Asymptotic expansion for nonlinear eigenvalue problems

In this paper we consider generalized eigenvalue problems for a family of operators with a quadratic dependence on a complex parameter. Our model is L ( λ ) = − △ + ( P ( x ) − λ ) 2 in L 2 ( R d ) where P is a positive elliptic polynomial in R d of degree m ⩾ 2 . It is known that for d even, or d =...

Full description

Saved in:
Bibliographic Details
Published in:Journal de mathématiques pures et appliquées Vol. 93; no. 2; pp. 149 - 162
Main Authors: Aboud, Fatima, Robert, Didier
Format: Journal Article
Language:English
Published: Kidlington Elsevier SAS 01.02.2010
Elsevier
Subjects:
ISSN:0021-7824
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper we consider generalized eigenvalue problems for a family of operators with a quadratic dependence on a complex parameter. Our model is L ( λ ) = − △ + ( P ( x ) − λ ) 2 in L 2 ( R d ) where P is a positive elliptic polynomial in R d of degree m ⩾ 2 . It is known that for d even, or d = 1 , or d = 3 and m ⩾ 6 , there exist λ ∈ C and u ∈ L 2 ( R d ) , u ≠ 0 , such that L ( λ ) u = 0 . In this paper, we give a method to prove existence of non-trivial solutions for the equation L ( λ ) u = 0 , valid in every dimension d ⩾ 1 . This is a partial answer to a conjecture in Helffer, Robert and Xue Ping Wang (2004) [13]. Dans cet article nous considérons un problème aux valeurs propres généralisé pour une famille d'opérateurs dépendant quadratiquement d'un paramètre complexe. Le modèle étudié concerne la famille L ( λ ) = − △ + ( P ( x ) − λ ) 2 dans L 2 ( R d ) où P un polynôme elliptique dans R d de degré m ⩾ 2 . Si d est paire ou si d = 1 ou d = 3 et m ⩾ 6 , on sait alors qu'il existe λ ∈ C et u ∈ L 2 ( R d ) , u ≠ 0 , tels que L ( λ ) u = 0 . L'objet principal de cet article est de donner une méthode pour démontrer l'existence de solutions non triviales pour l'équation L ( λ ) u = 0 pour toute dimension d ⩾ 1 . On répond ainsi partiellement à une conjecture formulée dans Helffer, Robert et Xue Ping Wang (2004) [13].
AbstractList In this paper we consider generalized eigenvalue problems for a family of operators with a quadratic dependence on a complex parameter. Our model is L ( λ ) = − △ + ( P ( x ) − λ ) 2 in L 2 ( R d ) where P is a positive elliptic polynomial in R d of degree m ⩾ 2 . It is known that for d even, or d = 1 , or d = 3 and m ⩾ 6 , there exist λ ∈ C and u ∈ L 2 ( R d ) , u ≠ 0 , such that L ( λ ) u = 0 . In this paper, we give a method to prove existence of non-trivial solutions for the equation L ( λ ) u = 0 , valid in every dimension d ⩾ 1 . This is a partial answer to a conjecture in Helffer, Robert and Xue Ping Wang (2004) [13]. Dans cet article nous considérons un problème aux valeurs propres généralisé pour une famille d'opérateurs dépendant quadratiquement d'un paramètre complexe. Le modèle étudié concerne la famille L ( λ ) = − △ + ( P ( x ) − λ ) 2 dans L 2 ( R d ) où P un polynôme elliptique dans R d de degré m ⩾ 2 . Si d est paire ou si d = 1 ou d = 3 et m ⩾ 6 , on sait alors qu'il existe λ ∈ C et u ∈ L 2 ( R d ) , u ≠ 0 , tels que L ( λ ) u = 0 . L'objet principal de cet article est de donner une méthode pour démontrer l'existence de solutions non triviales pour l'équation L ( λ ) u = 0 pour toute dimension d ⩾ 1 . On répond ainsi partiellement à une conjecture formulée dans Helffer, Robert et Xue Ping Wang (2004) [13].
In this paper we consider generalized eigenvalue problems for a family of operators with a quadratic dependence on a complex parameter. Our model is $L(\lambda)=-\triangle +(P(x)-\lambda)^2$ in $L^2(\R^d)$ where $P$ is a positive elliptic polynomial in $\R^d$ of degree $m\geq 2$. It is known that for $d$ even, or $d=1$, or $d=3$ and $m\geq 6$, there exist $\lambda\in\C$ and $u\in L^2(\R^d)$, $u\neq 0$, such that $L(\lambda)u=0$. In this paper, we give a method to prove existence of non trivial solutions for the equation $L(\lambda)u=0$, valid in every dimension. This is a partial answer to a conjecture in \cite{herowa}.
Author Robert, Didier
Aboud, Fatima
Author_xml – sequence: 1
  givenname: Fatima
  surname: Aboud
  fullname: Aboud, Fatima
  email: fatima.aboud@univ-nantes.fr
– sequence: 2
  givenname: Didier
  surname: Robert
  fullname: Robert, Didier
  email: didier.robert@univ-nantes.fr
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22375128$$DView record in Pascal Francis
https://hal.science/hal-00365917$$DView record in HAL
BookMark eNqFkD9PwzAQxT0UiRb4BgxZGBgazvnjOAxIVQUUqRILzNbFvoCrNInstKLfHlcBBga45Umn93unezM2abuWGLvkEHPg4mYTb3Hody5OAMoYZBxkwqYACZ8XMslO2cz7DYQphZgysfCHbT90g9URffTYetu1Ud25KOQ2tiV0Edk3avfY7CjqXVc1tPXn7KTGxtPFl56x14f7l-Vqvn5-fFou1nOdFjDM0zI1lSgqkjU3UmeVxJIbqIzkVZ5AyiE3okKZoSBDPCsLqjCvjc6SAqQW6Rm7HnPfsVG9s1t0B9WhVavFWh13AKnIS17sefBejd4evcamdthq63-oJEmLnCcy-G5Hn3ad945qpe2AQ_h7cGgbxUEdm1QbNTapjk0qkOFWGeDsF_yd_w92N2IUytpbcsprS60mYx3pQZnO_h3wCTO6lBM
CODEN JMPAAM
CitedBy_id crossref_primary_10_1137_110827867
Cites_doi 10.4171/ZAA/352
10.1070/RM1971v026n04ABEH003985
10.1007/BF01682844
10.1215/S0012-7094-02-11122-3
10.1007/BF02391910
10.1080/03605309408821040
10.1016/S0022-1236(03)00105-8
10.1215/S0012-7094-93-07222-5
10.1016/0022-1236(83)90034-4
ContentType Journal Article
Copyright 2009 Elsevier Masson SAS
2015 INIST-CNRS
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2009 Elsevier Masson SAS
– notice: 2015 INIST-CNRS
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
1XC
VOOES
DOI 10.1016/j.matpur.2009.08.009
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Physics
EndPage 162
ExternalDocumentID oai:HAL:hal-00365917v1
22375128
10_1016_j_matpur_2009_08_009
S0021782409001135
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
1B1
1~.
1~5
29J
2WC
4.4
457
4G.
5VS
692
6I.
6TJ
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYJJ
ABAOU
ABCQX
ABEFU
ABFNM
ABJNI
ABLJU
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACKIV
ACNCT
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AETEA
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FRP
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
L7B
M41
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RGL
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
UPT
VH1
XOL
YQT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
1XC
VOOES
ID FETCH-LOGICAL-c370t-393db67be8f1d8c4b8a91d0bd81b5203105d6ba84a6ede1497eba5fdc42708c63
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000274759800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-7824
IngestDate Tue Oct 14 20:19:50 EDT 2025
Mon Jul 21 09:16:57 EDT 2025
Tue Nov 18 22:22:04 EST 2025
Sat Nov 29 02:26:15 EST 2025
Fri Feb 23 02:34:48 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Semiclassical analysis
Non-selfadjoint operators
Nonlinear eigenvalue problems
Trace formula
Polynomial
Asymptotic expansion
Nonexistence of solution
Mathematics
Nonlinear problems
Eigenvalue problem
Self adjoint operator
nonlinear eigenvalue
partial differential equation
non-seladjoint operator
trace formula
semiclassical analysis
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c370t-393db67be8f1d8c4b8a91d0bd81b5203105d6ba84a6ede1497eba5fdc42708c63
OpenAccessLink https://hal.science/hal-00365917
PageCount 14
ParticipantIDs hal_primary_oai_HAL_hal_00365917v1
pascalfrancis_primary_22375128
crossref_citationtrail_10_1016_j_matpur_2009_08_009
crossref_primary_10_1016_j_matpur_2009_08_009
elsevier_sciencedirect_doi_10_1016_j_matpur_2009_08_009
PublicationCentury 2000
PublicationDate 2010-02-01
PublicationDateYYYYMMDD 2010-02-01
PublicationDate_xml – month: 02
  year: 2010
  text: 2010-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Journal de mathématiques pures et appliquées
PublicationYear 2010
Publisher Elsevier SAS
Elsevier
Publisher_xml – name: Elsevier SAS
– name: Elsevier
References Dauge, Robert (bib008) 1986; vol. 1256
G. Métivier, Une classe d'opérateurs non hypoelliptiques analytiques, Séminaire Goulaouic–Schwartz, Exposé XII, 1978–1979
Robert (bib019) 1987; vol. 68
Agranovich, Markus (bib002) 1989; 8
Friedman, Shinbrot (bib009) 1968; 121
Markus (bib016) 1988; vol. 71
Robert (bib020) 2004; vol. 26
Boimatov, Kostyuchenko (bib003) 1991; 25
Christ (bib006) 1993
Helffer, Robert, Wang (bib013) 2004; 16
Bouzouina, Robert (bib004) 2002; 111
Aboud (bib001)
Krein, Langer (bib015) 1978; 1
Helffer, Robert (bib012) 1983; 53
Lai, Robert (bib018) 1980; 36
Christ (bib007) 1994; 19
Gohberg, Krein (bib010) 1972
Keldysh (bib014) 1971; 26
Chanillo, Helffer, Laptev (bib005) 2004; 209
B. Helffer, Remarques sur des résultats de G. Métivier sur la nonhypoanalyticité, Séminaire de l'Université de Nantes, exposé No. 9, 1978–1979
Seeley (bib021) 1967; vol. 110
Bouzouina (10.1016/j.matpur.2009.08.009_bib004) 2002; 111
Helffer (10.1016/j.matpur.2009.08.009_bib012) 1983; 53
Keldysh (10.1016/j.matpur.2009.08.009_bib014) 1971; 26
Aboud (10.1016/j.matpur.2009.08.009_bib001)
Christ (10.1016/j.matpur.2009.08.009_bib006) 1993
10.1016/j.matpur.2009.08.009_bib011
Robert (10.1016/j.matpur.2009.08.009_bib020) 2004; vol. 26
Chanillo (10.1016/j.matpur.2009.08.009_bib005) 2004; 209
Boimatov (10.1016/j.matpur.2009.08.009_bib003) 1991; 25
Robert (10.1016/j.matpur.2009.08.009_bib019) 1987; vol. 68
Agranovich (10.1016/j.matpur.2009.08.009_bib002) 1989; 8
Seeley (10.1016/j.matpur.2009.08.009_bib021) 1967; vol. 110
Krein (10.1016/j.matpur.2009.08.009_bib015) 1978; 1
Markus (10.1016/j.matpur.2009.08.009_bib016) 1988; vol. 71
Christ (10.1016/j.matpur.2009.08.009_bib007) 1994; 19
Helffer (10.1016/j.matpur.2009.08.009_bib013) 2004; 16
Lai (10.1016/j.matpur.2009.08.009_bib018) 1980; 36
Gohberg (10.1016/j.matpur.2009.08.009_bib010) 1972
Friedman (10.1016/j.matpur.2009.08.009_bib009) 1968; 121
Dauge (10.1016/j.matpur.2009.08.009_bib008) 1986; vol. 1256
10.1016/j.matpur.2009.08.009_bib017
References_xml – volume: 25
  start-page: 90
  year: 1991
  end-page: 93
  ident: bib003
  article-title: Trace formula for polynomial operators and its applications
  publication-title: Funktsional. Anal. i Prilozhen.
– volume: vol. 1256
  start-page: 90
  year: 1986
  end-page: 122
  ident: bib008
  article-title: Weyl's formula for a class of pseudodifferential operators with negative order on
  publication-title: Lecture Notes in Math.
– volume: vol. 68
  year: 1987
  ident: bib019
  article-title: Autour de l'approximation semi-classique
  publication-title: Progress in Mathematics
– reference: B. Helffer, Remarques sur des résultats de G. Métivier sur la nonhypoanalyticité, Séminaire de l'Université de Nantes, exposé No. 9, 1978–1979
– volume: 53
  start-page: 246
  year: 1983
  end-page: 268
  ident: bib012
  article-title: Calcul fonctionnel par la transformation de Mellin et opérateurs admissibles
  publication-title: J. Funct. Anal.
– year: 1972
  ident: bib010
  article-title: Introduction à la théorie des opérateurs non nécessairement auto-adjoints
– start-page: 595
  year: 1993
  end-page: 639
  ident: bib006
  article-title: Analytic hypoellipticity, representation of nilpotent groups and non-linear eigenvalue problem
  publication-title: Duke Math. J.
– volume: 209
  start-page: 425
  year: 2004
  end-page: 443
  ident: bib005
  article-title: Nonlinear eigenvalues and analytic hypoellipticity
  publication-title: J. Funct. Anal.
– volume: 19
  start-page: 911
  year: 1994
  end-page: 941
  ident: bib007
  article-title: Examples of analytic non-hypoellipticity of
  publication-title: Comm. PDE
– volume: 121
  start-page: 77
  year: 1968
  end-page: 128
  ident: bib009
  article-title: Nonlinear eigenvalue problems
  publication-title: Acta Math.
– ident: bib001
– volume: vol. 71
  year: 1988
  ident: bib016
  article-title: Introduction to the Spectral Theory of Polynomial Operator Pencils
  publication-title: Translations of Mathematical Monographs
– volume: 16
  start-page: 285
  year: 2004
  end-page: 296
  ident: bib013
  article-title: Semiclassical analysis of a nonlinear eigenvalue problem and analytic hypoellipticity
  publication-title: Algebra i Analiz
– volume: vol. 26
  year: 2004
  ident: bib020
  article-title: Nonlinear Eigenvalues Problems
  publication-title: Matematica Contemporanea
– volume: 1
  start-page: 364
  year: 1978
  end-page: 399
  ident: bib015
  article-title: On the mathematical principles in the linear theory of damped oscillations of continua I
  publication-title: Integral Equations Operator Theory
– volume: 111
  start-page: 223
  year: 2002
  end-page: 252
  ident: bib004
  article-title: Uniform semiclassical estimates for the propagation of quantum observables
  publication-title: Duke Math. J.
– volume: 26
  start-page: 15
  year: 1971
  end-page: 44
  ident: bib014
  article-title: On the completeness of the eigenfunctions of some classes of non-self-adjoint linear operators
  publication-title: Russian Math. Surveys
– volume: 36
  start-page: 169
  year: 1980
  end-page: 186
  ident: bib018
  article-title: Sur un problème aux valeurs propres non linéaire
  publication-title: J. Math.
– reference: G. Métivier, Une classe d'opérateurs non hypoelliptiques analytiques, Séminaire Goulaouic–Schwartz, Exposé XII, 1978–1979
– volume: 8
  start-page: 237
  year: 1989
  end-page: 260
  ident: bib002
  article-title: On spectral properties of elliptic pseudo-differential operators far from self-adjoint ones
  publication-title: Z. Anal. Anwendungen
– volume: vol. 110
  start-page: 288
  year: 1967
  end-page: 307
  ident: bib021
  article-title: Complex powers of an elliptic operators
  publication-title: Singular Integrals
– volume: 8
  start-page: 237
  issue: 3
  year: 1989
  ident: 10.1016/j.matpur.2009.08.009_bib002
  article-title: On spectral properties of elliptic pseudo-differential operators far from self-adjoint ones
  publication-title: Z. Anal. Anwendungen
  doi: 10.4171/ZAA/352
– volume: vol. 68
  year: 1987
  ident: 10.1016/j.matpur.2009.08.009_bib019
  article-title: Autour de l'approximation semi-classique
– volume: vol. 26
  year: 2004
  ident: 10.1016/j.matpur.2009.08.009_bib020
  article-title: Nonlinear Eigenvalues Problems
– ident: 10.1016/j.matpur.2009.08.009_bib001
– volume: vol. 71
  year: 1988
  ident: 10.1016/j.matpur.2009.08.009_bib016
  article-title: Introduction to the Spectral Theory of Polynomial Operator Pencils
– year: 1972
  ident: 10.1016/j.matpur.2009.08.009_bib010
– volume: 26
  start-page: 15
  issue: 4
  year: 1971
  ident: 10.1016/j.matpur.2009.08.009_bib014
  article-title: On the completeness of the eigenfunctions of some classes of non-self-adjoint linear operators
  publication-title: Russian Math. Surveys
  doi: 10.1070/RM1971v026n04ABEH003985
– volume: 1
  start-page: 364
  issue: 3
  year: 1978
  ident: 10.1016/j.matpur.2009.08.009_bib015
  article-title: On the mathematical principles in the linear theory of damped oscillations of continua I
  publication-title: Integral Equations Operator Theory
  doi: 10.1007/BF01682844
– volume: vol. 1256
  start-page: 90
  year: 1986
  ident: 10.1016/j.matpur.2009.08.009_bib008
  article-title: Weyl's formula for a class of pseudodifferential operators with negative order on L2(Rn)
– volume: vol. 110
  start-page: 288
  year: 1967
  ident: 10.1016/j.matpur.2009.08.009_bib021
  article-title: Complex powers of an elliptic operators
– ident: 10.1016/j.matpur.2009.08.009_bib017
– volume: 111
  start-page: 223
  issue: 2
  year: 2002
  ident: 10.1016/j.matpur.2009.08.009_bib004
  article-title: Uniform semiclassical estimates for the propagation of quantum observables
  publication-title: Duke Math. J.
  doi: 10.1215/S0012-7094-02-11122-3
– volume: 121
  start-page: 77
  year: 1968
  ident: 10.1016/j.matpur.2009.08.009_bib009
  article-title: Nonlinear eigenvalue problems
  publication-title: Acta Math.
  doi: 10.1007/BF02391910
– volume: 16
  start-page: 285
  issue: 1
  year: 2004
  ident: 10.1016/j.matpur.2009.08.009_bib013
  article-title: Semiclassical analysis of a nonlinear eigenvalue problem and analytic hypoellipticity
  publication-title: Algebra i Analiz
– volume: 36
  start-page: 169
  year: 1980
  ident: 10.1016/j.matpur.2009.08.009_bib018
  article-title: Sur un problème aux valeurs propres non linéaire
  publication-title: J. Math.
– volume: 19
  start-page: 911
  year: 1994
  ident: 10.1016/j.matpur.2009.08.009_bib007
  article-title: Examples of analytic non-hypoellipticity of ∂¯b
  publication-title: Comm. PDE
  doi: 10.1080/03605309408821040
– volume: 25
  start-page: 90
  issue: 4
  year: 1991
  ident: 10.1016/j.matpur.2009.08.009_bib003
  article-title: Trace formula for polynomial operators and its applications
  publication-title: Funktsional. Anal. i Prilozhen.
– volume: 209
  start-page: 425
  issue: 2
  year: 2004
  ident: 10.1016/j.matpur.2009.08.009_bib005
  article-title: Nonlinear eigenvalues and analytic hypoellipticity
  publication-title: J. Funct. Anal.
  doi: 10.1016/S0022-1236(03)00105-8
– start-page: 595
  year: 1993
  ident: 10.1016/j.matpur.2009.08.009_bib006
  article-title: Analytic hypoellipticity, representation of nilpotent groups and non-linear eigenvalue problem
  publication-title: Duke Math. J.
  doi: 10.1215/S0012-7094-93-07222-5
– ident: 10.1016/j.matpur.2009.08.009_bib011
– volume: 53
  start-page: 246
  issue: 3
  year: 1983
  ident: 10.1016/j.matpur.2009.08.009_bib012
  article-title: Calcul fonctionnel par la transformation de Mellin et opérateurs admissibles
  publication-title: J. Funct. Anal.
  doi: 10.1016/0022-1236(83)90034-4
SSID ssj0000966
Score 1.8496565
Snippet In this paper we consider generalized eigenvalue problems for a family of operators with a quadratic dependence on a complex parameter. Our model is L ( λ ) =...
In this paper we consider generalized eigenvalue problems for a family of operators with a quadratic dependence on a complex parameter. Our model is...
SourceID hal
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Index Database
Enrichment Source
Publisher
StartPage 149
SubjectTerms Analysis of PDEs
Exact sciences and technology
Functional Analysis
General mathematics
General, history and biography
Mathematical Physics
Mathematics
Non-selfadjoint operators
Nonlinear eigenvalue problems
Physics
Sciences and techniques of general use
Semiclassical analysis
Spectral Theory
Trace formula
Title Asymptotic expansion for nonlinear eigenvalue problems
URI https://dx.doi.org/10.1016/j.matpur.2009.08.009
https://hal.science/hal-00365917
Volume 93
WOSCitedRecordID wos000274759800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0021-7824
  databaseCode: AIEXJ
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  dateEnd: 20180131
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0000966
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1da9swFBVruoeVMbovmm0tZuwteNiWbUmPZrR0pSuDdJA3o6_QlDYzsVuyf797LdlO6Ua3wV5MkO3I1r26OrKOziXkA9fzTMH0OJTK8jBVgOEk1UloqGQ8g_BnbNQmm2BnZ3w2E199zta6TSfAlku-Xovqv5oaysDYuHX2L8zd_ykUwG8wOhzB7HD8I8MX9Y_rqvmOQqx2DX297siES6eKIVcTixKcKPONu6TahDL1r0BqS25tLtxaOiJbHEMm1Q3M0Ce2lSO_giJ3eqAi4kJS6zZHcMcQ9R2Fuw1xC7PwnGD_uQFXyu9QN_p9MNNiuhlXkzgErJFuxlWX-dD7T7IRJGMnUurH29hF43uh3H1VuPwIrwcv5pVFkfgqhqGrJxRO27kVPEAkEOTSbItsJywTfES2i8-Hs5NhdBZu_bp74m47Zcv5u1_X7-DK1gXyZp9WsoauNHc5UDaAyfkueeaNFRTOE56TR3b5gux86eV465ckH3wi6H0iAJ8Iep8IBp8IOp94Rb4dHZ5_Og59woxQUxY1IRXUqJxBr5vHhmvoeVLEJlIG5iZZgiKwmcmV5KnMrbFgBmaVzOZGpwmLuM7pazKCeu0eCSKVMk2lNnFqUxnhtDYTiVSpyakyuR4T2rVLqb2aPCY1uSo72uBl6VoTE52KEnOdRmJMwv6uyqmpPHA965q89IjQIb0SvOSBO9-DhfpKUET9uDgtsQwlmDIRs9t4TA7uGLC_HDAzAyTM3_xz_W_Jk6H3vCOjZnVj98ljfdss6tWBd8qfJC-frQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asymptotic+expansion+for+nonlinear+eigenvalue+problems&rft.jtitle=Journal+de+math%C3%A9matiques+pures+et+appliqu%C3%A9es&rft.au=Aboud%2C+Fatima&rft.au=Robert%2C+Didier&rft.date=2010-02-01&rft.pub=Elsevier+SAS&rft.issn=0021-7824&rft.volume=93&rft.issue=2&rft.spage=149&rft.epage=162&rft_id=info:doi/10.1016%2Fj.matpur.2009.08.009&rft.externalDocID=S0021782409001135
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-7824&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-7824&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-7824&client=summon