Early gestational diabetes mellitus risk predictor using neural network with NearMiss

Gestational diabetes mellitus (GDM) is globally recognized as a significant pregnancy-related condition, contributing to complex complications for both mothers and infants. Traditional glucose tolerance tests lack the ability to identify the risk of GDM in early pregnancy, hindering effective preven...

Full description

Saved in:
Bibliographic Details
Published in:Gynecological endocrinology Vol. 41; no. 1; p. 2470317
Main Authors: Zhao, Min, Su, Xiaojie, Huang, Lihong
Format: Journal Article
Language:English
Published: England Taylor & Francis Group 01.12.2025
Subjects:
ISSN:0951-3590, 1473-0766, 1473-0766
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Gestational diabetes mellitus (GDM) is globally recognized as a significant pregnancy-related condition, contributing to complex complications for both mothers and infants. Traditional glucose tolerance tests lack the ability to identify the risk of GDM in early pregnancy, hindering effective prevention and timely intervention during the initial stages. The primary objective of this study is to pinpoint potential risk factors for GDM and develop an early GDM risk prediction model using neural networks to facilitate GDM screening in early pregnancy. Initially, we employed statistical tests and models, including univariate and multivariate logistic regression, to identify 14 potential risk factors. Subsequently, we applied various resampling techniques alongside a multi-layer perceptron (MLP). Finally, we evaluated and compared the classification performances of the constructed models using various metric indicators. As a result, we identified several factors in early pregnancy significantly associated with GDM (  < 0.05), including BMI, age of menarche, age, higher education, folic acid supplementation, family history of diabetes mellitus, HGB, WBC, PLT, Scr, HBsAg, ALT, ALB, and TBIL. Employing the multivariate logistic model as the baseline achieved an accuracy and AUC of 0.777. In comparison, the MLP-based model using NearMiss exhibited strong predictive performance, achieving scores of 0.943 in AUC and 0.884 in accuracy. In this study, we proposed an innovative interpretable early GDM risk prediction model based on MLP. This model is designed to offer assistance in estimating the risk of GDM in early pregnancy, enabling proactive prevention and timely intervention.
AbstractList Gestational diabetes mellitus (GDM) is globally recognized as a significant pregnancy-related condition, contributing to complex complications for both mothers and infants. Traditional glucose tolerance tests lack the ability to identify the risk of GDM in early pregnancy, hindering effective prevention and timely intervention during the initial stages. The primary objective of this study is to pinpoint potential risk factors for GDM and develop an early GDM risk prediction model using neural networks to facilitate GDM screening in early pregnancy. Initially, we employed statistical tests and models, including univariate and multivariate logistic regression, to identify 14 potential risk factors. Subsequently, we applied various resampling techniques alongside a multi-layer perceptron (MLP). Finally, we evaluated and compared the classification performances of the constructed models using various metric indicators. As a result, we identified several factors in early pregnancy significantly associated with GDM (  < 0.05), including BMI, age of menarche, age, higher education, folic acid supplementation, family history of diabetes mellitus, HGB, WBC, PLT, Scr, HBsAg, ALT, ALB, and TBIL. Employing the multivariate logistic model as the baseline achieved an accuracy and AUC of 0.777. In comparison, the MLP-based model using NearMiss exhibited strong predictive performance, achieving scores of 0.943 in AUC and 0.884 in accuracy. In this study, we proposed an innovative interpretable early GDM risk prediction model based on MLP. This model is designed to offer assistance in estimating the risk of GDM in early pregnancy, enabling proactive prevention and timely intervention.
Background Gestational diabetes mellitus (GDM) is globally recognized as a significant pregnancy-related condition, contributing to complex complications for both mothers and infants. Traditional glucose tolerance tests lack the ability to identify the risk of GDM in early pregnancy, hindering effective prevention and timely intervention during the initial stages.Objective The primary objective of this study is to pinpoint potential risk factors for GDM and develop an early GDM risk prediction model using neural networks to facilitate GDM screening in early pregnancy.Methods Initially, we employed statistical tests and models, including univariate and multivariate logistic regression, to identify 14 potential risk factors. Subsequently, we applied various resampling techniques alongside a multi-layer perceptron (MLP). Finally, we evaluated and compared the classification performances of the constructed models using various metric indicators.Results As a result, we identified several factors in early pregnancy significantly associated with GDM (p < 0.05), including BMI, age of menarche, age, higher education, folic acid supplementation, family history of diabetes mellitus, HGB, WBC, PLT, Scr, HBsAg, ALT, ALB, and TBIL. Employing the multivariate logistic model as the baseline achieved an accuracy and AUC of 0.777. In comparison, the MLP-based model using NearMiss exhibited strong predictive performance, achieving scores of 0.943 in AUC and 0.884 in accuracy.Conclusions In this study, we proposed an innovative interpretable early GDM risk prediction model based on MLP. This model is designed to offer assistance in estimating the risk of GDM in early pregnancy, enabling proactive prevention and timely intervention.
Gestational diabetes mellitus (GDM) is globally recognized as a significant pregnancy-related condition, contributing to complex complications for both mothers and infants. Traditional glucose tolerance tests lack the ability to identify the risk of GDM in early pregnancy, hindering effective prevention and timely intervention during the initial stages.BACKGROUNDGestational diabetes mellitus (GDM) is globally recognized as a significant pregnancy-related condition, contributing to complex complications for both mothers and infants. Traditional glucose tolerance tests lack the ability to identify the risk of GDM in early pregnancy, hindering effective prevention and timely intervention during the initial stages.The primary objective of this study is to pinpoint potential risk factors for GDM and develop an early GDM risk prediction model using neural networks to facilitate GDM screening in early pregnancy.OBJECTIVEThe primary objective of this study is to pinpoint potential risk factors for GDM and develop an early GDM risk prediction model using neural networks to facilitate GDM screening in early pregnancy.Initially, we employed statistical tests and models, including univariate and multivariate logistic regression, to identify 14 potential risk factors. Subsequently, we applied various resampling techniques alongside a multi-layer perceptron (MLP). Finally, we evaluated and compared the classification performances of the constructed models using various metric indicators.METHODSInitially, we employed statistical tests and models, including univariate and multivariate logistic regression, to identify 14 potential risk factors. Subsequently, we applied various resampling techniques alongside a multi-layer perceptron (MLP). Finally, we evaluated and compared the classification performances of the constructed models using various metric indicators.As a result, we identified several factors in early pregnancy significantly associated with GDM (p < 0.05), including BMI, age of menarche, age, higher education, folic acid supplementation, family history of diabetes mellitus, HGB, WBC, PLT, Scr, HBsAg, ALT, ALB, and TBIL. Employing the multivariate logistic model as the baseline achieved an accuracy and AUC of 0.777. In comparison, the MLP-based model using NearMiss exhibited strong predictive performance, achieving scores of 0.943 in AUC and 0.884 in accuracy.RESULTSAs a result, we identified several factors in early pregnancy significantly associated with GDM (p < 0.05), including BMI, age of menarche, age, higher education, folic acid supplementation, family history of diabetes mellitus, HGB, WBC, PLT, Scr, HBsAg, ALT, ALB, and TBIL. Employing the multivariate logistic model as the baseline achieved an accuracy and AUC of 0.777. In comparison, the MLP-based model using NearMiss exhibited strong predictive performance, achieving scores of 0.943 in AUC and 0.884 in accuracy.In this study, we proposed an innovative interpretable early GDM risk prediction model based on MLP. This model is designed to offer assistance in estimating the risk of GDM in early pregnancy, enabling proactive prevention and timely intervention.CONCLUSIONSIn this study, we proposed an innovative interpretable early GDM risk prediction model based on MLP. This model is designed to offer assistance in estimating the risk of GDM in early pregnancy, enabling proactive prevention and timely intervention.
Author Zhao, Min
Su, Xiaojie
Huang, Lihong
Author_xml – sequence: 1
  givenname: Min
  surname: Zhao
  fullname: Zhao, Min
– sequence: 2
  givenname: Xiaojie
  surname: Su
  fullname: Su, Xiaojie
– sequence: 3
  givenname: Lihong
  surname: Huang
  fullname: Huang, Lihong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39992231$$D View this record in MEDLINE/PubMed
BookMark eNo9kU1v1DAURS1URKeFnwDykk2G5-94iaoWKhXY0LXl2C-D20w82Imq_nsSZtqVn6yje6V7LsjZmEck5CODLYMWvoBVTCgLWw5cbbk0IJh5QzZMGtGA0fqMbFamWaFzclHrAwAT0vB35FxYazkXbEPur30ZnukO6-SnlEc_0Jh8hxNWusdhSNNcaUn1kR4KxhSmXOhc07ijI85loUecnnJ5pE9p-kN_oi8_Uq3vydveDxU_nN5Lcn9z_fvqe3P369vt1de7JggDUyNVx02USmrLeoi9BY26DzaYNgJ2cblYx21QPQsoeeAoeq9AtdihN7oVl-T2mBuzf3CHkva-PLvsk_v_kcvO-TKlMKCLArn2YLUMSiLIVmsrDfNrkZQdLlmfj1mHkv_Oyx5un2pYJvAj5rm6ZV7gphWw1n46oXO3x_ha_DLrAqgjEEqutWD_ijBwqz73os-t-txJn_gHFoONAg
Cites_doi 10.2337/db09-1371
10.1084/jem.20081188
10.2337/dc09-1393
10.1109/CIET.2018.8660844
10.1007/s10064-022-02664-5
10.1186/s12884-019-2519-9
10.2337/diacare.26.7.2005
10.1371/journal.pone.0036727
10.2337/dc07-2345
10.1007/s00125-016-4062-9
10.1007/s00404-017-4505-7
10.1161/CIR.0b013e31820faaf8
10.1007/s00125-011-2150-4
10.1056/NEJMoa0707943
10.1177/1054773818769210
10.1016/j.ijmedinf.2023.105228
10.1038/ijo.2017.277
10.1186/s12933-016-0338-0
10.1016/j.diabres.2009.04.025
10.2337/diacare.24.4.659
10.1136/bmj-2022-070244
10.3389/fendo.2017.00144
10.1136/bmjopen-2017-016972
10.2337/dc06-2361
10.2337/dc11-0135
10.1016/j.diabet.2020.02.003
10.2337/dc21-1430
10.1093/humrep/15.8.1826
10.1016/j.diabres.2021.109001
10.1038/s41591-019-0724-8
10.1002/pd.2636
10.1093/oxfordjournals.aje.a116408
10.1016/j.ejogrb.2009.04.016
10.6133/apjcn.201906_28(2).0014
10.1007/978-1-4614-5441-0_4
10.1186/s13006-019-0227-8
10.2337/dc10-1766
10.1007/s00394-021-02749-z
10.1186/s40842-024-00176-7
10.1016/S0140-6736(09)60731-5
10.2337/dc08-0706
10.1007/s00125-016-3985-5
10.1177/1049732304270825
10.3109/09513590.2013.871522
10.1016/j.diabres.2018.02.023
10.2337/dc16-2397
10.3390/ijerph16224511
10.1136/bmj.m1361
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOA
DOI 10.1080/09513590.2025.2470317
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1473-0766
ExternalDocumentID oai_doaj_org_article_d3e26a0964c54e048669471ad0eb44be
39992231
10_1080_09513590_2025_2470317
Genre Journal Article
GroupedDBID ---
00X
03L
0YH
29I
36B
4.4
53G
5GY
AAFWJ
AALUX
AAYXX
ABBKH
ABDBF
ABEIZ
ABLKL
ABUPF
ABWVI
ABXYU
ACENM
ACGEJ
ACGFO
ACGFS
ACUHS
ADCVX
ADRBQ
ADXPE
AECIN
AEGXH
AENEX
AEOZL
AFKVX
AFPKN
AFRVT
AGDLA
AGYJP
AHMBA
AIAGR
AIJEM
AJWEG
AKBVH
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALYBC
AQTUD
BABNJ
BLEHA
BOHLJ
CCCUG
CITATION
CS3
DKSSO
DU5
EAP
EBC
EBD
EBS
EMB
EMK
EMOBN
EPL
ESX
F5P
GROUPED_DOAJ
H13
HZ~
KRBQP
KSSTO
KWAYT
KYCEM
LGLTD
LJTGL
M4Z
O9-
P2P
RRB
RWL
SV3
TAE
TDBHL
TFDNU
TFL
TFW
TUROJ
TUS
UEQFS
V1S
~1N
5VS
7X7
88E
8AO
8FI
8FJ
AALIY
AAMIU
AAORF
AAPUL
AAPXX
AAQRR
ABJNI
ABLIJ
ABUWG
ABWCV
ABZEW
ACKZS
ACOPL
ADBBV
ADFOM
ADFZZ
ADYSH
AEIIZ
AFKRA
AFLEI
AGFJD
AGRBW
AJVHN
ALIPV
AMDAE
AWYRJ
BENPR
BPHCQ
BRMBE
BVXVI
CAG
CCPQU
CGR
COF
CUY
CVF
CYYVM
CZDIS
DRXRE
DWTOO
ECM
EIF
EJD
FYUFA
HMCUK
IPNFZ
JENTW
M1P
M44
NPM
NUSFT
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
QQXMO
RIG
RNANH
RVRKI
S0X
TBQAZ
TERGH
UKHRP
7X8
ID FETCH-LOGICAL-c370t-45b27d454691f0df906e6fc9c78d0ebdc9c1b29c5f1ce42c2e3fa5058ebea7683
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001432476900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0951-3590
1473-0766
IngestDate Fri Oct 03 12:43:56 EDT 2025
Sun Nov 09 09:37:30 EST 2025
Sun May 11 01:41:37 EDT 2025
Sat Nov 29 08:21:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Gestational diabetes mellitus
logistic regression
NearMiss
neural network algorithms
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-45b27d454691f0df906e6fc9c78d0ebdc9c1b29c5f1ce42c2e3fa5058ebea7683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/d3e26a0964c54e048669471ad0eb44be
PMID 39992231
PQID 3170278308
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_d3e26a0964c54e048669471ad0eb44be
proquest_miscellaneous_3170278308
pubmed_primary_39992231
crossref_primary_10_1080_09513590_2025_2470317
PublicationCentury 2000
PublicationDate 2025-Dec
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-Dec
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Gynecological endocrinology
PublicationTitleAlternate Gynecol Endocrinol
PublicationYear 2025
Publisher Taylor & Francis Group
Publisher_xml – name: Taylor & Francis Group
References e_1_3_3_50_1
e_1_3_3_18_1
e_1_3_3_39_1
e_1_3_3_14_1
e_1_3_3_37_1
e_1_3_3_16_1
e_1_3_3_35_1
e_1_3_3_10_1
e_1_3_3_33_1
e_1_3_3_12_1
e_1_3_3_31_1
e_1_3_3_40_1
(e_1_3_3_6_1) 2021
e_1_3_3_7_1
e_1_3_3_9_1
e_1_3_3_29_1
e_1_3_3_25_1
e_1_3_3_48_1
e_1_3_3_27_1
e_1_3_3_46_1
e_1_3_3_3_1
e_1_3_3_21_1
e_1_3_3_44_1
e_1_3_3_5_1
e_1_3_3_23_1
e_1_3_3_42_1
e_1_3_3_30_1
e_1_3_3_17_1
e_1_3_3_19_1
e_1_3_3_13_1
e_1_3_3_38_1
e_1_3_3_15_1
e_1_3_3_36_1
e_1_3_3_34_1
e_1_3_3_11_1
e_1_3_3_32_1
e_1_3_3_41_1
e_1_3_3_8_1
e_1_3_3_28_1
e_1_3_3_24_1
e_1_3_3_49_1
e_1_3_3_26_1
e_1_3_3_47_1
e_1_3_3_2_1
e_1_3_3_20_1
e_1_3_3_45_1
e_1_3_3_4_1
e_1_3_3_22_1
e_1_3_3_43_1
References_xml – ident: e_1_3_3_8_1
  doi: 10.2337/db09-1371
– ident: e_1_3_3_37_1
  doi: 10.1084/jem.20081188
– volume-title: IDF DIABETES ATLAS
  year: 2021
  ident: e_1_3_3_6_1
– ident: e_1_3_3_36_1
  doi: 10.2337/dc09-1393
– ident: e_1_3_3_46_1
  doi: 10.1109/CIET.2018.8660844
– ident: e_1_3_3_47_1
  doi: 10.1007/s10064-022-02664-5
– ident: e_1_3_3_13_1
  doi: 10.1186/s12884-019-2519-9
– ident: e_1_3_3_25_1
  doi: 10.2337/diacare.26.7.2005
– ident: e_1_3_3_34_1
  doi: 10.1371/journal.pone.0036727
– ident: e_1_3_3_7_1
  doi: 10.2337/dc07-2345
– ident: e_1_3_3_33_1
  doi: 10.1007/s00125-016-4062-9
– ident: e_1_3_3_12_1
  doi: 10.1007/s00404-017-4505-7
– ident: e_1_3_3_22_1
  doi: 10.1161/CIR.0b013e31820faaf8
– ident: e_1_3_3_28_1
  doi: 10.1007/s00125-011-2150-4
– ident: e_1_3_3_11_1
  doi: 10.1056/NEJMoa0707943
– ident: e_1_3_3_4_1
  doi: 10.1177/1054773818769210
– ident: e_1_3_3_44_1
  doi: 10.1016/j.ijmedinf.2023.105228
– ident: e_1_3_3_30_1
  doi: 10.1038/ijo.2017.277
– ident: e_1_3_3_19_1
  doi: 10.1186/s12933-016-0338-0
– ident: e_1_3_3_39_1
  doi: 10.1016/j.diabres.2009.04.025
– ident: e_1_3_3_26_1
  doi: 10.2337/diacare.24.4.659
– ident: e_1_3_3_17_1
  doi: 10.1136/bmj-2022-070244
– ident: e_1_3_3_18_1
  doi: 10.3389/fendo.2017.00144
– ident: e_1_3_3_3_1
  doi: 10.1136/bmjopen-2017-016972
– ident: e_1_3_3_38_1
  doi: 10.2337/dc06-2361
– ident: e_1_3_3_29_1
  doi: 10.2337/dc11-0135
– ident: e_1_3_3_27_1
  doi: 10.1016/j.diabet.2020.02.003
– ident: e_1_3_3_15_1
  doi: 10.2337/dc21-1430
– ident: e_1_3_3_10_1
  doi: 10.1093/humrep/15.8.1826
– ident: e_1_3_3_43_1
  doi: 10.1016/j.diabres.2021.109001
– ident: e_1_3_3_42_1
  doi: 10.1038/s41591-019-0724-8
– ident: e_1_3_3_41_1
  doi: 10.1002/pd.2636
– ident: e_1_3_3_2_1
  doi: 10.1093/oxfordjournals.aje.a116408
– ident: e_1_3_3_40_1
  doi: 10.1016/j.ejogrb.2009.04.016
– ident: e_1_3_3_49_1
  doi: 10.6133/apjcn.201906_28(2).0014
– ident: e_1_3_3_21_1
  doi: 10.1007/978-1-4614-5441-0_4
– ident: e_1_3_3_14_1
  doi: 10.1186/s13006-019-0227-8
– ident: e_1_3_3_35_1
  doi: 10.2337/dc10-1766
– ident: e_1_3_3_50_1
  doi: 10.1007/s00394-021-02749-z
– ident: e_1_3_3_45_1
  doi: 10.1186/s40842-024-00176-7
– ident: e_1_3_3_23_1
  doi: 10.1016/S0140-6736(09)60731-5
– ident: e_1_3_3_24_1
  doi: 10.2337/dc08-0706
– ident: e_1_3_3_32_1
  doi: 10.1007/s00125-016-3985-5
– ident: e_1_3_3_9_1
  doi: 10.1177/1049732304270825
– ident: e_1_3_3_20_1
  doi: 10.3109/09513590.2013.871522
– ident: e_1_3_3_5_1
  doi: 10.1016/j.diabres.2018.02.023
– ident: e_1_3_3_31_1
  doi: 10.2337/dc16-2397
– ident: e_1_3_3_48_1
  doi: 10.3390/ijerph16224511
– ident: e_1_3_3_16_1
  doi: 10.1136/bmj.m1361
SSID ssj0013472
Score 2.42139
Snippet Gestational diabetes mellitus (GDM) is globally recognized as a significant pregnancy-related condition, contributing to complex complications for both mothers...
Background Gestational diabetes mellitus (GDM) is globally recognized as a significant pregnancy-related condition, contributing to complex complications for...
SourceID doaj
proquest
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 2470317
SubjectTerms Adult
Diabetes, Gestational - diagnosis
Diabetes, Gestational - epidemiology
Female
Gestational diabetes mellitus
Glucose Tolerance Test
Humans
logistic regression
NearMiss
neural network algorithms
Neural Networks, Computer
Pregnancy
Risk Assessment - methods
Risk Factors
Title Early gestational diabetes mellitus risk predictor using neural network with NearMiss
URI https://www.ncbi.nlm.nih.gov/pubmed/39992231
https://www.proquest.com/docview/3170278308
https://doaj.org/article/d3e26a0964c54e048669471ad0eb44be
Volume 41
WOSCitedRecordID wos001432476900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1473-0766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013472
  issn: 0951-3590
  databaseCode: DOA
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1473-0766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013472
  issn: 0951-3590
  databaseCode: TFW
  dateStart: 19870101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
– providerCode: PRVAWR
  databaseName: Taylor & Francis Open Access
  customDbUrl:
  eissn: 1473-0766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013472
  issn: 0951-3590
  databaseCode: 0YH
  dateStart: 20231201
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8UwEB5URLyIu8-NCF6rbZamOar48OLDg-K7lWwVD9bHW_z9znQRPYgXL6WEpElnkuabzPQbgHMbCuOEdokvnEukUjyxXFVJiktJ5EZqnfsm2YQejYrx2Dx8S_VFMWEtPXAruMsgIs8tAm3plYxEEEdPyGxIo5PSRfr6ptr0xlTvP5BN2qYmibxQJu3_3SFWbSyjIrQNubrgkgjc9Y9dqSHv_x1xNjvPcBM2OsjIrtqhbsFSrLdh7b5ziu_AU0NSzMhR1J3ssf5Elb0R3-Z8MWMUQs4mU2qEVjajcPcXRmSWWLtuQ8EZncmyEU79e9TGLjwNbx9v7pIuW0LihU7nKGfHdZAK7d2sSkNl0jzmlTdeFySrgHeZ48arKvNRcs-jqCzinwLVaNHoEHuwUr_X8QBYkBxxhZOiCLlUFhvZCmGiiTp3lVdhABe9tMpJS4pRZj3XaCfeksRbduIdwDXJ9KsycVo3BajpstN0-ZemB3DWa6TENUCODVvH98WsxB7IgSrSYgD7raq-ukIAZhACZYf_MYQjWKfXasNZjmFlPl3EE1j1H_PX2fQUlvW4OG0mIl4fh8-f3HveQg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early+gestational+diabetes+mellitus+risk+predictor+using+neural+network+with+NearMiss&rft.jtitle=Gynecological+endocrinology&rft.au=Zhao%2C+Min&rft.au=Su%2C+Xiaojie&rft.au=Huang%2C+Lihong&rft.date=2025-12-01&rft.issn=1473-0766&rft.eissn=1473-0766&rft.volume=41&rft.issue=1&rft.spage=2470317&rft_id=info:doi/10.1080%2F09513590.2025.2470317&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-3590&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-3590&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-3590&client=summon