An Expectation–Maximization algorithm for the Wishart mixture model: Application to movement clustering
This article presents an Expectation–Maximization algorithm for the Wishart mixture model in which realizations are matrices. Given a set of matrices, an iterative algorithm for estimating the parameters of such a mixture model is proposed. The obtained estimates can be interpreted in terms of mean...
Uloženo v:
| Vydáno v: | Pattern recognition letters Ročník 31; číslo 14; s. 2318 - 2324 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
15.10.2010
Elsevier |
| Témata: | |
| ISSN: | 0167-8655, 1872-7344 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This article presents an Expectation–Maximization algorithm for the Wishart mixture model in which realizations are matrices. Given a set of matrices, an iterative algorithm for estimating the parameters of such a mixture model is proposed. The obtained estimates can be interpreted in terms of mean matrices and scale factors. By applying the maximum
a posteriori rule, we get an algorithm for the clustering of a set of matrices. This mixture model is then modified in order to deal with a set of samples. Unfortunately, the samples may be of different sizes. We propose to tackle this problem by considering the cross-product matrix as a signature for each sample. This set of cross-product matrices may be fitted with the proposed Wishart pseudo-mixture model in which the scale parameters of the distribution are not estimated but fixed. Again, we easily get a clustering algorithm from final parameter estimates. The different estimators are studied empirically through an analysis of their bias and variance and are validated onto an artificial dataset. Finally, we apply the Wishart pseudo-mixture model for analyzing motion-captured movements. Given the successive 3D positions of markers over the time, a cross-product matrix is constructed for each movement and put into the proposed classifier. We observe that the recognition rates are higher with our proposed approach than those with other geometric methods. Limits and constraints of the provided models are finally discussed. |
|---|---|
| AbstractList | This article presents an Expectation-Maximization algorithm for the Wishart mixture model in which realizations are matrices. Given a set of matrices, an iterative algorithm for estimating the parameters of such a mixture model is proposed. The obtained estimates can be interpreted in terms of mean matrices and scale factors. By applying the maximum a posteriori rule, we get an algorithm for the clustering of a set of matrices. This mixture model is then modified in order to deal with a set of samples. Unfortunately, the samples may be of different sizes. We propose to tackle this problem by considering the cross-product matrix as a signature for each sample. This set of cross-product matrices may be fitted with the proposed Wishart pseudo-mixture model in which the scale parameters of the distribution are not estimated but fixed. Again, we easily get a clustering algorithm from final parameter estimates. The different estimators are studied empirically through an analysis of their bias and variance and are validated onto an artificial dataset. Finally, we apply the Wishart pseudo-mixture model for analyzing motion-captured movements. Given the successive 3D positions of markers over the time, a cross-product matrix is constructed for each movement and put into the proposed classifier. We observe that the recognition rates are higher with our proposed approach than those with other geometric methods. Limits and constraints of the provided models are finally discussed. This article presents an Expectation–Maximization algorithm for the Wishart mixture model in which realizations are matrices. Given a set of matrices, an iterative algorithm for estimating the parameters of such a mixture model is proposed. The obtained estimates can be interpreted in terms of mean matrices and scale factors. By applying the maximum a posteriori rule, we get an algorithm for the clustering of a set of matrices. This mixture model is then modified in order to deal with a set of samples. Unfortunately, the samples may be of different sizes. We propose to tackle this problem by considering the cross-product matrix as a signature for each sample. This set of cross-product matrices may be fitted with the proposed Wishart pseudo-mixture model in which the scale parameters of the distribution are not estimated but fixed. Again, we easily get a clustering algorithm from final parameter estimates. The different estimators are studied empirically through an analysis of their bias and variance and are validated onto an artificial dataset. Finally, we apply the Wishart pseudo-mixture model for analyzing motion-captured movements. Given the successive 3D positions of markers over the time, a cross-product matrix is constructed for each movement and put into the proposed classifier. We observe that the recognition rates are higher with our proposed approach than those with other geometric methods. Limits and constraints of the provided models are finally discussed. |
| Author | Hidot, Sullivan Saint-Jean, Christophe |
| Author_xml | – sequence: 1 givenname: Sullivan surname: Hidot fullname: Hidot, Sullivan organization: Department of Computer Science, Faculty of Engineering, University of Mons, 7000 Mons, Belgium – sequence: 2 givenname: Christophe surname: Saint-Jean fullname: Saint-Jean, Christophe email: christophe.saint-jean@univ-lr.fr organization: Laboratory of Mathematics, Image and Applications, University of La Rochelle, 17000 La Rochelle, France |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23261009$$DView record in Pascal Francis https://hal.science/hal-00718163$$DView record in HAL |
| BookMark | eNqFkcFuEzEQhi1UJNKWN-DgCwcOm9rerHfTA1JUlRYpqBcQR2viHTcT7a5XthulnHgH3rBPUocFDhxAPlj-9X1jaf5TdjL4ARl7I8VcCqkvdvMRUkA7VyJHop4LoV6wmWxqVdTlYnHCZhmri0ZX1St2GuNOCKHLZTNjtBr49WFEmyCRH56-__gEB-rp288nh-7eB0rbnjsfeNoi_0pxCyHxng7pISDvfYvdJV-NY0d2kpLP6R57HBK33UNMGGi4P2cvHXQRX_-6z9iXD9efr26L9d3Nx6vVurBlLVKhylZX0DQIm7KqpXSo7EYDuHwqvbEtaGxdo0BKrHTlWliA0to6BbXUy7Y8Y--muVvozBioh_BoPJC5Xa3NMROilo3U5V5m9u3EjhAtdC7AYCn-sVSptBRimbnLibPBxxjQGUvTwlIA6owU5liE2ZmpCHMswog6_6WyvPhL_j3_P9r7ScO8rD1hMNESDhZbymgyrad_D3gGAHmqPg |
| CODEN | PRLEDG |
| CitedBy_id | crossref_primary_10_1007_s00180_023_01432_7 crossref_primary_10_1109_TNNLS_2018_2884790 crossref_primary_10_1214_21_BJPS504 crossref_primary_10_3390_e18030098 crossref_primary_10_1016_j_compchemeng_2020_106877 crossref_primary_10_1016_j_csda_2025_108232 crossref_primary_10_1109_TGRS_2022_3186522 crossref_primary_10_1080_03610918_2018_1513139 crossref_primary_10_1109_TIT_2017_2653803 crossref_primary_10_1016_j_neuroimage_2017_12_084 crossref_primary_10_1111_jtsa_12644 crossref_primary_10_1007_s40747_020_00191_y crossref_primary_10_1080_03610926_2025_2450775 crossref_primary_10_1016_j_neucom_2018_03_015 crossref_primary_10_1080_21681163_2024_2343711 crossref_primary_10_3390_rs11242994 crossref_primary_10_1016_j_neunet_2021_05_016 crossref_primary_10_1109_TPAMI_2015_2456903 |
| Cites_doi | 10.1109/IGARSS.2003.1293888 10.1016/0031-3203(94)00125-6 10.1002/0471721182 10.1109/36.964969 10.1214/aop/1176992819 10.1109/36.789621 10.1111/j.2517-6161.1977.tb01600.x 10.1016/0167-9473(94)90134-1 10.1016/S0047-259X(02)00012-X 10.1016/S0378-4371(02)00739-2 10.1214/aos/1176344136 10.1109/34.824819 |
| ContentType | Journal Article |
| Copyright | 2010 Elsevier B.V. 2015 INIST-CNRS Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2010 Elsevier B.V. – notice: 2015 INIST-CNRS – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION IQODW 1XC |
| DOI | 10.1016/j.patrec.2010.07.002 |
| DatabaseName | CrossRef Pascal-Francis Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Applied Sciences |
| EISSN | 1872-7344 |
| EndPage | 2324 |
| ExternalDocumentID | oai:HAL:hal-00718163v1 23261009 10_1016_j_patrec_2010_07_002 S0167865510002217 |
| GroupedDBID | --K --M .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WH7 WUQ XFK XPP Y6R ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH 1XC |
| ID | FETCH-LOGICAL-c370t-23d65a88eab35711fe2cb6aafafa56bcda6edf82a11e565fda4a266cf2a7169d3 |
| ISICitedReferencesCount | 26 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000282384500026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-8655 |
| IngestDate | Tue Oct 14 20:45:48 EDT 2025 Mon Jul 21 09:15:09 EDT 2025 Sat Nov 29 07:24:08 EST 2025 Tue Nov 18 22:41:43 EST 2025 Fri Feb 23 02:26:35 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Keywords | Second-order cross moments Wishart mixture model Movement recognition Clustering EM algorithm Second order Automatic classification Parameter estimation Mixture theory Iterative method Scale factor Signal classification A posteriori estimation Geometrical method |
| Language | English |
| License | CC BY 4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c370t-23d65a88eab35711fe2cb6aafafa56bcda6edf82a11e565fda4a266cf2a7169d3 |
| ORCID | 0000-0003-4463-4614 |
| PageCount | 7 |
| ParticipantIDs | hal_primary_oai_HAL_hal_00718163v1 pascalfrancis_primary_23261009 crossref_citationtrail_10_1016_j_patrec_2010_07_002 crossref_primary_10_1016_j_patrec_2010_07_002 elsevier_sciencedirect_doi_10_1016_j_patrec_2010_07_002 |
| PublicationCentury | 2000 |
| PublicationDate | 2010-10-15 |
| PublicationDateYYYYMMDD | 2010-10-15 |
| PublicationDate_xml | – month: 10 year: 2010 text: 2010-10-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Pattern recognition letters |
| PublicationYear | 2010 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Dempster, Laird, Rubin (bib4) 1977; 39 Masaro, Wong (bib17) 2003; 85 Celeux, Govaert (bib3) 1995; 28 Petersen, K., Pedersen, M., 2008. The Matrix Cookbook. Technical University of Denmark. Harshman, R.A., 1972. PARAFAC 2: Mathematical and Technical Note. Working Paper in Phonetics 22. University of California, Los Angeles, USA. Lee, Grunes, Ainsworth, Du, Schuler, Cloude (bib15) 1999; 37 Jain, Duin, Mao (bib11) 2000; 22 Schwarz (bib21) 1978; 6 Hidot, Lafaye, Saint-Jean (bib9) 2006; 15 Rowe (bib20) 2003 Joliffe (bib12) 1986 Horta, M., Mascarenhas, N., Frery, A., 2007. Analyzing polarimetric imagery with G0p mixture models and SEM algorithm. In: Brazilian Symposium on Computer Graphics and Image Processing, 2007, p. 20. Eye, Bogat (bib5) 2004; 46 McLachlan, Peel (bib18) 2000 Ferro-Famil, Pottier, Lee (bib6) 2001; 39 Shawe-Taylor, Cristianini (bib22) 2004 Bezdek (bib2) 1981 Alam, Mitra (bib1) 1990; 52 Skriver, H., Nielsen, A., Conradsen, K., 2003. Evaluation of the Wishart test statistics for polarimetric SAR data. In: Internat. Geoscience and Remote Sensing Symposium (IGARSS), vol. 2, pp. 699–701. Harshman, R.A., 1970. Foundations of the PARAFAC Procedure: Model and Conditions for an ‘Explanatory’ Multi-mode Factor Analysis. Working Papers in Phonetics 16. University of California, Los Angeles, USA, pp. 1–84. Silverstein (bib23) 1985; 13 Yu, Zhang (bib25) 2002; 312 Zhang, Z., Kwok, J., Yeung, D.-Y., 2004. Gaussian-Wishart Process Classification. Technical Report. Department of Computer Science, Hong Kong University of Science and Technology. (bib13) 1999 Lavit, Escoufier, Sabatier, Traissac (bib14) 1994; 18 Mardia (bib16) 1980; vol. 1 (10.1016/j.patrec.2010.07.002_bib13) 1999 Joliffe (10.1016/j.patrec.2010.07.002_bib12) 1986 McLachlan (10.1016/j.patrec.2010.07.002_bib18) 2000 Shawe-Taylor (10.1016/j.patrec.2010.07.002_bib22) 2004 10.1016/j.patrec.2010.07.002_bib26 10.1016/j.patrec.2010.07.002_bib24 Masaro (10.1016/j.patrec.2010.07.002_bib17) 2003; 85 Dempster (10.1016/j.patrec.2010.07.002_bib4) 1977; 39 Silverstein (10.1016/j.patrec.2010.07.002_bib23) 1985; 13 10.1016/j.patrec.2010.07.002_bib10 Eye (10.1016/j.patrec.2010.07.002_bib5) 2004; 46 Lavit (10.1016/j.patrec.2010.07.002_bib14) 1994; 18 10.1016/j.patrec.2010.07.002_bib19 10.1016/j.patrec.2010.07.002_bib7 Hidot (10.1016/j.patrec.2010.07.002_bib9) 2006; 15 10.1016/j.patrec.2010.07.002_bib8 Rowe (10.1016/j.patrec.2010.07.002_bib20) 2003 Ferro-Famil (10.1016/j.patrec.2010.07.002_bib6) 2001; 39 Schwarz (10.1016/j.patrec.2010.07.002_bib21) 1978; 6 Bezdek (10.1016/j.patrec.2010.07.002_bib2) 1981 Jain (10.1016/j.patrec.2010.07.002_bib11) 2000; 22 Alam (10.1016/j.patrec.2010.07.002_bib1) 1990; 52 Celeux (10.1016/j.patrec.2010.07.002_bib3) 1995; 28 Lee (10.1016/j.patrec.2010.07.002_bib15) 1999; 37 Mardia (10.1016/j.patrec.2010.07.002_bib16) 1980; vol. 1 Yu (10.1016/j.patrec.2010.07.002_bib25) 2002; 312 |
| References_xml | – volume: 46 start-page: 243 year: 2004 end-page: 258 ident: bib5 article-title: Testing the assumption of multivariate normality publication-title: Psychol. Sci. – volume: 28 start-page: 781 year: 1995 end-page: 793 ident: bib3 article-title: Gaussian parsimonious clustering models publication-title: Pattern Recognition – volume: vol. 1 start-page: 279 year: 1980 end-page: 320 ident: bib16 article-title: Tests of univariate and multivariate normality publication-title: Handbook of Statistics – reference: Petersen, K., Pedersen, M., 2008. The Matrix Cookbook. Technical University of Denmark. – year: 2000 ident: bib18 article-title: Finite Mixture Models. Wiley Series in Probability and Statistics – year: 1981 ident: bib2 article-title: Pattern Recognition with Fuzzy Objective Function Algoritms – year: 1999 ident: bib13 publication-title: Learning in Graphical Models – volume: 6 start-page: 461 year: 1978 end-page: 464 ident: bib21 article-title: Estimating the dimension of a model publication-title: Ann. Statist. – reference: Zhang, Z., Kwok, J., Yeung, D.-Y., 2004. Gaussian-Wishart Process Classification. Technical Report. Department of Computer Science, Hong Kong University of Science and Technology. – reference: Harshman, R.A., 1970. Foundations of the PARAFAC Procedure: Model and Conditions for an ‘Explanatory’ Multi-mode Factor Analysis. Working Papers in Phonetics 16. University of California, Los Angeles, USA, pp. 1–84. – volume: 52 start-page: 133 year: 1990 end-page: 143 ident: bib1 article-title: On estimated the scale and noncentrality matrices of a Wishart distribution publication-title: Sankha Ser. B – reference: Harshman, R.A., 1972. PARAFAC 2: Mathematical and Technical Note. Working Paper in Phonetics 22. University of California, Los Angeles, USA. – year: 2003 ident: bib20 article-title: Multivariate Bayesian Statistics: Models for Source Separation and Signal Unmixing – volume: 37 start-page: 2249 year: 1999 end-page: 2258 ident: bib15 article-title: Unsupervised classification using polarimetric decomposition and the complex Wishart classifier publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2004 ident: bib22 article-title: Kernel Methods for Pattern Analysis – volume: 39 start-page: 2332 year: 2001 end-page: 2342 ident: bib6 article-title: Unsupervised classification of multifrequency and fully polarimetric SAR images based on the H/A/alpha-Wishart classifier publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 15 start-page: 391 year: 2006 end-page: 399 ident: bib9 article-title: Discriminant factor analysis for movement recognition: Application to dance publication-title: Proc. Internat. Conf. on Computer Vision and Graphics (ICCVG’06) – volume: 39 start-page: 1 year: 1977 end-page: 38 ident: bib4 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. Roy. Statist. Soc. B – reference: Skriver, H., Nielsen, A., Conradsen, K., 2003. Evaluation of the Wishart test statistics for polarimetric SAR data. In: Internat. Geoscience and Remote Sensing Symposium (IGARSS), vol. 2, pp. 699–701. – reference: Horta, M., Mascarenhas, N., Frery, A., 2007. Analyzing polarimetric imagery with G0p mixture models and SEM algorithm. In: Brazilian Symposium on Computer Graphics and Image Processing, 2007, p. 20. – volume: 85 start-page: 1 year: 2003 end-page: 9 ident: bib17 article-title: Wishart distributions associated with matrix quadratic forms publication-title: J. Multivariate Anal. – year: 1986 ident: bib12 article-title: Principal Component Analysis – volume: 312 start-page: 1 year: 2002 end-page: 22 ident: bib25 article-title: On the anti-Wishart distribution publication-title: Physica A – volume: 13 start-page: 1364 year: 1985 end-page: 1368 ident: bib23 article-title: The smallest eigenvalue of a large dimensional Wishart matrix publication-title: Ann. Prob. – volume: 22 start-page: 4 year: 2000 end-page: 37 ident: bib11 article-title: Statistical pattern recognition: A review publication-title: IEEE Trans. Pattern Anal. Machine Intell. – volume: 18 start-page: 97 year: 1994 end-page: 119 ident: bib14 article-title: The ACT (STATIS method) publication-title: Comput. Statist. Data Anal. – ident: 10.1016/j.patrec.2010.07.002_bib7 – ident: 10.1016/j.patrec.2010.07.002_bib24 doi: 10.1109/IGARSS.2003.1293888 – year: 2004 ident: 10.1016/j.patrec.2010.07.002_bib22 – volume: 28 start-page: 781 year: 1995 ident: 10.1016/j.patrec.2010.07.002_bib3 article-title: Gaussian parsimonious clustering models publication-title: Pattern Recognition doi: 10.1016/0031-3203(94)00125-6 – year: 2003 ident: 10.1016/j.patrec.2010.07.002_bib20 – year: 2000 ident: 10.1016/j.patrec.2010.07.002_bib18 doi: 10.1002/0471721182 – ident: 10.1016/j.patrec.2010.07.002_bib26 – volume: 52 start-page: 133 year: 1990 ident: 10.1016/j.patrec.2010.07.002_bib1 article-title: On estimated the scale and noncentrality matrices of a Wishart distribution publication-title: Sankha Ser. B – volume: 39 start-page: 2332 issue: 11 year: 2001 ident: 10.1016/j.patrec.2010.07.002_bib6 article-title: Unsupervised classification of multifrequency and fully polarimetric SAR images based on the H/A/alpha-Wishart classifier publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.964969 – year: 1986 ident: 10.1016/j.patrec.2010.07.002_bib12 – volume: 13 start-page: 1364 issue: 4 year: 1985 ident: 10.1016/j.patrec.2010.07.002_bib23 article-title: The smallest eigenvalue of a large dimensional Wishart matrix publication-title: Ann. Prob. doi: 10.1214/aop/1176992819 – volume: 15 start-page: 391 issue: 3–4 year: 2006 ident: 10.1016/j.patrec.2010.07.002_bib9 article-title: Discriminant factor analysis for movement recognition: Application to dance publication-title: J. Machine Graphics Vision (Special issue) – volume: 37 start-page: 2249 issue: 5 year: 1999 ident: 10.1016/j.patrec.2010.07.002_bib15 article-title: Unsupervised classification using polarimetric decomposition and the complex Wishart classifier publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.789621 – volume: 39 start-page: 1 issue: 1 year: 1977 ident: 10.1016/j.patrec.2010.07.002_bib4 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. Roy. Statist. Soc. B doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: 10.1016/j.patrec.2010.07.002_bib10 – ident: 10.1016/j.patrec.2010.07.002_bib8 – volume: 18 start-page: 97 issue: 1 year: 1994 ident: 10.1016/j.patrec.2010.07.002_bib14 article-title: The ACT (STATIS method) publication-title: Comput. Statist. Data Anal. doi: 10.1016/0167-9473(94)90134-1 – ident: 10.1016/j.patrec.2010.07.002_bib19 – volume: 85 start-page: 1 year: 2003 ident: 10.1016/j.patrec.2010.07.002_bib17 article-title: Wishart distributions associated with matrix quadratic forms publication-title: J. Multivariate Anal. doi: 10.1016/S0047-259X(02)00012-X – volume: 46 start-page: 243 year: 2004 ident: 10.1016/j.patrec.2010.07.002_bib5 article-title: Testing the assumption of multivariate normality publication-title: Psychol. Sci. – year: 1999 ident: 10.1016/j.patrec.2010.07.002_bib13 – volume: 312 start-page: 1 issue: 1 year: 2002 ident: 10.1016/j.patrec.2010.07.002_bib25 article-title: On the anti-Wishart distribution publication-title: Physica A doi: 10.1016/S0378-4371(02)00739-2 – year: 1981 ident: 10.1016/j.patrec.2010.07.002_bib2 – volume: 6 start-page: 461 year: 1978 ident: 10.1016/j.patrec.2010.07.002_bib21 article-title: Estimating the dimension of a model publication-title: Ann. Statist. doi: 10.1214/aos/1176344136 – volume: 22 start-page: 4 issue: 1 year: 2000 ident: 10.1016/j.patrec.2010.07.002_bib11 article-title: Statistical pattern recognition: A review publication-title: IEEE Trans. Pattern Anal. Machine Intell. doi: 10.1109/34.824819 – volume: vol. 1 start-page: 279 year: 1980 ident: 10.1016/j.patrec.2010.07.002_bib16 article-title: Tests of univariate and multivariate normality |
| SSID | ssj0006398 |
| Score | 2.100352 |
| Snippet | This article presents an Expectation–Maximization algorithm for the Wishart mixture model in which realizations are matrices. Given a set of matrices, an... This article presents an Expectation-Maximization algorithm for the Wishart mixture model in which realizations are matrices. Given a set of matrices, an... |
| SourceID | hal pascalfrancis crossref elsevier |
| SourceType | Open Access Repository Index Database Enrichment Source Publisher |
| StartPage | 2318 |
| SubjectTerms | Applied sciences Clustering Computer Science Detection, estimation, filtering, equalization, prediction EM algorithm Engineering Sciences Exact sciences and technology Information, signal and communications theory Movement recognition Second-order cross moments Signal and communications theory Signal and Image Processing Signal representation. Spectral analysis Signal, noise Telecommunications and information theory Wishart mixture model |
| Title | An Expectation–Maximization algorithm for the Wishart mixture model: Application to movement clustering |
| URI | https://dx.doi.org/10.1016/j.patrec.2010.07.002 https://hal.science/hal-00718163 |
| Volume | 31 |
| WOSCitedRecordID | wos000282384500026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7344 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006398 issn: 0167-8655 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZZuoeNsku3sexSxNhbUInt2JYezdaSdl0IrGN5M7IsNS6OE1I35Jf09-7Ikh2HUto9jIBIHMu5nM_nfEc6F4S-BlI5Tpg6xFGMkWGiOKEy9AgLUyE9nvgyTKpmE-F4TKdTNul0butcmHUeFgXdbNjyv4oajoGwdersP4i7uSgcgOcgdBhB7DA-SvBRUdUvFmaPnfzkm2xuky37PL9crLJyNm-iC__o7sursj_PNtVeQtUZ58iQU7Oap9npfFGVFS_7Ir_RlRVqe2dZ7aQq0qkTY2w0EszKqzyhhrGPMnB_TRiQ2X1qlnZ4VpTkTPJit9ZBezlCh3YMiEnINGtk1qC3lyxBFev017bOtZrfYmvY1qCe1cfSvjQp1nc0vVl0uDrSWwZS2Bg9XY7S3Vq2ejd_FP2KJ99P4vPT8Y_dd1vRiKPoHMYZz4mmXRR46hq86j0XHKpBF-1Fp8fTs8bGA6-jddV4_dvqpMwqcvDuV7qP9DyZ6ejb_SW_hhtSmU4qLXpz8Qq9sH4JjgyeXqOOLA7Qy7rnB7Ym4AA9bxWwfIMuowLfBzbcgA0D2DCADVuwYQs2bMCGW2DD5QLXYMNbsL1Fv0-OL76NiG3dQYQXDkriemngc0olTzw_dBwlXZEEnCt4-EEiUh7IVFGXO44El0KlfMiBKgrlcl2-KfXeoW6xKOR7hNMhcxWVPuUeBe-CM7BRLGHad_FdJsIe8ur_Nha2rr1ur5LHdQDjVWwkEmuJxAMdcOH2EGlmLU1dlwfOD2uxxZabGs4ZAyAfmPkFpNx8iC7nDlCL9bEt0HrocAcEzemAf3BwBuzDY67yET3b3pKfULdc3cjP6KlYl9n16tBi-C9PCste |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Expectation-Maximization+algorithm+for+the+Wishart+mixture+model.+Application+to+movement+clustering&rft.jtitle=Pattern+recognition+letters&rft.au=Hidot%2C+Sullivan&rft.au=Saint-Jean%2C+Christophe&rft.date=2010-10-15&rft.pub=Elsevier&rft.issn=0167-8655&rft.volume=31&rft.issue=14&rft.spage=2318&rft.epage=2324&rft_id=info:doi/10.1016%2Fj.patrec.2010.07.002&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-00718163v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon |