Hybrid lattice Boltzmann finite difference model for simulation of phase change in a ternary fluid
•The CH equation is extended to a ternary fluid with phase-change phenomenon.•A lattice Boltzmann model is proposed consisting of three distribution functions.•The model simulates phase change whether the fluid is in contact with its vapor.•The phase-field variable of the vapor changes smoothly from...
Uloženo v:
| Vydáno v: | International journal of heat and mass transfer Ročník 127; s. 704 - 716 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Oxford
Elsevier Ltd
01.12.2018
Elsevier BV |
| Témata: | |
| ISSN: | 0017-9310, 1879-2189 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •The CH equation is extended to a ternary fluid with phase-change phenomenon.•A lattice Boltzmann model is proposed consisting of three distribution functions.•The model simulates phase change whether the fluid is in contact with its vapor.•The phase-field variable of the vapor changes smoothly from 0 to 1 in ternary system.
In this paper, a hybrid lattice Boltzmann finite difference model based on the phase-field lattice Boltzmann and finite difference approaches is proposed to model phase-change phenomena in a ternary system. The system contains three immiscible incompressible fluids and the phase-change process happens at the interfaces of the fluids. Three distribution functions are used in the model; two of which are used to track the interfaces among three fluids and the other one is employed to recover the hydrodynamic properties (pressure and momentum). A sharp-interface energy equation is solved based on a finite difference approach and the net heat flux at the interface is considered as the driving force for the phase-change process. The proposed model is validated against available results and good agreement is found. |
|---|---|
| AbstractList | •The CH equation is extended to a ternary fluid with phase-change phenomenon.•A lattice Boltzmann model is proposed consisting of three distribution functions.•The model simulates phase change whether the fluid is in contact with its vapor.•The phase-field variable of the vapor changes smoothly from 0 to 1 in ternary system.
In this paper, a hybrid lattice Boltzmann finite difference model based on the phase-field lattice Boltzmann and finite difference approaches is proposed to model phase-change phenomena in a ternary system. The system contains three immiscible incompressible fluids and the phase-change process happens at the interfaces of the fluids. Three distribution functions are used in the model; two of which are used to track the interfaces among three fluids and the other one is employed to recover the hydrodynamic properties (pressure and momentum). A sharp-interface energy equation is solved based on a finite difference approach and the net heat flux at the interface is considered as the driving force for the phase-change process. The proposed model is validated against available results and good agreement is found. In this paper, a hybrid lattice Boltzmann finite difference model based on the phase-field lattice Boltzmann and finite difference approaches is proposed to model phase-change phenomena in a ternary system. The system contains three immiscible incompressible fluids and the phase-change process happens at the interfaces of the fluids. Three distribution functions are used in the model; two of which are used to track the interfaces among three fluids and the other one is employed to recover the hydrodynamic properties (pressure and momentum). A sharp-interface energy equation is solved based on a finite difference approach and the net heat flux at the interface is considered as the driving force for the phase-change process. The proposed model is validated against available results and good agreement is found. |
| Author | Rahimian, Mohammad Hassan Haghani Hassan Abadi, Reza |
| Author_xml | – sequence: 1 givenname: Reza surname: Haghani Hassan Abadi fullname: Haghani Hassan Abadi, Reza – sequence: 2 givenname: Mohammad Hassan orcidid: 0000-0002-5945-4758 surname: Rahimian fullname: Rahimian, Mohammad Hassan email: Rahimyan@ut.ac.ir |
| BookMark | eNqVkMFu1DAQhi3USmxb3sESFy7Zjp2QxDegorRVJS5wtib2mHWU2IvtRSpPj7fLCS4gjWSNZvxp_u-CnYUYiLE3ArYCRH89b_28Iywr5lwShuwobSWIcQtDLfGCbcQ4qEaKUZ2xDYAYGtUKeMkucp6PLXT9hk13T1Pyli9YijfEP8Sl_FwxBO588IW49a6SKdTZGi0t3MXEs18P9YePgUfH9zvMxM0OwzfiPnDkhVLA9MTdcvD2ip07XDK9-v1esq-3H7_c3DWPnz_d37x_bEw7QGnaUTkyPcHowKqaoJuEQ3IdSaw9TkIoUNgPdnwrEZ1E5yY7mrbrWpIG2kv2-sTdp_j9QLnoOR7qHUvWUkhQAKqXdev2tGVSzDmR08aX5yjVol-0AH30q2f9t1999KthqCUq6N0foH3ya039P4iHE4Kqlh--TrPxR9XWJzJF2-j_HfYLupCrFA |
| CitedBy_id | crossref_primary_10_1002_ecs2_2799 crossref_primary_10_1016_j_icheatmasstransfer_2021_105137 crossref_primary_10_1007_s00707_020_02663_1 crossref_primary_10_1016_j_icheatmasstransfer_2021_105527 crossref_primary_10_1016_j_icheatmasstransfer_2019_02_005 crossref_primary_10_1063_5_0226691 crossref_primary_10_1016_j_ijthermalsci_2022_107541 crossref_primary_10_1016_j_jocs_2022_101593 crossref_primary_10_1016_j_ijmultiphaseflow_2020_103289 crossref_primary_10_1016_j_psep_2021_01_016 crossref_primary_10_1016_j_camwa_2022_03_027 crossref_primary_10_1016_j_jcp_2021_110111 crossref_primary_10_1016_j_icheatmasstransfer_2025_109543 crossref_primary_10_1016_j_apm_2021_10_012 crossref_primary_10_1007_s00707_022_03307_2 |
| Cites_doi | 10.1016/j.jcp.2010.07.007 10.1103/PhysRevE.87.013010 10.1103/PhysRevE.55.R6333 10.1080/10407782.2011.561079 10.1063/1.869984 10.1023/A:1014527108336 10.1103/PhysRevE.97.033312 10.1016/0021-9991(81)90145-5 10.1063/1.2136357 10.1006/jcph.2000.6481 10.1103/PhysRevE.96.013306 10.1016/j.jcp.2006.07.035 10.1006/jcph.2001.6726 10.1006/jcph.1999.6257 10.1051/m2an:2006028 10.1016/j.ijheatmasstransfer.2017.01.119 10.1016/j.jcp.2006.11.020 10.1006/jcph.2000.6692 10.1103/PhysRevE.95.053301 10.1006/jcph.1999.6332 10.1103/PhysRevE.85.026704 10.1103/PhysRevE.87.043301 10.1016/j.jcp.2007.06.028 10.1016/j.jcp.2018.07.045 10.1016/j.camwa.2016.02.033 10.1016/j.ijheatmasstransfer.2007.07.053 10.1146/annurev.fluid.30.1.329 10.1016/j.pecs.2015.10.001 10.1006/jcph.1994.1155 10.1103/PhysRevE.88.013304 10.1115/1.2826025 10.1006/jcph.1998.6057 10.1016/j.cma.2007.06.016 10.1103/PhysRevE.94.023311 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Ltd Copyright Elsevier BV Dec 2018 |
| Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright Elsevier BV Dec 2018 |
| DBID | AAYXX CITATION 7TB 8FD FR3 H8D KR7 L7M |
| DOI | 10.1016/j.ijheatmasstransfer.2018.07.071 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1879-2189 |
| EndPage | 716 |
| ExternalDocumentID | 10_1016_j_ijheatmasstransfer_2018_07_071 S0017931018308135 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABDMP ABFNM ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACKIV ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SSG SSR SST SSZ T5K T9H TN5 VOH WUQ XPP ZMT ZY4 ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7TB 8FD AFXIZ AGCQF AGRNS FR3 H8D KR7 L7M SSH |
| ID | FETCH-LOGICAL-c370t-389fec6e08f0d90714b1faef4e2ad90ab11909a67d852aaf2affbd8c3443e2c03 |
| ISICitedReferencesCount | 22 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000451366000061&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0017-9310 |
| IngestDate | Fri Jul 25 05:26:48 EDT 2025 Tue Nov 18 22:37:12 EST 2025 Sat Nov 29 07:33:24 EST 2025 Fri Feb 23 02:50:24 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Phase-change process Lattice Boltzmann method Multiphase flow Ternary fluids |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c370t-389fec6e08f0d90714b1faef4e2ad90ab11909a67d852aaf2affbd8c3443e2c03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5945-4758 |
| PQID | 2120900962 |
| PQPubID | 2045464 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_2120900962 crossref_citationtrail_10_1016_j_ijheatmasstransfer_2018_07_071 crossref_primary_10_1016_j_ijheatmasstransfer_2018_07_071 elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2018_07_071 |
| PublicationCentury | 2000 |
| PublicationDate | December 2018 2018-12-00 20181201 |
| PublicationDateYYYYMMDD | 2018-12-01 |
| PublicationDate_xml | – month: 12 year: 2018 text: December 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | International journal of heat and mass transfer |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | He, Chen, Zhang (b0135) 1999; 152 Gibou, Chen, Nguyen, Banerjee (b0140) 2007; 222 Hirt, Nichols (b0005) 1981; 39 Li, Luo, Kang, He, Chen, Liu (b0100) 2016; 52 Ding, Spelt, Shu (b0025) 2007; 226 Begmohammadi, Rahimian, Farhadzadeh, Hatani (b0090) 2016; 71 Sussman, Smereka, Osher (b0010) 1994; 114 Chen, Doolen (b0055) 1998; 30 Fakhari, Mitchell, Leonardi, Bolster (b0160) 2017; 00 Xiao, Miljkovic, Enright, Wang (b0115) 2013; 3 Guo, Sun, Li, Tao (b0050) 2011; 59 Yan, Zu (b0065) 2008; 51 He, Zhang, Chen, Doolen (b0070) 1999; 11 Li, Luo, Gao, He (b0170) 2012; 85 Jacqmin (b0020) 1999; 155 Kim (b0150) 2007; 196 Boyer, Lapuerta (b0120) 2006; 40 Ren, Song, Sukop, Hu (b0155) 2016; 94 Haghani Hassan Abadi, Fakhari, Rahimian (b0105) 2018; 97 Zu, He (b0165) 2013; 87 Son, Dhir, Ramanujapu (b0040) 1999; 121 Tomar, Biswas, Sharma, Agrawal (b0045) 2005; 17 He, Doolen (b0060) 2002; 107 Safari, Rahimian, Krafczyk (b0075) 2013; 88 Haghani Hassan Abadi, Rahimian, Fakhari (b0175) 2018 Lee, Liu (b0080) 2010; 229 Weisensee, Wang, Hongliang, Schultz, King, Miljkovic (b0110) 2017; 109 Jamet, Lebaigue, Coutris, Delhaye (b0030) 2001; 169 He, Chen, Doolen (b0125) 1998; 146 Liu, Valocchi, Zhang, Kang (b0145) 2013; 87 Yue, Zhou, Feng (b0180) 2007; 223 He, Luo (b0130) 1997; 55 Ashna, Rahimian, Fakhari (b0085) 2017; 95 Mohammadi-Shad, Lee (b0095) 2017; 96 Tryggvason, Bunner, Esmaeeli, Juric, Al-Rawahi, Tauber, Han, Nas, Jan (b0015) 2001; 169 Welch, Wilson (b0035) 2000; 160 Liu (10.1016/j.ijheatmasstransfer.2018.07.071_b0145) 2013; 87 Hirt (10.1016/j.ijheatmasstransfer.2018.07.071_b0005) 1981; 39 Tomar (10.1016/j.ijheatmasstransfer.2018.07.071_b0045) 2005; 17 He (10.1016/j.ijheatmasstransfer.2018.07.071_b0070) 1999; 11 Li (10.1016/j.ijheatmasstransfer.2018.07.071_b0100) 2016; 52 Safari (10.1016/j.ijheatmasstransfer.2018.07.071_b0075) 2013; 88 Jamet (10.1016/j.ijheatmasstransfer.2018.07.071_b0030) 2001; 169 Gibou (10.1016/j.ijheatmasstransfer.2018.07.071_b0140) 2007; 222 Fakhari (10.1016/j.ijheatmasstransfer.2018.07.071_b0160) 2017; 00 He (10.1016/j.ijheatmasstransfer.2018.07.071_b0130) 1997; 55 Zu (10.1016/j.ijheatmasstransfer.2018.07.071_b0165) 2013; 87 Mohammadi-Shad (10.1016/j.ijheatmasstransfer.2018.07.071_b0095) 2017; 96 He (10.1016/j.ijheatmasstransfer.2018.07.071_b0135) 1999; 152 Kim (10.1016/j.ijheatmasstransfer.2018.07.071_b0150) 2007; 196 Xiao (10.1016/j.ijheatmasstransfer.2018.07.071_b0115) 2013; 3 He (10.1016/j.ijheatmasstransfer.2018.07.071_b0125) 1998; 146 Tryggvason (10.1016/j.ijheatmasstransfer.2018.07.071_b0015) 2001; 169 Chen (10.1016/j.ijheatmasstransfer.2018.07.071_b0055) 1998; 30 Son (10.1016/j.ijheatmasstransfer.2018.07.071_b0040) 1999; 121 Ren (10.1016/j.ijheatmasstransfer.2018.07.071_b0155) 2016; 94 Jacqmin (10.1016/j.ijheatmasstransfer.2018.07.071_b0020) 1999; 155 Haghani Hassan Abadi (10.1016/j.ijheatmasstransfer.2018.07.071_b0105) 2018; 97 Weisensee (10.1016/j.ijheatmasstransfer.2018.07.071_b0110) 2017; 109 Yue (10.1016/j.ijheatmasstransfer.2018.07.071_b0180) 2007; 223 Welch (10.1016/j.ijheatmasstransfer.2018.07.071_b0035) 2000; 160 Guo (10.1016/j.ijheatmasstransfer.2018.07.071_b0050) 2011; 59 He (10.1016/j.ijheatmasstransfer.2018.07.071_b0060) 2002; 107 Lee (10.1016/j.ijheatmasstransfer.2018.07.071_b0080) 2010; 229 Begmohammadi (10.1016/j.ijheatmasstransfer.2018.07.071_b0090) 2016; 71 Haghani Hassan Abadi (10.1016/j.ijheatmasstransfer.2018.07.071_b0175) 2018 Li (10.1016/j.ijheatmasstransfer.2018.07.071_b0170) 2012; 85 Ashna (10.1016/j.ijheatmasstransfer.2018.07.071_b0085) 2017; 95 Boyer (10.1016/j.ijheatmasstransfer.2018.07.071_b0120) 2006; 40 Sussman (10.1016/j.ijheatmasstransfer.2018.07.071_b0010) 1994; 114 Ding (10.1016/j.ijheatmasstransfer.2018.07.071_b0025) 2007; 226 Yan (10.1016/j.ijheatmasstransfer.2018.07.071_b0065) 2008; 51 |
| References_xml | – volume: 17 start-page: 112103 year: 2005 ident: b0045 article-title: Numerical simulation of bubble growth in film boiling using a coupled level-set and volume-of-fluid method publication-title: Phys. Fluids – volume: 169 start-page: 708 year: 2001 end-page: 759 ident: b0015 article-title: A front-tracking method for the computations of multiphase flow publication-title: J. Comput. Phys. – volume: 97 start-page: 033312 year: 2018 ident: b0105 article-title: Numerical simulation of three-component multiphase flows at high density and viscosity ratios using lattice Boltzmann methods publication-title: Phys. Rev. E – volume: 85 start-page: 026704 year: 2012 ident: b0170 article-title: Additional interfacial force in lattice Boltzmann models for incompressible multiphase flows publication-title: Phys. Rev. E – volume: 155 start-page: 96 year: 1999 end-page: 127 ident: b0020 article-title: Calculation of two-phase Navier-Stokes flows using phase-field modeling publication-title: J. Comput. Phys. – volume: 52 start-page: 62 year: 2016 end-page: 105 ident: b0100 article-title: Lattice Boltzmann methods for multiphase flow and phase-change heat transfer publication-title: Prog. Energy Combust. Sci. – volume: 88 start-page: 013304 year: 2013 ident: b0075 article-title: Extended lattice Boltzmann method for numerical simulation of thermal phase change in two-phase fluid flow publication-title: Phys. Rev. E – volume: 229 start-page: 8045 year: 2010 end-page: 8063 ident: b0080 article-title: Lattice Boltzmann simulations of micron-scale drop impact on dry surfaces publication-title: J. Comput. Phys. – volume: 55 start-page: R6333 year: 1997 ident: b0130 article-title: A priori derivation of the lattice Boltzmann equation publication-title: Phys. Rev. E – volume: 196 start-page: 4779 year: 2007 end-page: 4788 ident: b0150 article-title: Phase field computations for ternary fluid flows publication-title: Comput. Methods Appl. Mech. Eng. – volume: 169 start-page: 624 year: 2001 end-page: 651 ident: b0030 article-title: The second gradient method for the direct numerical simulation of liquid-vapor flows with phase change publication-title: J. Comput. Phys. – volume: 107 start-page: 309 year: 2002 end-page: 328 ident: b0060 article-title: Thermodynamic foundations of kinetic theory and lattice Boltzmann models for multiphase flows publication-title: J. Stat. Phys. – volume: 222 start-page: 536 year: 2007 end-page: 555 ident: b0140 article-title: A level set based sharp interface method for the multiphase incompressible Navier-Stokes equations with phase change publication-title: J. Comput. Phys. – volume: 51 start-page: 2519 year: 2008 end-page: 2536 ident: b0065 article-title: Numerical simulation of heat transfer and fluid flow past a rotating isothermal cylinder - a LBM approach publication-title: Int. J. Heat Mass Transfer – year: 2018 ident: b0175 article-title: Conservative phase-field lattice-Boltzmann model for ternary fluids publication-title: J. Comput. Phys. – volume: 109 start-page: 187 year: 2017 end-page: 199 ident: b0110 article-title: Condensate droplet size distribution on lubricant-infused surfaces publication-title: Int. J. Heat Mass Transfer – volume: 40 start-page: 653 year: 2006 end-page: 687 ident: b0120 article-title: Study of a three component Cahn-Hilliard flow model publication-title: ESAIM: Math. Model. Numer. Anal. – volume: 3 start-page: 1988 year: 2013 ident: b0115 article-title: Immersion condensation on oil-infused heterogeneous surfaces for enhanced heat transfer publication-title: Sci. Rep. (Nature Publisher Group) – volume: 00 start-page: 003300 year: 2017 ident: b0160 article-title: Improved locality of the phase-field lattice-Boltzmann model for immiscible fluids at high density ratios publication-title: Phys. Rev. E – volume: 114 start-page: 146 year: 1994 end-page: 159 ident: b0010 article-title: A level set approach for computing solutions to incompressible two-phase flow publication-title: J. Comput. Phys. – volume: 226 start-page: 2078 year: 2007 end-page: 2095 ident: b0025 article-title: Diffuse interface model for incompressible two-phase flows with large density ratios publication-title: J. Comput. Phys. – volume: 146 start-page: 282 year: 1998 end-page: 300 ident: b0125 article-title: A novel thermal model for the lattice Boltzmann method in incompressible limit publication-title: J. Comput. Phys. – volume: 11 start-page: 1143 year: 1999 end-page: 1152 ident: b0070 article-title: On the three-dimensional Rayleigh-Taylor instability publication-title: Phys. Fluids – volume: 30 start-page: 329 year: 1998 end-page: 364 ident: b0055 article-title: Lattice Boltzmann method for fluid flows publication-title: Annu. Rev. Fluid Mech. – volume: 95 start-page: 053301 year: 2017 ident: b0085 article-title: Extended lattice Boltzmann scheme for droplet combustion publication-title: Phys. Rev. E – volume: 87 start-page: 043301 year: 2013 ident: b0165 article-title: Phase-field-based lattice Boltzmann model for incompressible binary fluid systems with density and viscosity contrasts publication-title: Phys. Rev. E – volume: 152 start-page: 642 year: 1999 end-page: 663 ident: b0135 article-title: A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability publication-title: J. Comput. Phys. – volume: 39 start-page: 201 year: 1981 end-page: 225 ident: b0005 article-title: Volume of fluid (VOF) method for the dynamics of free boundaries publication-title: J. Comput. Phys. – volume: 87 start-page: 013010 year: 2013 ident: b0145 article-title: Phase-field-based lattice Boltzmann finite-difference model for simulating thermocapillary flows publication-title: Phys. Rev. E – volume: 96 start-page: 013306 year: 2017 ident: b0095 article-title: Phase-field lattice Boltzmann modeling of boiling using a sharp-interface energy solver publication-title: Phys. Rev. E – volume: 94 start-page: 023311 year: 2016 ident: b0155 article-title: Improved lattice Boltzmann modeling of binary flow based on the conservative Allen-Cahn equation publication-title: Phys. Rev. E – volume: 71 start-page: 1861 year: 2016 end-page: 1874 ident: b0090 article-title: Numerical simulation of single- and multi-mode film boiling using lattice Boltzmann method publication-title: Comput. Math. Appl. – volume: 223 start-page: 1 year: 2007 end-page: 9 ident: b0180 article-title: Spontaneous shrinkage of drops and mass conservation in phase-field simulations publication-title: J. Comput. Phys. – volume: 160 start-page: 662 year: 2000 end-page: 682 ident: b0035 article-title: A volume of fluid based method for fluid flows with phase change publication-title: J. Comput. Phys. – volume: 121 start-page: 623 year: 1999 end-page: 631 ident: b0040 article-title: Dynamics and heat transfer associated with a single bubble during nucleate boiling on a horizontal surface publication-title: J. Heat Transfer – volume: 59 start-page: 857 year: 2011 end-page: 881 ident: b0050 article-title: Phase change heat transfer simulation for boiling bubbles arising from a vapor film by the VOSET method publication-title: Numer. Heat Transfer, Part A: Appl. – volume: 229 start-page: 8045 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0080 article-title: Lattice Boltzmann simulations of micron-scale drop impact on dry surfaces publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2010.07.007 – volume: 87 start-page: 013010 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0145 article-title: Phase-field-based lattice Boltzmann finite-difference model for simulating thermocapillary flows publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.87.013010 – volume: 55 start-page: R6333 year: 1997 ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0130 article-title: A priori derivation of the lattice Boltzmann equation publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.55.R6333 – volume: 59 start-page: 857 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0050 article-title: Phase change heat transfer simulation for boiling bubbles arising from a vapor film by the VOSET method publication-title: Numer. Heat Transfer, Part A: Appl. doi: 10.1080/10407782.2011.561079 – volume: 11 start-page: 1143 year: 1999 ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0070 article-title: On the three-dimensional Rayleigh-Taylor instability publication-title: Phys. Fluids doi: 10.1063/1.869984 – volume: 107 start-page: 309 year: 2002 ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0060 article-title: Thermodynamic foundations of kinetic theory and lattice Boltzmann models for multiphase flows publication-title: J. Stat. Phys. doi: 10.1023/A:1014527108336 – volume: 97 start-page: 033312 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0105 article-title: Numerical simulation of three-component multiphase flows at high density and viscosity ratios using lattice Boltzmann methods publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.97.033312 – volume: 39 start-page: 201 year: 1981 ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0005 article-title: Volume of fluid (VOF) method for the dynamics of free boundaries publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(81)90145-5 – volume: 17 start-page: 112103 year: 2005 ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0045 article-title: Numerical simulation of bubble growth in film boiling using a coupled level-set and volume-of-fluid method publication-title: Phys. Fluids doi: 10.1063/1.2136357 – volume: 160 start-page: 662 year: 2000 ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0035 article-title: A volume of fluid based method for fluid flows with phase change publication-title: J. Comput. Phys. doi: 10.1006/jcph.2000.6481 – volume: 96 start-page: 013306 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0095 article-title: Phase-field lattice Boltzmann modeling of boiling using a sharp-interface energy solver publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.96.013306 – volume: 222 start-page: 536 year: 2007 ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0140 article-title: A level set based sharp interface method for the multiphase incompressible Navier-Stokes equations with phase change publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2006.07.035 – volume: 169 start-page: 708 year: 2001 ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0015 article-title: A front-tracking method for the computations of multiphase flow publication-title: J. Comput. Phys. doi: 10.1006/jcph.2001.6726 – volume: 152 start-page: 642 year: 1999 ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0135 article-title: A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability publication-title: J. Comput. Phys. doi: 10.1006/jcph.1999.6257 – volume: 40 start-page: 653 year: 2006 ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0120 article-title: Study of a three component Cahn-Hilliard flow model publication-title: ESAIM: Math. Model. Numer. Anal. doi: 10.1051/m2an:2006028 – volume: 00 start-page: 003300 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0160 article-title: Improved locality of the phase-field lattice-Boltzmann model for immiscible fluids at high density ratios publication-title: Phys. Rev. E – volume: 109 start-page: 187 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0110 article-title: Condensate droplet size distribution on lubricant-infused surfaces publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2017.01.119 – volume: 223 start-page: 1 year: 2007 ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0180 article-title: Spontaneous shrinkage of drops and mass conservation in phase-field simulations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2006.11.020 – volume: 3 start-page: 1988 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0115 article-title: Immersion condensation on oil-infused heterogeneous surfaces for enhanced heat transfer publication-title: Sci. Rep. (Nature Publisher Group) – volume: 169 start-page: 624 year: 2001 ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0030 article-title: The second gradient method for the direct numerical simulation of liquid-vapor flows with phase change publication-title: J. Comput. Phys. doi: 10.1006/jcph.2000.6692 – volume: 95 start-page: 053301 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0085 article-title: Extended lattice Boltzmann scheme for droplet combustion publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.95.053301 – volume: 155 start-page: 96 year: 1999 ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0020 article-title: Calculation of two-phase Navier-Stokes flows using phase-field modeling publication-title: J. Comput. Phys. doi: 10.1006/jcph.1999.6332 – volume: 85 start-page: 026704 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0170 article-title: Additional interfacial force in lattice Boltzmann models for incompressible multiphase flows publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.85.026704 – volume: 87 start-page: 043301 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0165 article-title: Phase-field-based lattice Boltzmann model for incompressible binary fluid systems with density and viscosity contrasts publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.87.043301 – volume: 226 start-page: 2078 year: 2007 ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0025 article-title: Diffuse interface model for incompressible two-phase flows with large density ratios publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2007.06.028 – year: 2018 ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0175 article-title: Conservative phase-field lattice-Boltzmann model for ternary fluids publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.07.045 – volume: 71 start-page: 1861 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0090 article-title: Numerical simulation of single- and multi-mode film boiling using lattice Boltzmann method publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2016.02.033 – volume: 51 start-page: 2519 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0065 article-title: Numerical simulation of heat transfer and fluid flow past a rotating isothermal cylinder - a LBM approach publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2007.07.053 – volume: 30 start-page: 329 year: 1998 ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0055 article-title: Lattice Boltzmann method for fluid flows publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.30.1.329 – volume: 52 start-page: 62 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0100 article-title: Lattice Boltzmann methods for multiphase flow and phase-change heat transfer publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2015.10.001 – volume: 114 start-page: 146 year: 1994 ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0010 article-title: A level set approach for computing solutions to incompressible two-phase flow publication-title: J. Comput. Phys. doi: 10.1006/jcph.1994.1155 – volume: 88 start-page: 013304 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0075 article-title: Extended lattice Boltzmann method for numerical simulation of thermal phase change in two-phase fluid flow publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.88.013304 – volume: 121 start-page: 623 year: 1999 ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0040 article-title: Dynamics and heat transfer associated with a single bubble during nucleate boiling on a horizontal surface publication-title: J. Heat Transfer doi: 10.1115/1.2826025 – volume: 146 start-page: 282 year: 1998 ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0125 article-title: A novel thermal model for the lattice Boltzmann method in incompressible limit publication-title: J. Comput. Phys. doi: 10.1006/jcph.1998.6057 – volume: 196 start-page: 4779 year: 2007 ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0150 article-title: Phase field computations for ternary fluid flows publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2007.06.016 – volume: 94 start-page: 023311 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2018.07.071_b0155 article-title: Improved lattice Boltzmann modeling of binary flow based on the conservative Allen-Cahn equation publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.94.023311 |
| SSID | ssj0017046 |
| Score | 2.3843846 |
| Snippet | •The CH equation is extended to a ternary fluid with phase-change phenomenon.•A lattice Boltzmann model is proposed consisting of three distribution... In this paper, a hybrid lattice Boltzmann finite difference model based on the phase-field lattice Boltzmann and finite difference approaches is proposed to... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 704 |
| SubjectTerms | Computational fluid dynamics Computer simulation Distribution functions Finite difference method Fluid dynamics Fluid flow Fluid mechanics Heat flux Heat transfer Incompressible flow Incompressible fluids Lattice Boltzmann method Mathematical analysis Multiphase flow Phase change Phase transitions Phase-change process Ternary fluids Ternary systems Thermodynamics |
| Title | Hybrid lattice Boltzmann finite difference model for simulation of phase change in a ternary fluid |
| URI | https://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.07.071 https://www.proquest.com/docview/2120900962 |
| Volume | 127 |
| WOSCitedRecordID | wos000451366000061&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2189 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017046 issn: 0017-9310 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3di9NAEF9KT8UX8RNPT9kHH4RQSbP5fJJ6nFTRQ-SEvoVJdtemJOnR5o67-4f8N539SNLeoVwRoYQ2IcNu55fZ2clvZgh5owqkZHnMR8Bwi-K7Ap-5nIlRknnSD4H5LteJwl-i4-N4Nku-DQa_2lyY8zKq6_jiIjn9r6rGc6hslTq7g7o7oXgCv6PS8Yhqx-OtFD-9VElYTgmN4rU5H5Zlc1VBXTuyUP5l1xIFr-k2OJpouC4q28dLU6DnoFjsOvFABUTA0WHD1aUjy7Niq7XndkRxow6FMvL6zUSF7rnqRIH-cc8EnsJPlF44U7yIFmaSAS-Mtq-6deI7zIuqMAHar8s5VBVwe8NmrGIcb_A-rP3FNTFhlsja2l9THMBa0Mh0I7aLcWQSMW_YeRNyWLwrFmo2aiLtPBRbL9b1WE1rl-0S29eWvo6Q2HLdFulNiamSmLoRfnCbvedFQRIPyd7k09Hsc_fCCocdtou-muA98ranEv59lH_yiK75BtrhOXlIHtidCp0YhD0iA1E_Jnc1YzhfPyGZwRm1OKMdzqjBGe1xRjXOKOKM9jijS0k1zqjBGS1qCtTijGqcPSU_Ph6dHE5HtmHHKGeR24zQ-ZUiD4UbS5cnKjUuG0sQ0hce4G_Ixuh-JhBGPA48AOmBlBlH2-D7THi5y56RYb2sxXNC2VgGPgjGExb4Pg-Ae3nIGW73ZeAK19sn79s_Lc1tNXvVVKVMb6vKfZJ0Ek5NZZcd7j1s9ZRaT9V4oCkCdAcpB62KU_t8rlNPJbOrwIL34h8G-JLc75-_AzJsVmfiFbmTnzfFevXagvc3_cnVLQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+lattice+Boltzmann+finite+difference+model+for+simulation+of+phase+change+in+a+ternary+fluid&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Haghani+Hassan+Abadi%2C+Reza&rft.au=Rahimian%2C+Mohammad+Hassan&rft.date=2018-12-01&rft.issn=0017-9310&rft.volume=127&rft.spage=704&rft.epage=716&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2018.07.071&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijheatmasstransfer_2018_07_071 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon |