Hybrid lattice Boltzmann finite difference model for simulation of phase change in a ternary fluid

•The CH equation is extended to a ternary fluid with phase-change phenomenon.•A lattice Boltzmann model is proposed consisting of three distribution functions.•The model simulates phase change whether the fluid is in contact with its vapor.•The phase-field variable of the vapor changes smoothly from...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of heat and mass transfer Ročník 127; s. 704 - 716
Hlavní autoři: Haghani Hassan Abadi, Reza, Rahimian, Mohammad Hassan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Elsevier Ltd 01.12.2018
Elsevier BV
Témata:
ISSN:0017-9310, 1879-2189
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •The CH equation is extended to a ternary fluid with phase-change phenomenon.•A lattice Boltzmann model is proposed consisting of three distribution functions.•The model simulates phase change whether the fluid is in contact with its vapor.•The phase-field variable of the vapor changes smoothly from 0 to 1 in ternary system. In this paper, a hybrid lattice Boltzmann finite difference model based on the phase-field lattice Boltzmann and finite difference approaches is proposed to model phase-change phenomena in a ternary system. The system contains three immiscible incompressible fluids and the phase-change process happens at the interfaces of the fluids. Three distribution functions are used in the model; two of which are used to track the interfaces among three fluids and the other one is employed to recover the hydrodynamic properties (pressure and momentum). A sharp-interface energy equation is solved based on a finite difference approach and the net heat flux at the interface is considered as the driving force for the phase-change process. The proposed model is validated against available results and good agreement is found.
AbstractList •The CH equation is extended to a ternary fluid with phase-change phenomenon.•A lattice Boltzmann model is proposed consisting of three distribution functions.•The model simulates phase change whether the fluid is in contact with its vapor.•The phase-field variable of the vapor changes smoothly from 0 to 1 in ternary system. In this paper, a hybrid lattice Boltzmann finite difference model based on the phase-field lattice Boltzmann and finite difference approaches is proposed to model phase-change phenomena in a ternary system. The system contains three immiscible incompressible fluids and the phase-change process happens at the interfaces of the fluids. Three distribution functions are used in the model; two of which are used to track the interfaces among three fluids and the other one is employed to recover the hydrodynamic properties (pressure and momentum). A sharp-interface energy equation is solved based on a finite difference approach and the net heat flux at the interface is considered as the driving force for the phase-change process. The proposed model is validated against available results and good agreement is found.
In this paper, a hybrid lattice Boltzmann finite difference model based on the phase-field lattice Boltzmann and finite difference approaches is proposed to model phase-change phenomena in a ternary system. The system contains three immiscible incompressible fluids and the phase-change process happens at the interfaces of the fluids. Three distribution functions are used in the model; two of which are used to track the interfaces among three fluids and the other one is employed to recover the hydrodynamic properties (pressure and momentum). A sharp-interface energy equation is solved based on a finite difference approach and the net heat flux at the interface is considered as the driving force for the phase-change process. The proposed model is validated against available results and good agreement is found.
Author Rahimian, Mohammad Hassan
Haghani Hassan Abadi, Reza
Author_xml – sequence: 1
  givenname: Reza
  surname: Haghani Hassan Abadi
  fullname: Haghani Hassan Abadi, Reza
– sequence: 2
  givenname: Mohammad Hassan
  orcidid: 0000-0002-5945-4758
  surname: Rahimian
  fullname: Rahimian, Mohammad Hassan
  email: Rahimyan@ut.ac.ir
BookMark eNqVkMFu1DAQhi3USmxb3sESFy7Zjp2QxDegorRVJS5wtib2mHWU2IvtRSpPj7fLCS4gjWSNZvxp_u-CnYUYiLE3ArYCRH89b_28Iywr5lwShuwobSWIcQtDLfGCbcQ4qEaKUZ2xDYAYGtUKeMkucp6PLXT9hk13T1Pyli9YijfEP8Sl_FwxBO588IW49a6SKdTZGi0t3MXEs18P9YePgUfH9zvMxM0OwzfiPnDkhVLA9MTdcvD2ip07XDK9-v1esq-3H7_c3DWPnz_d37x_bEw7QGnaUTkyPcHowKqaoJuEQ3IdSaw9TkIoUNgPdnwrEZ1E5yY7mrbrWpIG2kv2-sTdp_j9QLnoOR7qHUvWUkhQAKqXdev2tGVSzDmR08aX5yjVol-0AH30q2f9t1999KthqCUq6N0foH3ya039P4iHE4Kqlh--TrPxR9XWJzJF2-j_HfYLupCrFA
CitedBy_id crossref_primary_10_1002_ecs2_2799
crossref_primary_10_1016_j_icheatmasstransfer_2021_105137
crossref_primary_10_1007_s00707_020_02663_1
crossref_primary_10_1016_j_icheatmasstransfer_2021_105527
crossref_primary_10_1016_j_icheatmasstransfer_2019_02_005
crossref_primary_10_1063_5_0226691
crossref_primary_10_1016_j_ijthermalsci_2022_107541
crossref_primary_10_1016_j_jocs_2022_101593
crossref_primary_10_1016_j_ijmultiphaseflow_2020_103289
crossref_primary_10_1016_j_psep_2021_01_016
crossref_primary_10_1016_j_camwa_2022_03_027
crossref_primary_10_1016_j_jcp_2021_110111
crossref_primary_10_1016_j_icheatmasstransfer_2025_109543
crossref_primary_10_1016_j_apm_2021_10_012
crossref_primary_10_1007_s00707_022_03307_2
Cites_doi 10.1016/j.jcp.2010.07.007
10.1103/PhysRevE.87.013010
10.1103/PhysRevE.55.R6333
10.1080/10407782.2011.561079
10.1063/1.869984
10.1023/A:1014527108336
10.1103/PhysRevE.97.033312
10.1016/0021-9991(81)90145-5
10.1063/1.2136357
10.1006/jcph.2000.6481
10.1103/PhysRevE.96.013306
10.1016/j.jcp.2006.07.035
10.1006/jcph.2001.6726
10.1006/jcph.1999.6257
10.1051/m2an:2006028
10.1016/j.ijheatmasstransfer.2017.01.119
10.1016/j.jcp.2006.11.020
10.1006/jcph.2000.6692
10.1103/PhysRevE.95.053301
10.1006/jcph.1999.6332
10.1103/PhysRevE.85.026704
10.1103/PhysRevE.87.043301
10.1016/j.jcp.2007.06.028
10.1016/j.jcp.2018.07.045
10.1016/j.camwa.2016.02.033
10.1016/j.ijheatmasstransfer.2007.07.053
10.1146/annurev.fluid.30.1.329
10.1016/j.pecs.2015.10.001
10.1006/jcph.1994.1155
10.1103/PhysRevE.88.013304
10.1115/1.2826025
10.1006/jcph.1998.6057
10.1016/j.cma.2007.06.016
10.1103/PhysRevE.94.023311
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier BV Dec 2018
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier BV Dec 2018
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.ijheatmasstransfer.2018.07.071
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2189
EndPage 716
ExternalDocumentID 10_1016_j_ijheatmasstransfer_2018_07_071
S0017931018308135
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDMP
ABFNM
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7TB
8FD
AFXIZ
AGCQF
AGRNS
FR3
H8D
KR7
L7M
SSH
ID FETCH-LOGICAL-c370t-389fec6e08f0d90714b1faef4e2ad90ab11909a67d852aaf2affbd8c3443e2c03
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000451366000061&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0017-9310
IngestDate Fri Jul 25 05:26:48 EDT 2025
Tue Nov 18 22:37:12 EST 2025
Sat Nov 29 07:33:24 EST 2025
Fri Feb 23 02:50:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Phase-change process
Lattice Boltzmann method
Multiphase flow
Ternary fluids
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c370t-389fec6e08f0d90714b1faef4e2ad90ab11909a67d852aaf2affbd8c3443e2c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5945-4758
PQID 2120900962
PQPubID 2045464
PageCount 13
ParticipantIDs proquest_journals_2120900962
crossref_citationtrail_10_1016_j_ijheatmasstransfer_2018_07_071
crossref_primary_10_1016_j_ijheatmasstransfer_2018_07_071
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2018_07_071
PublicationCentury 2000
PublicationDate December 2018
2018-12-00
20181201
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: December 2018
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of heat and mass transfer
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References He, Chen, Zhang (b0135) 1999; 152
Gibou, Chen, Nguyen, Banerjee (b0140) 2007; 222
Hirt, Nichols (b0005) 1981; 39
Li, Luo, Kang, He, Chen, Liu (b0100) 2016; 52
Ding, Spelt, Shu (b0025) 2007; 226
Begmohammadi, Rahimian, Farhadzadeh, Hatani (b0090) 2016; 71
Sussman, Smereka, Osher (b0010) 1994; 114
Chen, Doolen (b0055) 1998; 30
Fakhari, Mitchell, Leonardi, Bolster (b0160) 2017; 00
Xiao, Miljkovic, Enright, Wang (b0115) 2013; 3
Guo, Sun, Li, Tao (b0050) 2011; 59
Yan, Zu (b0065) 2008; 51
He, Zhang, Chen, Doolen (b0070) 1999; 11
Li, Luo, Gao, He (b0170) 2012; 85
Jacqmin (b0020) 1999; 155
Kim (b0150) 2007; 196
Boyer, Lapuerta (b0120) 2006; 40
Ren, Song, Sukop, Hu (b0155) 2016; 94
Haghani Hassan Abadi, Fakhari, Rahimian (b0105) 2018; 97
Zu, He (b0165) 2013; 87
Son, Dhir, Ramanujapu (b0040) 1999; 121
Tomar, Biswas, Sharma, Agrawal (b0045) 2005; 17
He, Doolen (b0060) 2002; 107
Safari, Rahimian, Krafczyk (b0075) 2013; 88
Haghani Hassan Abadi, Rahimian, Fakhari (b0175) 2018
Lee, Liu (b0080) 2010; 229
Weisensee, Wang, Hongliang, Schultz, King, Miljkovic (b0110) 2017; 109
Jamet, Lebaigue, Coutris, Delhaye (b0030) 2001; 169
He, Chen, Doolen (b0125) 1998; 146
Liu, Valocchi, Zhang, Kang (b0145) 2013; 87
Yue, Zhou, Feng (b0180) 2007; 223
He, Luo (b0130) 1997; 55
Ashna, Rahimian, Fakhari (b0085) 2017; 95
Mohammadi-Shad, Lee (b0095) 2017; 96
Tryggvason, Bunner, Esmaeeli, Juric, Al-Rawahi, Tauber, Han, Nas, Jan (b0015) 2001; 169
Welch, Wilson (b0035) 2000; 160
Liu (10.1016/j.ijheatmasstransfer.2018.07.071_b0145) 2013; 87
Hirt (10.1016/j.ijheatmasstransfer.2018.07.071_b0005) 1981; 39
Tomar (10.1016/j.ijheatmasstransfer.2018.07.071_b0045) 2005; 17
He (10.1016/j.ijheatmasstransfer.2018.07.071_b0070) 1999; 11
Li (10.1016/j.ijheatmasstransfer.2018.07.071_b0100) 2016; 52
Safari (10.1016/j.ijheatmasstransfer.2018.07.071_b0075) 2013; 88
Jamet (10.1016/j.ijheatmasstransfer.2018.07.071_b0030) 2001; 169
Gibou (10.1016/j.ijheatmasstransfer.2018.07.071_b0140) 2007; 222
Fakhari (10.1016/j.ijheatmasstransfer.2018.07.071_b0160) 2017; 00
He (10.1016/j.ijheatmasstransfer.2018.07.071_b0130) 1997; 55
Zu (10.1016/j.ijheatmasstransfer.2018.07.071_b0165) 2013; 87
Mohammadi-Shad (10.1016/j.ijheatmasstransfer.2018.07.071_b0095) 2017; 96
He (10.1016/j.ijheatmasstransfer.2018.07.071_b0135) 1999; 152
Kim (10.1016/j.ijheatmasstransfer.2018.07.071_b0150) 2007; 196
Xiao (10.1016/j.ijheatmasstransfer.2018.07.071_b0115) 2013; 3
He (10.1016/j.ijheatmasstransfer.2018.07.071_b0125) 1998; 146
Tryggvason (10.1016/j.ijheatmasstransfer.2018.07.071_b0015) 2001; 169
Chen (10.1016/j.ijheatmasstransfer.2018.07.071_b0055) 1998; 30
Son (10.1016/j.ijheatmasstransfer.2018.07.071_b0040) 1999; 121
Ren (10.1016/j.ijheatmasstransfer.2018.07.071_b0155) 2016; 94
Jacqmin (10.1016/j.ijheatmasstransfer.2018.07.071_b0020) 1999; 155
Haghani Hassan Abadi (10.1016/j.ijheatmasstransfer.2018.07.071_b0105) 2018; 97
Weisensee (10.1016/j.ijheatmasstransfer.2018.07.071_b0110) 2017; 109
Yue (10.1016/j.ijheatmasstransfer.2018.07.071_b0180) 2007; 223
Welch (10.1016/j.ijheatmasstransfer.2018.07.071_b0035) 2000; 160
Guo (10.1016/j.ijheatmasstransfer.2018.07.071_b0050) 2011; 59
He (10.1016/j.ijheatmasstransfer.2018.07.071_b0060) 2002; 107
Lee (10.1016/j.ijheatmasstransfer.2018.07.071_b0080) 2010; 229
Begmohammadi (10.1016/j.ijheatmasstransfer.2018.07.071_b0090) 2016; 71
Haghani Hassan Abadi (10.1016/j.ijheatmasstransfer.2018.07.071_b0175) 2018
Li (10.1016/j.ijheatmasstransfer.2018.07.071_b0170) 2012; 85
Ashna (10.1016/j.ijheatmasstransfer.2018.07.071_b0085) 2017; 95
Boyer (10.1016/j.ijheatmasstransfer.2018.07.071_b0120) 2006; 40
Sussman (10.1016/j.ijheatmasstransfer.2018.07.071_b0010) 1994; 114
Ding (10.1016/j.ijheatmasstransfer.2018.07.071_b0025) 2007; 226
Yan (10.1016/j.ijheatmasstransfer.2018.07.071_b0065) 2008; 51
References_xml – volume: 17
  start-page: 112103
  year: 2005
  ident: b0045
  article-title: Numerical simulation of bubble growth in film boiling using a coupled level-set and volume-of-fluid method
  publication-title: Phys. Fluids
– volume: 169
  start-page: 708
  year: 2001
  end-page: 759
  ident: b0015
  article-title: A front-tracking method for the computations of multiphase flow
  publication-title: J. Comput. Phys.
– volume: 97
  start-page: 033312
  year: 2018
  ident: b0105
  article-title: Numerical simulation of three-component multiphase flows at high density and viscosity ratios using lattice Boltzmann methods
  publication-title: Phys. Rev. E
– volume: 85
  start-page: 026704
  year: 2012
  ident: b0170
  article-title: Additional interfacial force in lattice Boltzmann models for incompressible multiphase flows
  publication-title: Phys. Rev. E
– volume: 155
  start-page: 96
  year: 1999
  end-page: 127
  ident: b0020
  article-title: Calculation of two-phase Navier-Stokes flows using phase-field modeling
  publication-title: J. Comput. Phys.
– volume: 52
  start-page: 62
  year: 2016
  end-page: 105
  ident: b0100
  article-title: Lattice Boltzmann methods for multiphase flow and phase-change heat transfer
  publication-title: Prog. Energy Combust. Sci.
– volume: 88
  start-page: 013304
  year: 2013
  ident: b0075
  article-title: Extended lattice Boltzmann method for numerical simulation of thermal phase change in two-phase fluid flow
  publication-title: Phys. Rev. E
– volume: 229
  start-page: 8045
  year: 2010
  end-page: 8063
  ident: b0080
  article-title: Lattice Boltzmann simulations of micron-scale drop impact on dry surfaces
  publication-title: J. Comput. Phys.
– volume: 55
  start-page: R6333
  year: 1997
  ident: b0130
  article-title: A priori derivation of the lattice Boltzmann equation
  publication-title: Phys. Rev. E
– volume: 196
  start-page: 4779
  year: 2007
  end-page: 4788
  ident: b0150
  article-title: Phase field computations for ternary fluid flows
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 169
  start-page: 624
  year: 2001
  end-page: 651
  ident: b0030
  article-title: The second gradient method for the direct numerical simulation of liquid-vapor flows with phase change
  publication-title: J. Comput. Phys.
– volume: 107
  start-page: 309
  year: 2002
  end-page: 328
  ident: b0060
  article-title: Thermodynamic foundations of kinetic theory and lattice Boltzmann models for multiphase flows
  publication-title: J. Stat. Phys.
– volume: 222
  start-page: 536
  year: 2007
  end-page: 555
  ident: b0140
  article-title: A level set based sharp interface method for the multiphase incompressible Navier-Stokes equations with phase change
  publication-title: J. Comput. Phys.
– volume: 51
  start-page: 2519
  year: 2008
  end-page: 2536
  ident: b0065
  article-title: Numerical simulation of heat transfer and fluid flow past a rotating isothermal cylinder - a LBM approach
  publication-title: Int. J. Heat Mass Transfer
– year: 2018
  ident: b0175
  article-title: Conservative phase-field lattice-Boltzmann model for ternary fluids
  publication-title: J. Comput. Phys.
– volume: 109
  start-page: 187
  year: 2017
  end-page: 199
  ident: b0110
  article-title: Condensate droplet size distribution on lubricant-infused surfaces
  publication-title: Int. J. Heat Mass Transfer
– volume: 40
  start-page: 653
  year: 2006
  end-page: 687
  ident: b0120
  article-title: Study of a three component Cahn-Hilliard flow model
  publication-title: ESAIM: Math. Model. Numer. Anal.
– volume: 3
  start-page: 1988
  year: 2013
  ident: b0115
  article-title: Immersion condensation on oil-infused heterogeneous surfaces for enhanced heat transfer
  publication-title: Sci. Rep. (Nature Publisher Group)
– volume: 00
  start-page: 003300
  year: 2017
  ident: b0160
  article-title: Improved locality of the phase-field lattice-Boltzmann model for immiscible fluids at high density ratios
  publication-title: Phys. Rev. E
– volume: 114
  start-page: 146
  year: 1994
  end-page: 159
  ident: b0010
  article-title: A level set approach for computing solutions to incompressible two-phase flow
  publication-title: J. Comput. Phys.
– volume: 226
  start-page: 2078
  year: 2007
  end-page: 2095
  ident: b0025
  article-title: Diffuse interface model for incompressible two-phase flows with large density ratios
  publication-title: J. Comput. Phys.
– volume: 146
  start-page: 282
  year: 1998
  end-page: 300
  ident: b0125
  article-title: A novel thermal model for the lattice Boltzmann method in incompressible limit
  publication-title: J. Comput. Phys.
– volume: 11
  start-page: 1143
  year: 1999
  end-page: 1152
  ident: b0070
  article-title: On the three-dimensional Rayleigh-Taylor instability
  publication-title: Phys. Fluids
– volume: 30
  start-page: 329
  year: 1998
  end-page: 364
  ident: b0055
  article-title: Lattice Boltzmann method for fluid flows
  publication-title: Annu. Rev. Fluid Mech.
– volume: 95
  start-page: 053301
  year: 2017
  ident: b0085
  article-title: Extended lattice Boltzmann scheme for droplet combustion
  publication-title: Phys. Rev. E
– volume: 87
  start-page: 043301
  year: 2013
  ident: b0165
  article-title: Phase-field-based lattice Boltzmann model for incompressible binary fluid systems with density and viscosity contrasts
  publication-title: Phys. Rev. E
– volume: 152
  start-page: 642
  year: 1999
  end-page: 663
  ident: b0135
  article-title: A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability
  publication-title: J. Comput. Phys.
– volume: 39
  start-page: 201
  year: 1981
  end-page: 225
  ident: b0005
  article-title: Volume of fluid (VOF) method for the dynamics of free boundaries
  publication-title: J. Comput. Phys.
– volume: 87
  start-page: 013010
  year: 2013
  ident: b0145
  article-title: Phase-field-based lattice Boltzmann finite-difference model for simulating thermocapillary flows
  publication-title: Phys. Rev. E
– volume: 96
  start-page: 013306
  year: 2017
  ident: b0095
  article-title: Phase-field lattice Boltzmann modeling of boiling using a sharp-interface energy solver
  publication-title: Phys. Rev. E
– volume: 94
  start-page: 023311
  year: 2016
  ident: b0155
  article-title: Improved lattice Boltzmann modeling of binary flow based on the conservative Allen-Cahn equation
  publication-title: Phys. Rev. E
– volume: 71
  start-page: 1861
  year: 2016
  end-page: 1874
  ident: b0090
  article-title: Numerical simulation of single- and multi-mode film boiling using lattice Boltzmann method
  publication-title: Comput. Math. Appl.
– volume: 223
  start-page: 1
  year: 2007
  end-page: 9
  ident: b0180
  article-title: Spontaneous shrinkage of drops and mass conservation in phase-field simulations
  publication-title: J. Comput. Phys.
– volume: 160
  start-page: 662
  year: 2000
  end-page: 682
  ident: b0035
  article-title: A volume of fluid based method for fluid flows with phase change
  publication-title: J. Comput. Phys.
– volume: 121
  start-page: 623
  year: 1999
  end-page: 631
  ident: b0040
  article-title: Dynamics and heat transfer associated with a single bubble during nucleate boiling on a horizontal surface
  publication-title: J. Heat Transfer
– volume: 59
  start-page: 857
  year: 2011
  end-page: 881
  ident: b0050
  article-title: Phase change heat transfer simulation for boiling bubbles arising from a vapor film by the VOSET method
  publication-title: Numer. Heat Transfer, Part A: Appl.
– volume: 229
  start-page: 8045
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0080
  article-title: Lattice Boltzmann simulations of micron-scale drop impact on dry surfaces
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2010.07.007
– volume: 87
  start-page: 013010
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0145
  article-title: Phase-field-based lattice Boltzmann finite-difference model for simulating thermocapillary flows
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.87.013010
– volume: 55
  start-page: R6333
  year: 1997
  ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0130
  article-title: A priori derivation of the lattice Boltzmann equation
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.55.R6333
– volume: 59
  start-page: 857
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0050
  article-title: Phase change heat transfer simulation for boiling bubbles arising from a vapor film by the VOSET method
  publication-title: Numer. Heat Transfer, Part A: Appl.
  doi: 10.1080/10407782.2011.561079
– volume: 11
  start-page: 1143
  year: 1999
  ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0070
  article-title: On the three-dimensional Rayleigh-Taylor instability
  publication-title: Phys. Fluids
  doi: 10.1063/1.869984
– volume: 107
  start-page: 309
  year: 2002
  ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0060
  article-title: Thermodynamic foundations of kinetic theory and lattice Boltzmann models for multiphase flows
  publication-title: J. Stat. Phys.
  doi: 10.1023/A:1014527108336
– volume: 97
  start-page: 033312
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0105
  article-title: Numerical simulation of three-component multiphase flows at high density and viscosity ratios using lattice Boltzmann methods
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.97.033312
– volume: 39
  start-page: 201
  year: 1981
  ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0005
  article-title: Volume of fluid (VOF) method for the dynamics of free boundaries
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(81)90145-5
– volume: 17
  start-page: 112103
  year: 2005
  ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0045
  article-title: Numerical simulation of bubble growth in film boiling using a coupled level-set and volume-of-fluid method
  publication-title: Phys. Fluids
  doi: 10.1063/1.2136357
– volume: 160
  start-page: 662
  year: 2000
  ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0035
  article-title: A volume of fluid based method for fluid flows with phase change
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2000.6481
– volume: 96
  start-page: 013306
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0095
  article-title: Phase-field lattice Boltzmann modeling of boiling using a sharp-interface energy solver
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.96.013306
– volume: 222
  start-page: 536
  year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0140
  article-title: A level set based sharp interface method for the multiphase incompressible Navier-Stokes equations with phase change
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2006.07.035
– volume: 169
  start-page: 708
  year: 2001
  ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0015
  article-title: A front-tracking method for the computations of multiphase flow
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2001.6726
– volume: 152
  start-page: 642
  year: 1999
  ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0135
  article-title: A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1999.6257
– volume: 40
  start-page: 653
  year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0120
  article-title: Study of a three component Cahn-Hilliard flow model
  publication-title: ESAIM: Math. Model. Numer. Anal.
  doi: 10.1051/m2an:2006028
– volume: 00
  start-page: 003300
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0160
  article-title: Improved locality of the phase-field lattice-Boltzmann model for immiscible fluids at high density ratios
  publication-title: Phys. Rev. E
– volume: 109
  start-page: 187
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0110
  article-title: Condensate droplet size distribution on lubricant-infused surfaces
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2017.01.119
– volume: 223
  start-page: 1
  year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0180
  article-title: Spontaneous shrinkage of drops and mass conservation in phase-field simulations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2006.11.020
– volume: 3
  start-page: 1988
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0115
  article-title: Immersion condensation on oil-infused heterogeneous surfaces for enhanced heat transfer
  publication-title: Sci. Rep. (Nature Publisher Group)
– volume: 169
  start-page: 624
  year: 2001
  ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0030
  article-title: The second gradient method for the direct numerical simulation of liquid-vapor flows with phase change
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2000.6692
– volume: 95
  start-page: 053301
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0085
  article-title: Extended lattice Boltzmann scheme for droplet combustion
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.95.053301
– volume: 155
  start-page: 96
  year: 1999
  ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0020
  article-title: Calculation of two-phase Navier-Stokes flows using phase-field modeling
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1999.6332
– volume: 85
  start-page: 026704
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0170
  article-title: Additional interfacial force in lattice Boltzmann models for incompressible multiphase flows
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.85.026704
– volume: 87
  start-page: 043301
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0165
  article-title: Phase-field-based lattice Boltzmann model for incompressible binary fluid systems with density and viscosity contrasts
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.87.043301
– volume: 226
  start-page: 2078
  year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0025
  article-title: Diffuse interface model for incompressible two-phase flows with large density ratios
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2007.06.028
– year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0175
  article-title: Conservative phase-field lattice-Boltzmann model for ternary fluids
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.07.045
– volume: 71
  start-page: 1861
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0090
  article-title: Numerical simulation of single- and multi-mode film boiling using lattice Boltzmann method
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2016.02.033
– volume: 51
  start-page: 2519
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0065
  article-title: Numerical simulation of heat transfer and fluid flow past a rotating isothermal cylinder - a LBM approach
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2007.07.053
– volume: 30
  start-page: 329
  year: 1998
  ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0055
  article-title: Lattice Boltzmann method for fluid flows
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.30.1.329
– volume: 52
  start-page: 62
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0100
  article-title: Lattice Boltzmann methods for multiphase flow and phase-change heat transfer
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2015.10.001
– volume: 114
  start-page: 146
  year: 1994
  ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0010
  article-title: A level set approach for computing solutions to incompressible two-phase flow
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1994.1155
– volume: 88
  start-page: 013304
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0075
  article-title: Extended lattice Boltzmann method for numerical simulation of thermal phase change in two-phase fluid flow
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.88.013304
– volume: 121
  start-page: 623
  year: 1999
  ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0040
  article-title: Dynamics and heat transfer associated with a single bubble during nucleate boiling on a horizontal surface
  publication-title: J. Heat Transfer
  doi: 10.1115/1.2826025
– volume: 146
  start-page: 282
  year: 1998
  ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0125
  article-title: A novel thermal model for the lattice Boltzmann method in incompressible limit
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1998.6057
– volume: 196
  start-page: 4779
  year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0150
  article-title: Phase field computations for ternary fluid flows
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2007.06.016
– volume: 94
  start-page: 023311
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0155
  article-title: Improved lattice Boltzmann modeling of binary flow based on the conservative Allen-Cahn equation
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.94.023311
SSID ssj0017046
Score 2.3843846
Snippet •The CH equation is extended to a ternary fluid with phase-change phenomenon.•A lattice Boltzmann model is proposed consisting of three distribution...
In this paper, a hybrid lattice Boltzmann finite difference model based on the phase-field lattice Boltzmann and finite difference approaches is proposed to...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 704
SubjectTerms Computational fluid dynamics
Computer simulation
Distribution functions
Finite difference method
Fluid dynamics
Fluid flow
Fluid mechanics
Heat flux
Heat transfer
Incompressible flow
Incompressible fluids
Lattice Boltzmann method
Mathematical analysis
Multiphase flow
Phase change
Phase transitions
Phase-change process
Ternary fluids
Ternary systems
Thermodynamics
Title Hybrid lattice Boltzmann finite difference model for simulation of phase change in a ternary fluid
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.07.071
https://www.proquest.com/docview/2120900962
Volume 127
WOSCitedRecordID wos000451366000061&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3di9NAEF9KT8UX8RNPT9kHH4RQSbP5fJJ6nFTRQ-SEvoVJdtemJOnR5o67-4f8N539SNLeoVwRoYQ2IcNu55fZ2clvZgh5owqkZHnMR8Bwi-K7Ap-5nIlRknnSD4H5LteJwl-i4-N4Nku-DQa_2lyY8zKq6_jiIjn9r6rGc6hslTq7g7o7oXgCv6PS8Yhqx-OtFD-9VElYTgmN4rU5H5Zlc1VBXTuyUP5l1xIFr-k2OJpouC4q28dLU6DnoFjsOvFABUTA0WHD1aUjy7Niq7XndkRxow6FMvL6zUSF7rnqRIH-cc8EnsJPlF44U7yIFmaSAS-Mtq-6deI7zIuqMAHar8s5VBVwe8NmrGIcb_A-rP3FNTFhlsja2l9THMBa0Mh0I7aLcWQSMW_YeRNyWLwrFmo2aiLtPBRbL9b1WE1rl-0S29eWvo6Q2HLdFulNiamSmLoRfnCbvedFQRIPyd7k09Hsc_fCCocdtou-muA98ranEv59lH_yiK75BtrhOXlIHtidCp0YhD0iA1E_Jnc1YzhfPyGZwRm1OKMdzqjBGe1xRjXOKOKM9jijS0k1zqjBGS1qCtTijGqcPSU_Ph6dHE5HtmHHKGeR24zQ-ZUiD4UbS5cnKjUuG0sQ0hce4G_Ixuh-JhBGPA48AOmBlBlH2-D7THi5y56RYb2sxXNC2VgGPgjGExb4Pg-Ae3nIGW73ZeAK19sn79s_Lc1tNXvVVKVMb6vKfZJ0Ek5NZZcd7j1s9ZRaT9V4oCkCdAcpB62KU_t8rlNPJbOrwIL34h8G-JLc75-_AzJsVmfiFbmTnzfFevXagvc3_cnVLQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+lattice+Boltzmann+finite+difference+model+for+simulation+of+phase+change+in+a+ternary+fluid&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Haghani+Hassan+Abadi%2C+Reza&rft.au=Rahimian%2C+Mohammad+Hassan&rft.date=2018-12-01&rft.issn=0017-9310&rft.volume=127&rft.spage=704&rft.epage=716&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2018.07.071&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijheatmasstransfer_2018_07_071
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon