel of being foreground (i.e., vein pixel), given a patch centered on it. The CNN learns what a finger-vein pattern is by learning the difference between vein patterns and background ones. The pixels in any region of a test image can then be classified effectively. Third, we propose another new and original contribution by developing and investigating a fully convolutional network to recover missing finger-vein patterns in the segmented image. The experimental results on two public finger-vein databases show a significant improvement in terms of finger-vein verification accuracy.
AbstractList Finger-vein biometrics has been extensively investigated for personal verification. Despite recent advances in finger-vein verification, current solutions completely depend on domain knowledge and still lack the robustness to extract finger-vein features from raw images. This paper proposes a deep learning model to extract and recover vein features using limited a priori knowledge. First, based on a combination of the known state-of-the-art handcrafted finger-vein image segmentation techniques, we automatically identify two regions: a clear region with high separability between finger-vein patterns and background, and an ambiguous region with low separability between them. The first is associated with pixels on which all the above-mentioned segmentation techniques assign the same segmentation label (either foreground or background), while the second corresponds to all the remaining pixels. This scheme is used to automatically discard the ambiguous region and to label the pixels of the clear region as foreground or background. A training data set is constructed based on the patches centered on the labeled pixels. Second, a convolutional neural network (CNN) is trained on the resulting data set to predict the probability of each pixel of being foreground (i.e., vein pixel), given a patch centered on it. The CNN learns what a finger-vein pattern is by learning the difference between vein patterns and background ones. The pixels in any region of a test image can then be classified effectively. Third, we propose another new and original contribution by developing and investigating a fully convolutional network to recover missing finger-vein patterns in the segmented image. The experimental results on two public finger-vein databases show a significant improvement in terms of finger-vein verification accuracy
Finger-vein biometrics has been extensively investigated for personal verification. Despite recent advances in finger-vein verification, current solutions completely depend on domain knowledge and still lack the robustness to extract finger-vein features from raw images. This paper proposes a deep learning model to extract and recover vein features using limited a priori knowledge. First, based on a combination of the known state-of-the-art handcrafted finger-vein image segmentation techniques, we automatically identify two regions: a clear region with high separability between finger-vein patterns and background, and an ambiguous region with low separability between them. The first is associated with pixels on which all the above-mentioned segmentation techniques assign the same segmentation label (either foreground or background), while the second corresponds to all the remaining pixels. This scheme is used to automatically discard the ambiguous region and to label the pixels of the clear region as foreground or background. A training data set is constructed based on the patches centered on the labeled pixels. Second, a convolutional neural network (CNN) is trained on the resulting data set to predict the probability of each pixel of being foreground (i.e., vein pixel), given a patch centered on it. The CNN learns what a finger-vein pattern is by learning the difference between vein patterns and background ones. The pixels in any region of a test image can then be classified effectively. Third, we propose another new and original contribution by developing and investigating a fully convolutional network to recover missing finger-vein patterns in the segmented image. The experimental results on two public finger-vein databases show a significant improvement in terms of finger-vein verification accuracy.
Author Huafeng Qin
El-Yacoubi, Mounim A.
Author_xml – sequence: 1
  givenname: Huafeng
  orcidid: 0000-0003-4911-0393
  surname: Qin
  fullname: Qin, Huafeng
– sequence: 2
  givenname: Mounim A.
  surname: El-Yacoubi
  fullname: El-Yacoubi, Mounim A.
BackLink https://hal.science/hal-01587285$$DView record in HAL
BookMark eNp9kE1Lw0AQhhepYP34AeIl4MlD6k6yXzlqNSoUBD-Kt2W7mehKTeImFf33bkztwYOnGWaedxieXTKq6goJOQQ6AaDZ6cNNfj9JKMhJIlQmE7ZFxsC5iAVNYLTpId0hu237SiljINSYPF0gNtEdNh5brDrTubqKz02LRZSj6VYeo8vPzhvbLyJTFYG19Qd6Vz1HZe2jPDTo4zm6KpqHcensz5F9sl2aZYsH67pHHvPLh-l1PLu9upmezWKbStrFrFScQlayEguessxmhUHGlBRUJnzBU5OVqABBLZRAMDYFwzOqFqkxQgib7pGT4e6LWerGuzfjv3RtnL4-m-l-RoErmSj-AYE9HtjG1-8rbDv9Wq98Fd7TEKTRhEEiAyUHyvq6bT2W2rpBTPDglhqo7pXrXrnuleu18pCEP8nfh_7LHA0Zh4gbXqqMBgnpN4UyjZE
CODEN ITIFA6
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3226888
crossref_primary_10_1007_s10916_018_1104_5
crossref_primary_10_1007_s11633_022_1341_4
crossref_primary_10_1016_j_neucom_2018_02_042
crossref_primary_10_1016_j_neucom_2018_10_042
crossref_primary_10_1049_iet_bmt_2018_5130
crossref_primary_10_1109_ACCESS_2020_2990966
crossref_primary_10_1109_TCSVT_2023_3334825
crossref_primary_10_1109_TETCI_2024_3398022
crossref_primary_10_4018_IJEIS_2019010106
crossref_primary_10_1016_j_future_2019_07_003
crossref_primary_10_1109_TIM_2022_3200087
crossref_primary_10_1109_ACCESS_2019_2960411
crossref_primary_10_1109_TCSVT_2022_3227385
crossref_primary_10_3389_fnbot_2022_1065099
crossref_primary_10_1016_j_engappai_2025_110586
crossref_primary_10_1109_TIFS_2019_2924553
crossref_primary_10_1007_s00521_025_11363_7
crossref_primary_10_1016_j_patcog_2024_111064
crossref_primary_10_1007_s10489_021_02619_5
crossref_primary_10_1145_3329784
crossref_primary_10_3390_info10040145
crossref_primary_10_3390_s18072296
crossref_primary_10_1109_TIFS_2023_3258252
crossref_primary_10_1109_LSP_2018_2857207
crossref_primary_10_1109_ACCESS_2020_2984711
crossref_primary_10_1109_ACCESS_2019_2950698
crossref_primary_10_1109_TIFS_2023_3340915
crossref_primary_10_1109_TIFS_2018_2866330
crossref_primary_10_1109_JSEN_2022_3177472
crossref_primary_10_1109_TIFS_2024_3468898
crossref_primary_10_1109_TIM_2024_3400355
crossref_primary_10_1002_tee_23490
crossref_primary_10_1007_s00521_021_06630_2
crossref_primary_10_3390_s21144635
crossref_primary_10_1109_TIFS_2023_3238546
crossref_primary_10_3390_sym14122686
crossref_primary_10_1109_ACCESS_2019_2901335
crossref_primary_10_1016_j_patcog_2023_109643
crossref_primary_10_1109_TCSVT_2024_3404865
crossref_primary_10_1007_s00542_017_3701_5
crossref_primary_10_1016_j_ijleo_2022_169717
crossref_primary_10_1109_TIFS_2023_3243782
crossref_primary_10_1109_TIM_2022_3154834
crossref_primary_10_1109_TIM_2019_2921135
crossref_primary_10_1016_j_patcog_2024_111208
crossref_primary_10_1109_ACCESS_2020_2979902
crossref_primary_10_1109_TIM_2021_3109978
crossref_primary_10_3390_e21111033
crossref_primary_10_1016_j_inffus_2021_10_004
crossref_primary_10_1007_s10772_021_09807_1
crossref_primary_10_1109_ACCESS_2020_2996646
crossref_primary_10_1007_s11704_021_0475_9
crossref_primary_10_1109_TIFS_2021_3118894
crossref_primary_10_1109_ACCESS_2020_2964788
crossref_primary_10_1016_j_knosys_2021_107159
crossref_primary_10_1049_iet_bmt_2018_5245
crossref_primary_10_1002_cpe_5697
crossref_primary_10_1016_j_measen_2022_100583
crossref_primary_10_3390_sym17030420
crossref_primary_10_1016_j_ins_2019_05_045
crossref_primary_10_3390_s25072279
crossref_primary_10_1109_ACCESS_2020_2967771
crossref_primary_10_3390_s21010132
crossref_primary_10_1016_j_infrared_2023_104728
crossref_primary_10_1109_TIFS_2022_3172218
crossref_primary_10_3390_sym11091167
crossref_primary_10_1007_s00138_018_0959_2
crossref_primary_10_1109_JSEN_2022_3149286
crossref_primary_10_1109_TIM_2020_3001410
crossref_primary_10_1049_bme2_12009
crossref_primary_10_1109_ACCESS_2023_3253203
crossref_primary_10_1109_TIM_2020_2995485
crossref_primary_10_1016_j_eswa_2021_116288
crossref_primary_10_1016_j_jksuci_2020_04_002
crossref_primary_10_1109_TII_2019_2900665
crossref_primary_10_1109_ACCESS_2021_3128273
crossref_primary_10_1109_ACCESS_2020_3009220
crossref_primary_10_1109_TIFS_2019_2917156
crossref_primary_10_1109_ACCESS_2019_2918503
crossref_primary_10_1109_TIFS_2021_3122073
crossref_primary_10_1109_JSEN_2021_3130951
crossref_primary_10_1016_j_patcog_2022_109199
crossref_primary_10_1007_s11760_024_03471_z
crossref_primary_10_1109_ACCESS_2024_3382197
crossref_primary_10_1109_TIM_2022_3173276
crossref_primary_10_1016_j_inffus_2024_102716
crossref_primary_10_3390_app9081687
crossref_primary_10_1109_ACCESS_2019_2901017
crossref_primary_10_1109_TIM_2023_3301062
crossref_primary_10_1016_j_infrared_2022_104483
crossref_primary_10_1109_ACCESS_2021_3084037
crossref_primary_10_1109_ACCESS_2020_2970735
crossref_primary_10_1109_TIFS_2017_2756598
crossref_primary_10_1049_2024_3236602
crossref_primary_10_1016_j_imavis_2020_103987
crossref_primary_10_1016_j_neucom_2018_06_085
crossref_primary_10_1109_TIM_2023_3348905
crossref_primary_10_1088_1757_899X_806_1_012043
crossref_primary_10_1109_TIM_2021_3139707
crossref_primary_10_3390_electronics11203300
crossref_primary_10_3390_electronics13030501
crossref_primary_10_1109_TIM_2021_3062164
crossref_primary_10_3390_info9090213
crossref_primary_10_1109_TIFS_2018_2850320
crossref_primary_10_1109_TIFS_2019_2902819
crossref_primary_10_3390_s21051885
crossref_primary_10_3390_s22062234
crossref_primary_10_1109_TIFS_2019_2928507
crossref_primary_10_3390_math10213948
crossref_primary_10_1016_j_eswa_2021_114584
crossref_primary_10_1007_s00371_024_03286_6
crossref_primary_10_1109_TCSVT_2018_2875147
crossref_primary_10_1109_TIFS_2025_3562690
crossref_primary_10_4018_IJCVIP_2019100102
crossref_primary_10_1109_ACCESS_2019_2927230
crossref_primary_10_1109_TIFS_2018_2871778
crossref_primary_10_3390_math11143190
crossref_primary_10_1109_TCSVT_2022_3224203
crossref_primary_10_1007_s10489_018_1353_5
crossref_primary_10_18267_j_aip_131
crossref_primary_10_1109_TIM_2023_3261909
crossref_primary_10_1016_j_asoc_2021_107344
crossref_primary_10_1080_02533839_2021_1919561
crossref_primary_10_1016_j_adhoc_2021_102607
Cites_doi 10.1109/TIP.2009.2023153
10.1109/TIP.2011.2171697
10.1109/CVPR.2014.220
10.1162/neco.2009.10-08-881
10.1117/1.3572129
10.1093/ietisy/e90-d.8.1185
10.1109/34.587996
10.1109/TCSVT.2003.818350
10.1109/TIFS.2011.2158423
10.1109/42.34715
10.1109/TASLP.2014.2339736
10.1016/j.dsp.2014.12.003
10.1016/j.patrec.2011.04.021
10.1016/j.optlaseng.2011.03.004
10.3390/s131114339
10.1109/TIFS.2015.2398817
10.1016/j.eswa.2013.11.033
10.1016/j.ins.2013.10.009
10.1007/s00138-004-0149-2
10.3390/s131115048
10.1109/CVPR.1991.139758
10.1002/ima.20193
10.1109/ICPR.2006.848
10.1162/NECO_a_00052
10.1109/ICPR.2010.316
10.1016/j.ins.2013.10.010
10.1109/VLSIC.2006.1705285
10.1007/s12539-009-0046-5
10.1016/j.neunet.2012.02.023
10.1179/1743131X12Y.0000000013
10.1109/CVPR.2015.7298907
10.1016/j.neuroimage.2014.12.061
10.1016/j.neucom.2014.05.069
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
1XC
VOOES
DOI 10.1109/TIFS.2017.2689724
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1556-6021
EndPage 1829
ExternalDocumentID oai:HAL:hal-01587285v1
10_1109_TIFS_2017_2689724
7890487
Genre orig-research
GrantInformation_xml – fundername: Scientific Research Foundation of Chongqing Technology and Business University
  grantid: 1352019; 2013-56-04
  funderid: 10.13039/501100004500
– fundername: Direction générale des Entreprises of the Ministère de l’économie, de l’industrie et du numérique
  grantid: ITEA3 IDEA4SWIFT 12028
– fundername: National Natural Science Foundation of China
  grantid: 61402063
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation Project of Chongqing
  grantid: cstc2013kjrc-qnrc40013
  funderid: 10.13039/501100005230
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
RIG
1XC
VOOES
ID FETCH-LOGICAL-c370t-4f85019f4fed5349c9dae448760725b53a9fe81e18b86e1ac31a5908b3aa666c3
IEDL.DBID RIE
ISICitedReferencesCount 173
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000401340500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1556-6013
IngestDate Sun Oct 19 01:12:28 EDT 2025
Mon Jun 30 07:20:54 EDT 2025
Sat Nov 29 03:49:37 EST 2025
Tue Nov 18 22:35:26 EST 2025
Tue Aug 26 16:43:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Representation learning
Deep learning
Hand biometrics
Finger-vein verification
Convolutional autoencoder
Convolutional neural network
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-4f85019f4fed5349c9dae448760725b53a9fe81e18b86e1ac31a5908b3aa666c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4911-0393
0000-0002-7383-0588
OpenAccessLink https://hal.science/hal-01587285
PQID 1897024127
PQPubID 85506
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TIFS_2017_2689724
crossref_primary_10_1109_TIFS_2017_2689724
proquest_journals_1897024127
ieee_primary_7890487
hal_primary_oai_HAL_hal_01587285v1
PublicationCentury 2000
PublicationDate 2017-08-01
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information forensics and security
PublicationTitleAbbrev TIFS
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers
References zeiler (ref38) 2014
ref35
ref13
ref12
ref15
ref36
ref14
ref31
ref30
ref10
cire (ref34) 2013
ref2
ref1
ref39
ref17
ref16
ref19
ref18
sun (ref32) 2015
ref24
ref23
ref26
ref25
ref20
ref41
ref22
ref21
wei (ref9) 2008
ref28
ref27
ref29
ref8
krizhevsky (ref7) 2012
he (ref37) 2015
ref4
han (ref11) 1997; 15
ref3
ciresan (ref33) 2012
ref6
ref5
ref40
References_xml – ident: ref5
  doi: 10.1109/TIP.2009.2023153
– ident: ref4
  doi: 10.1109/TIP.2011.2171697
– start-page: 2843
  year: 2012
  ident: ref33
  article-title: Deep neural networks segment neuronal membranes in electron microscopy images
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 1097
  year: 2012
  ident: ref7
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc NIPS
– ident: ref30
  doi: 10.1109/CVPR.2014.220
– ident: ref35
  doi: 10.1162/neco.2009.10-08-881
– ident: ref23
  doi: 10.1117/1.3572129
– ident: ref17
  doi: 10.1093/ietisy/e90-d.8.1185
– ident: ref2
  doi: 10.1109/34.587996
– ident: ref3
  doi: 10.1109/TCSVT.2003.818350
– ident: ref6
  doi: 10.1109/TIFS.2011.2158423
– ident: ref26
  doi: 10.1109/42.34715
– start-page: 1
  year: 2008
  ident: ref9
  article-title: Counterfeit iris detection based on texture analysis
  publication-title: Proc ICPR
– ident: ref28
  doi: 10.1109/TASLP.2014.2339736
– ident: ref22
  doi: 10.1016/j.dsp.2014.12.003
– ident: ref16
  doi: 10.1016/j.patrec.2011.04.021
– ident: ref19
  doi: 10.1016/j.optlaseng.2011.03.004
– ident: ref12
  doi: 10.3390/s131114339
– year: 2015
  ident: ref32
  publication-title: DeepID3 Face Recognition with Very Deep Neural Networks
– ident: ref10
  doi: 10.1109/TIFS.2015.2398817
– ident: ref13
  doi: 10.1016/j.eswa.2013.11.033
– ident: ref18
  doi: 10.1016/j.ins.2013.10.009
– ident: ref20
  doi: 10.1007/s00138-004-0149-2
– ident: ref24
  doi: 10.3390/s131115048
– ident: ref1
  doi: 10.1109/CVPR.1991.139758
– ident: ref39
  doi: 10.1002/ima.20193
– ident: ref27
  doi: 10.1109/ICPR.2006.848
– year: 2015
  ident: ref37
  publication-title: Deep residual learning for image recognition
– volume: 15
  start-page: 39
  year: 1997
  ident: ref11
  article-title: Anatomical study and clinical application of superficial palmar digital veins in finger replantation
  publication-title: Chinese J Clin Anatomy
– ident: ref29
  doi: 10.1162/NECO_a_00052
– ident: ref15
  doi: 10.1109/ICPR.2010.316
– ident: ref25
  doi: 10.1016/j.ins.2013.10.010
– ident: ref14
  doi: 10.1109/VLSIC.2006.1705285
– ident: ref41
  doi: 10.1007/s12539-009-0046-5
– ident: ref8
  doi: 10.1016/j.neunet.2012.02.023
– start-page: 818
  year: 2014
  ident: ref38
  article-title: Visualizing and understanding convolutional networks
  publication-title: Vision Computer
– ident: ref21
  doi: 10.1179/1743131X12Y.0000000013
– ident: ref31
  doi: 10.1109/CVPR.2015.7298907
– ident: ref36
  doi: 10.1016/j.neuroimage.2014.12.061
– start-page: 411
  year: 2013
  ident: ref34
  article-title: Mitosis detection in breast cancer histology images with deep neural networks
  publication-title: Medical Image Computing and Computer-Assisted Intervention-MICCAI
– ident: ref40
  doi: 10.1016/j.neucom.2014.05.069
SSID ssj0044168
Score 2.5847344
Snippet Finger-vein biometrics has been extensively investigated for personal verification. Despite recent advances in finger-vein verification, current solutions...
SourceID hal
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1816
SubjectTerms Artificial neural networks
Biometric recognition systems
Computer Science
Computer Vision and Pattern Recognition
convolutional autoencoder
convolutional neural network
deep learning
Feature extraction
finger-vein verification
Hand biometrics
Image segmentation
Iris recognition
Machine learning
Neural and Evolutionary Computing
Neural networks
representation learning
Representations
Signal and Image Processing
Veins
Title Deep Representation-Based Feature Extraction and Recovering for Finger-Vein Verification
URI https://ieeexplore.ieee.org/document/7890487
https://www.proquest.com/docview/1897024127
https://hal.science/hal-01587285
Volume 12
WOSCitedRecordID wos000401340500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1556-6021
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0044168
  issn: 1556-6013
  databaseCode: RIE
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3faxQxEB56xQd9sNoqnlYJ4pOYdrPZbJLHqj0qlCJay70t2WSWFmRbrndH__xmstlDUQTflpBkw36bzDeT-QHwTlCKdtN6XiiveVXLjjsdNNeq9MT_W5fSNV2c6rMzM5_br1vwYRMLg4jJ-QwP6DHd5YdrvyJT2SEFbUaCPYGJ1vUQqzWeulGqD2FvStU8vkTmG0xR2MPzL7Pv5MSlD8raWF1Wv8mgySV5QKbSKn-cx0nIzHb-b3lP4HEmk-xoQP8pbGG_CztjoQaW9-0uPPol6-AezD8j3rBvyQU2Rx71_GOUZoERIVwtkB3fLRdDxANzfWCko67TaBY5LpuNpsCrnl3E5i7b_Z7Bj9nx-acTngsscC91seRVZ1SkeF3VYVCyst4Gh1Ff03WhS9Uq6WyHRmAE09QonJfCUY30VjoX1R4vn8N2f93jC2BR8emqoNrWd3EiJZzAgJUKwrXWVFZOoRg_eeNz9nEqgvGzSVpIYRtCqSGUmozSFN5vhtwMqTf-1fltxHHTj5JmnxydNtQWCY_RpVFrMYU9Qm3TKwM2hf0R9ibv4NtGxGkjfxGlfvn3Ua_gIS1gcAbch-3lYoWv4YFfL69uF2_Sz3kP6Bnf-A
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PaxQxFH60VdAeWm0rXa0axJOYdjJJJsmxrV22uC6ia9lbyCQZLMi0bHcX_3yTTGaxKIK3ISSZMN8k73sv7wfAWxJTtMva4oJbgVlFG2yEE1jw0kb-X5uUrulqLCYTOZupzxvwfh0L471Pzmf-OD6mu3x3Y5fRVHYSgzYDwd6EB5yxsuiitfpzN8j1LvCN8wqH19B8h0kKdTK9HH6NblziuKykEiW7J4U2v0cfyFRc5Y8TOYmZ4e7_LfAJ7GQ6iU47_J_Chm_3YLcv1YDyzt2D7d_yDu7D7IP3t-hLcoLNsUctPgvyzKFICZdzjy5-LuZdzAMyrUNRS12l0SiwXDTsjYHXLboKzU22_B3At-HF9HyEc4kFbKkoFpg1kgeS17DGO06ZssoZHzQ2URWi5DWnRjVeEh_glJUnxlJiYpX0mhoTFB9Ln8FWe9P6Q0BB9WmY43VtmzARJ4Z45xl3xNRKMkUHUPSfXNucfzyWwfihkx5SKB1R0hElnVEawLv1kNsu-ca_Or8JOK77xbTZo9Oxjm2B8khRSr4iA9iPqK17ZcAGcNTDrvMevtMkTBsYDCnF87-Peg2PRtNPYz2-nHx8AY_jYjrXwCPYWsyX_iU8tKvF9d38VfpRfwG0TuM_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Representation-Based+Feature+Extraction+and+Recovering+for+Finger-Vein+Verification&rft.jtitle=IEEE+transactions+on+information+forensics+and+security&rft.au=Huafeng+Qin&rft.au=El-Yacoubi%2C+Mounim+A.&rft.date=2017-08-01&rft.pub=IEEE&rft.issn=1556-6013&rft.volume=12&rft.issue=8&rft.spage=1816&rft.epage=1829&rft_id=info:doi/10.1109%2FTIFS.2017.2689724&rft.externalDocID=7890487
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-6013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-6013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-6013&client=summon