Semi-Supervised Adversarial Variational Autoencoder

We present a method to improve the reconstruction and generation performance of a variational autoencoder (VAE) by injecting an adversarial learning. Instead of comparing the reconstructed with the original data to calculate the reconstruction loss, we use a consistency principle for deep features....

Full description

Saved in:
Bibliographic Details
Published in:Machine learning and knowledge extraction Vol. 2; no. 3; pp. 361 - 378
Main Author: Zemouri, Ryad
Format: Journal Article
Language:English
Published: MDPI 01.09.2020
MDPI AG
Subjects:
ISSN:2504-4990, 2504-4990
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We present a method to improve the reconstruction and generation performance of a variational autoencoder (VAE) by injecting an adversarial learning. Instead of comparing the reconstructed with the original data to calculate the reconstruction loss, we use a consistency principle for deep features. The main contributions are threefold. Firstly, our approach perfectly combines the two models, i.e., GAN and VAE, and thus improves the generation and reconstruction performance of the VAE. Secondly, the VAE training is done in two steps, which allows to dissociate the constraints used for the construction of the latent space on the one hand, and those used for the training of the decoder. By using this two-step learning process, our method can be more widely used in applications other than image processing. While training the encoder, the label information is integrated to better structure the latent space in a supervised way. The third contribution is to use the trained encoder for the consistency principle for deep features extracted from the hidden layers. We present experimental results to show that our method gives better performance than the original VAE. The results demonstrate that the adversarial constraints allow the decoder to generate images that are more authentic and realistic than the conventional VAE.
AbstractList We present a method to improve the reconstruction and generation performance of a variational autoencoder (VAE) by injecting an adversarial learning. Instead of comparing the reconstructed with the original data to calculate the reconstruction loss, we use a consistency principle for deep features. The main contributions are threefold. Firstly, our approach perfectly combines the two models, i.e., GAN and VAE, and thus improves the generation and reconstruction performance of the VAE. Secondly, the VAE training is done in two steps, which allows to dissociate the constraints used for the construction of the latent space on the one hand, and those used for the training of the decoder. By using this two-step learning process, our method can be more widely used in applications other than image processing. While training the encoder, the label information is integrated to better structure the latent space in a supervised way. The third contribution is to use the trained encoder for the consistency principle for deep features extracted from the hidden layers. We present experimental results to show that our method gives better performance than the original VAE. The results demonstrate that the adversarial constraints allow the decoder to generate images that are more authentic and realistic than the conventional VAE.
Author Zemouri, Ryad
Author_xml – sequence: 1
  givenname: Ryad
  orcidid: 0000-0002-3283-9391
  surname: Zemouri
  fullname: Zemouri, Ryad
BackLink https://cnam.hal.science/hal-02931571$$DView record in HAL
BookMark eNptUE1Lw0AUXETBWnvyD_QqEn37nT2GorZQ8FD1umz2Q7emSdmkBf-9aatQxdMMw8y8x1yg07qpPUJXGG4pVXC3Mh-eAAUgcIIGhAPLmFJwesTP0ahtl9BbpGIY2ADRhV_FbLFZ-7SNrXfjwm19ak2Kphq_7qCLTd3zYtM1vraN8-kSnQVTtX70jUP08nD_PJlm86fH2aSYZ5ZK6DImQsAsBMaYFAFT7qUVRMhS5g6IIYoyAc4SFxQXRlKbCy64UxYHluce6BDNDr2uMUu9TnFl0qduTNR7oUlv2qQu2spr71VZlpZTJUsmOFOWWEtK53LnnJe877o-dL2b6lfVtJjrnQb9P5hLvMW9Fx-8NjVtm3zQNnb7HbpkYqUx6N3g-mjwPnPzJ_Nz5D_3F8Y9gj0
CitedBy_id crossref_primary_10_1109_JBHI_2023_3279493
crossref_primary_10_3390_diagnostics10121055
crossref_primary_10_1007_s11831_025_10355_z
crossref_primary_10_1016_j_ymssp_2022_110093
crossref_primary_10_32604_cmc_2022_025550
crossref_primary_10_1007_s10489_024_05358_5
crossref_primary_10_1109_TIA_2023_3281311
crossref_primary_10_1109_TR_2022_3190639
crossref_primary_10_3390_electronics12081857
crossref_primary_10_1016_j_engappai_2023_105859
crossref_primary_10_3389_fbioe_2021_752658
crossref_primary_10_1109_ACCESS_2024_3354724
Cites_doi 10.1109/CVPR.2017.18
10.1016/j.compind.2019.01.001
10.1109/ACCESS.2019.2962775
10.1016/j.engappai.2019.04.013
10.1016/j.jprocont.2019.01.008
10.1109/CVPR.2016.278
10.1109/CMD.2018.8535718
10.1016/j.neucom.2018.05.024
10.1167/16.12.326
10.1109/TCDS.2018.2883368
10.1109/JSTSP.2019.2913965
10.1109/ICCV.2017.310
10.1109/ACCESS.2019.2939352
10.1109/ACCESS.2019.2940769
10.1016/j.knosys.2018.12.019
10.1109/TASLP.2019.2950099
10.1016/j.compchemeng.2019.106515
10.3390/app9081526
10.1109/LGRS.2017.2766130
10.1016/j.neuroimage.2019.05.039
10.1109/CVPR.2017.632
10.1109/TNNLS.2019.2900734
10.1109/ICCV.2017.244
10.1016/j.cageo.2019.04.006
10.1016/j.ces.2018.02.008
10.1016/j.neunet.2018.04.020
10.1109/ACCESS.2019.2913468
10.1109/ACCESS.2018.2890693
10.1109/5.726791
10.1109/TNSRE.2019.2940046
10.1109/ICCV.2017.304
10.1109/ACCESS.2019.2894764
10.1109/MSP.2017.2765202
10.1016/j.annpat.2019.01.004
10.1109/CVPR.2017.106
10.1109/ACCESS.2018.2848210
10.1016/j.neunet.2019.05.003
10.1016/j.patcog.2018.12.015
10.1109/ACCESS.2018.2890293
10.1109/ACCESS.2019.2944630
10.1109/CVPR.2017.19
10.1016/j.gpb.2018.08.003
10.1109/TSTE.2019.2897688
10.1109/TIFS.2018.2878538
10.1016/j.neucom.2018.07.034
10.1016/j.neucom.2019.03.013
10.1109/TASLP.2019.2917232
ContentType Journal Article
Copyright Attribution
Copyright_xml – notice: Attribution
DBID AAYXX
CITATION
1XC
VOOES
DOA
DOI 10.3390/make2030020
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2504-4990
EndPage 378
ExternalDocumentID oai_doaj_org_article_ee9bbbc5397b46549c2cc2bdd8ddde75
oai:HAL:hal-02931571v1
10_3390_make2030020
GroupedDBID AADQD
AAFWJ
AAYXX
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
MODMG
M~E
OK1
1XC
AFFHD
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
HCIFZ
IAO
ICD
ITC
K7-
PHGZM
PHGZT
PIMPY
PQGLB
VOOES
ID FETCH-LOGICAL-c370t-46ff14ff44476f135e7c6267b78d02a293460dc2df956a73c86565d9c1f488e03
IEDL.DBID DOA
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000681745900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2504-4990
IngestDate Fri Oct 03 12:41:35 EDT 2025
Sat Nov 29 15:05:16 EST 2025
Thu Oct 16 04:30:37 EDT 2025
Tue Nov 18 22:34:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords data generation
adversarial learning
variational autoencoder
deep feature consistent
Language English
License Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-46ff14ff44476f135e7c6267b78d02a293460dc2df956a73c86565d9c1f488e03
ORCID 0000-0002-3283-9391
OpenAccessLink https://doaj.org/article/ee9bbbc5397b46549c2cc2bdd8ddde75
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_ee9bbbc5397b46549c2cc2bdd8ddde75
hal_primary_oai_HAL_hal_02931571v1
crossref_citationtrail_10_3390_make2030020
crossref_primary_10_3390_make2030020
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Machine learning and knowledge extraction
PublicationYear 2020
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References ref_50
Lecun (ref_67) 1998; 86
Zemouri (ref_20) 2020; 8
Huang (ref_23) 2019; 7
Wang (ref_12) 2019; 28
Mao (ref_31) 2019; 7
ref_57
ref_56
Wang (ref_24) 2019; 7
ref_53
ref_52
ref_51
Zhang (ref_4) 2019; 75
Hwang (ref_55) 2019; 7
Creswell (ref_26) 2018; 35
ref_59
Shao (ref_32) 2019; 106
Wang (ref_19) 2018; 16
ref_60
Hou (ref_54) 2019; 341
Agrawal (ref_13) 2019; 13
ref_68
Song (ref_11) 2019; 7
Liu (ref_30) 2018; 315
Alam (ref_34) 2018; 107
ref_65
Wang (ref_7) 2019; 14
ref_64
Deng (ref_16) 2019; 7
ref_63
Xu (ref_10) 2019; 31
ref_62
ref_29
ref_27
Li (ref_22) 2017; 14
ref_71
Lee (ref_3) 2019; 83
Khodayar (ref_15) 2019; 11
ref_70
ref_36
Canchumuni (ref_2) 2019; 128
Bi (ref_18) 2019; 27
ref_35
Yu (ref_58) 2019; 117
Fan (ref_61) 2019; 88
Cheng (ref_25) 2019; 129
ref_39
ref_38
ref_37
Zemouri (ref_66) 2019; 39
Wang (ref_28) 2018; 310
Sun (ref_8) 2018; 6
Na (ref_21) 2018; 181
He (ref_9) 2019; 7
Kameoka (ref_14) 2019; 27
Han (ref_33) 2019; 165
ref_47
ref_46
ref_45
ref_44
ref_43
ref_42
ref_41
ref_40
ref_1
ref_49
ref_48
Teh (ref_69) 2010; Volume 9
Han (ref_17) 2019; 198
ref_5
Yan (ref_6) 2018; 12
References_xml – ident: ref_51
  doi: 10.1109/CVPR.2017.18
– volume: 106
  start-page: 85
  year: 2019
  ident: ref_32
  article-title: Generative adversarial networks for data augmentation in machine fault diagnosis
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2019.01.001
– volume: 8
  start-page: 5438
  year: 2020
  ident: ref_20
  article-title: Deep Convolutional Variational Autoencoder as a 2D-Visualization Tool for Partial Discharge Source Classification in Hydrogenerators
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2962775
– volume: 83
  start-page: 13
  year: 2019
  ident: ref_3
  article-title: Process monitoring using variational autoencoder for high-dimensional nonlinear processes
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.04.013
– ident: ref_49
– ident: ref_5
– volume: 75
  start-page: 136
  year: 2019
  ident: ref_4
  article-title: Gaussian feature learning based on variational autoencoder for improving nonlinear process monitoring
  publication-title: J. Process. Control.
  doi: 10.1016/j.jprocont.2019.01.008
– ident: ref_37
  doi: 10.1109/CVPR.2016.278
– ident: ref_68
– ident: ref_29
  doi: 10.1109/CMD.2018.8535718
– volume: 310
  start-page: 213
  year: 2018
  ident: ref_28
  article-title: An intelligent diagnosis scheme based on generative adversarial learning deep neural networks and its application to planetary gearbox fault pattern recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.024
– ident: ref_56
  doi: 10.1167/16.12.326
– ident: ref_39
– ident: ref_42
– ident: ref_1
– ident: ref_71
– volume: 12
  start-page: 30
  year: 2018
  ident: ref_6
  article-title: Abnormal Event Detection from Videos using a Two-stream Recurrent Variational Autoencoder
  publication-title: IEEE Trans. Cogn. Dev. Syst.
  doi: 10.1109/TCDS.2018.2883368
– volume: 13
  start-page: 244
  year: 2019
  ident: ref_13
  article-title: Modulation Filter Learning Using Deep Variational Networks for Robust Speech Recognition
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2019.2913965
– ident: ref_36
  doi: 10.1109/ICCV.2017.310
– volume: 7
  start-page: 126582
  year: 2019
  ident: ref_55
  article-title: PuVAE: A Variational Autoencoder to Purify Adversarial Examples
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2939352
– volume: 7
  start-page: 139086
  year: 2019
  ident: ref_23
  article-title: Motor Fault Detection and Feature Extraction Using RNN-Based Variational Autoencoder
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2940769
– ident: ref_52
– volume: 165
  start-page: 474
  year: 2019
  ident: ref_33
  article-title: A novel adversarial learning framework in deep convolutional neural network for intelligent diagnosis of mechanical faults
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2018.12.019
– ident: ref_48
– volume: 28
  start-page: 157
  year: 2019
  ident: ref_12
  article-title: A Vector Quantized Variational Autoencoder (VQ-VAE) Autoregressive Neural F0 Model for Statistical Parametric Speech Synthesis
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2019.2950099
– volume: 129
  start-page: 106515
  year: 2019
  ident: ref_25
  article-title: A novel process monitoring approach based on variational recurrent autoencoder
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2019.106515
– ident: ref_27
  doi: 10.3390/app9081526
– ident: ref_62
– ident: ref_38
– volume: 14
  start-page: 2395
  year: 2017
  ident: ref_22
  article-title: Prediction of Subsurface NMR T2 Distributions in a Shale Petroleum System Using Variational Autoencoder-Based Neural Networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2766130
– volume: 198
  start-page: 125
  year: 2019
  ident: ref_17
  article-title: Variational autoencoder: An unsupervised model for encoding and decoding fMRI activity in visual cortex
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.05.039
– ident: ref_59
– ident: ref_45
  doi: 10.1109/CVPR.2017.632
– volume: 31
  start-page: 295
  year: 2019
  ident: ref_10
  article-title: Semisupervised Text Classification by Variational Autoencoder
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2019.2900734
– ident: ref_53
– ident: ref_35
  doi: 10.1109/ICCV.2017.244
– volume: 128
  start-page: 87
  year: 2019
  ident: ref_2
  article-title: Towards a robust parameterization for conditioning facies models using deep variational autoencoders and ensemble smoother
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2019.04.006
– volume: 181
  start-page: 68
  year: 2018
  ident: ref_21
  article-title: Toxic gas release modeling for real-time analysis using variational autoencoder with convolutional neural networks
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2018.02.008
– volume: 107
  start-page: 12
  year: 2018
  ident: ref_34
  article-title: Novel deep generative simultaneous recurrent model for efficient representation learning
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2018.04.020
– volume: 7
  start-page: 55679
  year: 2019
  ident: ref_16
  article-title: Collaborative Variational Deep Learning for Healthcare Recommendation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2913468
– volume: 7
  start-page: 9515
  year: 2019
  ident: ref_31
  article-title: Imbalanced Fault Diagnosis of Rolling Bearing Based on Generative Adversarial Network: A Comparative Study
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2890693
– ident: ref_47
– volume: 86
  start-page: 2278
  year: 1998
  ident: ref_67
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– ident: ref_40
– volume: 27
  start-page: 2025
  year: 2019
  ident: ref_18
  article-title: EEG-Based Adaptive Driver-Vehicle Interface Using Variational Autoencoder and PI-TSVM
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2019.2940046
– ident: ref_41
  doi: 10.1109/ICCV.2017.304
– volume: Volume 9
  start-page: 509
  year: 2010
  ident: ref_69
  article-title: Inductive Principles for Restricted Boltzmann Machine Learning
  publication-title: Machine Learning Research, Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13–15 May 2010
– ident: ref_63
– volume: 7
  start-page: 22554
  year: 2019
  ident: ref_24
  article-title: Systematic Development of a New Variational Autoencoder Model Based on Uncertain Data for Monitoring Nonlinear Processes
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2894764
– ident: ref_44
– volume: 35
  start-page: 53
  year: 2018
  ident: ref_26
  article-title: Generative Adversarial Networks: An Overview
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2017.2765202
– volume: 39
  start-page: 119
  year: 2019
  ident: ref_66
  article-title: Intelligence artificielle: Quel avenir en anatomie pathologique?
  publication-title: Ann. Pathol.
  doi: 10.1016/j.annpat.2019.01.004
– ident: ref_65
  doi: 10.1109/CVPR.2017.106
– volume: 6
  start-page: 33353
  year: 2018
  ident: ref_8
  article-title: Learning Sparse Representation With Variational Auto-Encoder for Anomaly Detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2848210
– volume: 117
  start-page: 104
  year: 2019
  ident: ref_58
  article-title: Understanding autoencoders with information theoretic concepts
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.05.003
– volume: 88
  start-page: 643
  year: 2019
  ident: ref_61
  article-title: Autoencoder node saliency: Selecting relevant latent representations
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.12.015
– volume: 7
  start-page: 5707
  year: 2019
  ident: ref_9
  article-title: Collaborative Additional Variational Autoencoder for Top-N Recommender Systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2890293
– volume: 7
  start-page: 144618
  year: 2019
  ident: ref_11
  article-title: Latent Space Expanded Variational Autoencoder for Sentence Generation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2944630
– ident: ref_43
  doi: 10.1109/CVPR.2017.19
– ident: ref_50
– volume: 16
  start-page: 320
  year: 2018
  ident: ref_19
  article-title: VASC: Dimension Reduction and Visualization of Single-cell RNA-seq Data by Deep Variational Autoencoder
  publication-title: Genom. Proteom. Bioinform.
  doi: 10.1016/j.gpb.2018.08.003
– ident: ref_46
– volume: 11
  start-page: 571
  year: 2019
  ident: ref_15
  article-title: Convolutional Graph Autoencoder: A Generative Deep Neural Network for Probabilistic Spatio-temporal Solar Irradiance Forecasting
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2019.2897688
– volume: 14
  start-page: 1390
  year: 2019
  ident: ref_7
  article-title: Generative Neural Networks for Anomaly Detection in Crowded Scenes
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2018.2878538
– ident: ref_64
– volume: 315
  start-page: 412
  year: 2018
  ident: ref_30
  article-title: Unsupervised fault diagnosis of rolling bearings using a deep neural network based on generative adversarial networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.07.034
– ident: ref_70
– ident: ref_60
– volume: 341
  start-page: 183
  year: 2019
  ident: ref_54
  article-title: Improving variational autoencoder with deep feature consistent and generative adversarial training
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.03.013
– ident: ref_57
– volume: 27
  start-page: 1432
  year: 2019
  ident: ref_14
  article-title: ACVAE-VC: Non-Parallel Voice Conversion With Auxiliary Classifier Variational Autoencoder
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2019.2917232
SSID ssj0002794104
Score 2.2622466
Snippet We present a method to improve the reconstruction and generation performance of a variational autoencoder (VAE) by injecting an adversarial learning. Instead...
SourceID doaj
hal
crossref
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
StartPage 361
SubjectTerms adversarial learning
Artificial Intelligence
Computer Science
data generation
deep feature consistent
Machine Learning
variational autoencoder
Title Semi-Supervised Adversarial Variational Autoencoder
URI https://cnam.hal.science/hal-02931571
https://doaj.org/article/ee9bbbc5397b46549c2cc2bdd8ddde75
Volume 2
WOSCitedRecordID wos000681745900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2504-4990
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002794104
  issn: 2504-4990
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2504-4990
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002794104
  issn: 2504-4990
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yPHgRRcX5RZGdhLA2SZvkOGXDgw5hKruV5gun7oOt29G_3Ze0GxMEL15aCGmbvI--90vT30OopVJDeGIMhnS0wEwQjSGrLrDSzFFRZEQlKhSb4P2-GA7l01apL78nrKIHrgTXtlYqpXQKcVN57i-pidZEGSMMeCYP7KUxl1tg6j18TpMMgEb1Qx4FXN8eFx-WgEXHvrL3VggKTP0QWN7WC6khsPQO0H6dEUadaiSHaMdOjhAd2PEID5Yz78oLa6JQOHlReHOJXv2pWsOLOsty6rkojZ0fo5de9_nuHtf1DbCmPC4xy5xLmHOMMZ65hKaWa8AXXHFhYlJAIGZZbDQxDkBMwakWkHylRurEgdvZmJ6gxmQ6sacogstTDqmDTiW8-qQSNhPcZkRoq3imaBPdrKec65r829eg-MwBBHj55FvyaaLWpvOs4rz4vdutl92miyeqDg2gvrxWX_6X-proGiT_4x73nYfct8UgAJhVskrO_uNJ52iPeKwc9oddoEY5X9pLtKtX5WgxvwrmA8fHr-43TvHMPw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-Supervised+Adversarial+Variational+Autoencoder&rft.jtitle=Machine+learning+and+knowledge+extraction&rft.au=Ryad+Zemouri&rft.date=2020-09-01&rft.pub=MDPI+AG&rft.eissn=2504-4990&rft.volume=2&rft.issue=3&rft.spage=361&rft.epage=378&rft_id=info:doi/10.3390%2Fmake2030020&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ee9bbbc5397b46549c2cc2bdd8ddde75
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-4990&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-4990&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-4990&client=summon