An Expectation–Maximization algorithm for the Wishart mixture model: Application to movement clustering

This article presents an Expectation–Maximization algorithm for the Wishart mixture model in which realizations are matrices. Given a set of matrices, an iterative algorithm for estimating the parameters of such a mixture model is proposed. The obtained estimates can be interpreted in terms of mean...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Pattern recognition letters Ročník 31; číslo 14; s. 2318 - 2324
Hlavní autoři: Hidot, Sullivan, Saint-Jean, Christophe
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 15.10.2010
Elsevier
Témata:
ISSN:0167-8655, 1872-7344
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This article presents an Expectation–Maximization algorithm for the Wishart mixture model in which realizations are matrices. Given a set of matrices, an iterative algorithm for estimating the parameters of such a mixture model is proposed. The obtained estimates can be interpreted in terms of mean matrices and scale factors. By applying the maximum a posteriori rule, we get an algorithm for the clustering of a set of matrices. This mixture model is then modified in order to deal with a set of samples. Unfortunately, the samples may be of different sizes. We propose to tackle this problem by considering the cross-product matrix as a signature for each sample. This set of cross-product matrices may be fitted with the proposed Wishart pseudo-mixture model in which the scale parameters of the distribution are not estimated but fixed. Again, we easily get a clustering algorithm from final parameter estimates. The different estimators are studied empirically through an analysis of their bias and variance and are validated onto an artificial dataset. Finally, we apply the Wishart pseudo-mixture model for analyzing motion-captured movements. Given the successive 3D positions of markers over the time, a cross-product matrix is constructed for each movement and put into the proposed classifier. We observe that the recognition rates are higher with our proposed approach than those with other geometric methods. Limits and constraints of the provided models are finally discussed.
AbstractList This article presents an Expectation-Maximization algorithm for the Wishart mixture model in which realizations are matrices. Given a set of matrices, an iterative algorithm for estimating the parameters of such a mixture model is proposed. The obtained estimates can be interpreted in terms of mean matrices and scale factors. By applying the maximum a posteriori rule, we get an algorithm for the clustering of a set of matrices. This mixture model is then modified in order to deal with a set of samples. Unfortunately, the samples may be of different sizes. We propose to tackle this problem by considering the cross-product matrix as a signature for each sample. This set of cross-product matrices may be fitted with the proposed Wishart pseudo-mixture model in which the scale parameters of the distribution are not estimated but fixed. Again, we easily get a clustering algorithm from final parameter estimates. The different estimators are studied empirically through an analysis of their bias and variance and are validated onto an artificial dataset. Finally, we apply the Wishart pseudo-mixture model for analyzing motion-captured movements. Given the successive 3D positions of markers over the time, a cross-product matrix is constructed for each movement and put into the proposed classifier. We observe that the recognition rates are higher with our proposed approach than those with other geometric methods. Limits and constraints of the provided models are finally discussed.
This article presents an Expectation–Maximization algorithm for the Wishart mixture model in which realizations are matrices. Given a set of matrices, an iterative algorithm for estimating the parameters of such a mixture model is proposed. The obtained estimates can be interpreted in terms of mean matrices and scale factors. By applying the maximum a posteriori rule, we get an algorithm for the clustering of a set of matrices. This mixture model is then modified in order to deal with a set of samples. Unfortunately, the samples may be of different sizes. We propose to tackle this problem by considering the cross-product matrix as a signature for each sample. This set of cross-product matrices may be fitted with the proposed Wishart pseudo-mixture model in which the scale parameters of the distribution are not estimated but fixed. Again, we easily get a clustering algorithm from final parameter estimates. The different estimators are studied empirically through an analysis of their bias and variance and are validated onto an artificial dataset. Finally, we apply the Wishart pseudo-mixture model for analyzing motion-captured movements. Given the successive 3D positions of markers over the time, a cross-product matrix is constructed for each movement and put into the proposed classifier. We observe that the recognition rates are higher with our proposed approach than those with other geometric methods. Limits and constraints of the provided models are finally discussed.
Author Hidot, Sullivan
Saint-Jean, Christophe
Author_xml – sequence: 1
  givenname: Sullivan
  surname: Hidot
  fullname: Hidot, Sullivan
  organization: Department of Computer Science, Faculty of Engineering, University of Mons, 7000 Mons, Belgium
– sequence: 2
  givenname: Christophe
  surname: Saint-Jean
  fullname: Saint-Jean, Christophe
  email: christophe.saint-jean@univ-lr.fr
  organization: Laboratory of Mathematics, Image and Applications, University of La Rochelle, 17000 La Rochelle, France
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23261009$$DView record in Pascal Francis
https://hal.science/hal-00718163$$DView record in HAL
BookMark eNqFkcFuEzEQhi1UJNKWN-DgCwcOm9rerHfTA1JUlRYpqBcQR2viHTcT7a5XthulnHgH3rBPUocFDhxAPlj-9X1jaf5TdjL4ARl7I8VcCqkvdvMRUkA7VyJHop4LoV6wmWxqVdTlYnHCZhmri0ZX1St2GuNOCKHLZTNjtBr49WFEmyCRH56-__gEB-rp288nh-7eB0rbnjsfeNoi_0pxCyHxng7pISDvfYvdJV-NY0d2kpLP6R57HBK33UNMGGi4P2cvHXQRX_-6z9iXD9efr26L9d3Nx6vVurBlLVKhylZX0DQIm7KqpXSo7EYDuHwqvbEtaGxdo0BKrHTlWliA0to6BbXUy7Y8Y--muVvozBioh_BoPJC5Xa3NMROilo3U5V5m9u3EjhAtdC7AYCn-sVSptBRimbnLibPBxxjQGUvTwlIA6owU5liE2ZmpCHMswog6_6WyvPhL_j3_P9r7ScO8rD1hMNESDhZbymgyrad_D3gGAHmqPg
CODEN PRLEDG
CitedBy_id crossref_primary_10_1007_s00180_023_01432_7
crossref_primary_10_1109_TNNLS_2018_2884790
crossref_primary_10_1214_21_BJPS504
crossref_primary_10_3390_e18030098
crossref_primary_10_1016_j_compchemeng_2020_106877
crossref_primary_10_1016_j_csda_2025_108232
crossref_primary_10_1109_TGRS_2022_3186522
crossref_primary_10_1080_03610918_2018_1513139
crossref_primary_10_1109_TIT_2017_2653803
crossref_primary_10_1016_j_neuroimage_2017_12_084
crossref_primary_10_1111_jtsa_12644
crossref_primary_10_1007_s40747_020_00191_y
crossref_primary_10_1080_03610926_2025_2450775
crossref_primary_10_1016_j_neucom_2018_03_015
crossref_primary_10_1080_21681163_2024_2343711
crossref_primary_10_3390_rs11242994
crossref_primary_10_1016_j_neunet_2021_05_016
crossref_primary_10_1109_TPAMI_2015_2456903
Cites_doi 10.1109/IGARSS.2003.1293888
10.1016/0031-3203(94)00125-6
10.1002/0471721182
10.1109/36.964969
10.1214/aop/1176992819
10.1109/36.789621
10.1111/j.2517-6161.1977.tb01600.x
10.1016/0167-9473(94)90134-1
10.1016/S0047-259X(02)00012-X
10.1016/S0378-4371(02)00739-2
10.1214/aos/1176344136
10.1109/34.824819
ContentType Journal Article
Copyright 2010 Elsevier B.V.
2015 INIST-CNRS
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2010 Elsevier B.V.
– notice: 2015 INIST-CNRS
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
IQODW
1XC
DOI 10.1016/j.patrec.2010.07.002
DatabaseName CrossRef
Pascal-Francis
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 1872-7344
EndPage 2324
ExternalDocumentID oai:HAL:hal-00718163v1
23261009
10_1016_j_patrec_2010_07_002
S0167865510002217
GroupedDBID --K
--M
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WH7
WUQ
XFK
XPP
Y6R
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
1XC
ID FETCH-LOGICAL-c370t-23d65a88eab35711fe2cb6aafafa56bcda6edf82a11e565fda4a266cf2a7169d3
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000282384500026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-8655
IngestDate Tue Oct 14 20:45:48 EDT 2025
Mon Jul 21 09:15:09 EDT 2025
Sat Nov 29 07:24:08 EST 2025
Tue Nov 18 22:41:43 EST 2025
Fri Feb 23 02:26:35 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords Second-order cross moments
Wishart mixture model
Movement recognition
Clustering
EM algorithm
Second order
Automatic classification
Parameter estimation
Mixture theory
Iterative method
Scale factor
Signal classification
A posteriori estimation
Geometrical method
Language English
License CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c370t-23d65a88eab35711fe2cb6aafafa56bcda6edf82a11e565fda4a266cf2a7169d3
ORCID 0000-0003-4463-4614
PageCount 7
ParticipantIDs hal_primary_oai_HAL_hal_00718163v1
pascalfrancis_primary_23261009
crossref_citationtrail_10_1016_j_patrec_2010_07_002
crossref_primary_10_1016_j_patrec_2010_07_002
elsevier_sciencedirect_doi_10_1016_j_patrec_2010_07_002
PublicationCentury 2000
PublicationDate 2010-10-15
PublicationDateYYYYMMDD 2010-10-15
PublicationDate_xml – month: 10
  year: 2010
  text: 2010-10-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Pattern recognition letters
PublicationYear 2010
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Dempster, Laird, Rubin (bib4) 1977; 39
Masaro, Wong (bib17) 2003; 85
Celeux, Govaert (bib3) 1995; 28
Petersen, K., Pedersen, M., 2008. The Matrix Cookbook. Technical University of Denmark.
Harshman, R.A., 1972. PARAFAC 2: Mathematical and Technical Note. Working Paper in Phonetics 22. University of California, Los Angeles, USA.
Lee, Grunes, Ainsworth, Du, Schuler, Cloude (bib15) 1999; 37
Jain, Duin, Mao (bib11) 2000; 22
Schwarz (bib21) 1978; 6
Hidot, Lafaye, Saint-Jean (bib9) 2006; 15
Rowe (bib20) 2003
Joliffe (bib12) 1986
Horta, M., Mascarenhas, N., Frery, A., 2007. Analyzing polarimetric imagery with G0p mixture models and SEM algorithm. In: Brazilian Symposium on Computer Graphics and Image Processing, 2007, p. 20.
Eye, Bogat (bib5) 2004; 46
McLachlan, Peel (bib18) 2000
Ferro-Famil, Pottier, Lee (bib6) 2001; 39
Shawe-Taylor, Cristianini (bib22) 2004
Bezdek (bib2) 1981
Alam, Mitra (bib1) 1990; 52
Skriver, H., Nielsen, A., Conradsen, K., 2003. Evaluation of the Wishart test statistics for polarimetric SAR data. In: Internat. Geoscience and Remote Sensing Symposium (IGARSS), vol. 2, pp. 699–701.
Harshman, R.A., 1970. Foundations of the PARAFAC Procedure: Model and Conditions for an ‘Explanatory’ Multi-mode Factor Analysis. Working Papers in Phonetics 16. University of California, Los Angeles, USA, pp. 1–84.
Silverstein (bib23) 1985; 13
Yu, Zhang (bib25) 2002; 312
Zhang, Z., Kwok, J., Yeung, D.-Y., 2004. Gaussian-Wishart Process Classification. Technical Report. Department of Computer Science, Hong Kong University of Science and Technology.
(bib13) 1999
Lavit, Escoufier, Sabatier, Traissac (bib14) 1994; 18
Mardia (bib16) 1980; vol. 1
(10.1016/j.patrec.2010.07.002_bib13) 1999
Joliffe (10.1016/j.patrec.2010.07.002_bib12) 1986
McLachlan (10.1016/j.patrec.2010.07.002_bib18) 2000
Shawe-Taylor (10.1016/j.patrec.2010.07.002_bib22) 2004
10.1016/j.patrec.2010.07.002_bib26
10.1016/j.patrec.2010.07.002_bib24
Masaro (10.1016/j.patrec.2010.07.002_bib17) 2003; 85
Dempster (10.1016/j.patrec.2010.07.002_bib4) 1977; 39
Silverstein (10.1016/j.patrec.2010.07.002_bib23) 1985; 13
10.1016/j.patrec.2010.07.002_bib10
Eye (10.1016/j.patrec.2010.07.002_bib5) 2004; 46
Lavit (10.1016/j.patrec.2010.07.002_bib14) 1994; 18
10.1016/j.patrec.2010.07.002_bib19
10.1016/j.patrec.2010.07.002_bib7
Hidot (10.1016/j.patrec.2010.07.002_bib9) 2006; 15
10.1016/j.patrec.2010.07.002_bib8
Rowe (10.1016/j.patrec.2010.07.002_bib20) 2003
Ferro-Famil (10.1016/j.patrec.2010.07.002_bib6) 2001; 39
Schwarz (10.1016/j.patrec.2010.07.002_bib21) 1978; 6
Bezdek (10.1016/j.patrec.2010.07.002_bib2) 1981
Jain (10.1016/j.patrec.2010.07.002_bib11) 2000; 22
Alam (10.1016/j.patrec.2010.07.002_bib1) 1990; 52
Celeux (10.1016/j.patrec.2010.07.002_bib3) 1995; 28
Lee (10.1016/j.patrec.2010.07.002_bib15) 1999; 37
Mardia (10.1016/j.patrec.2010.07.002_bib16) 1980; vol. 1
Yu (10.1016/j.patrec.2010.07.002_bib25) 2002; 312
References_xml – volume: 46
  start-page: 243
  year: 2004
  end-page: 258
  ident: bib5
  article-title: Testing the assumption of multivariate normality
  publication-title: Psychol. Sci.
– volume: 28
  start-page: 781
  year: 1995
  end-page: 793
  ident: bib3
  article-title: Gaussian parsimonious clustering models
  publication-title: Pattern Recognition
– volume: vol. 1
  start-page: 279
  year: 1980
  end-page: 320
  ident: bib16
  article-title: Tests of univariate and multivariate normality
  publication-title: Handbook of Statistics
– reference: Petersen, K., Pedersen, M., 2008. The Matrix Cookbook. Technical University of Denmark.
– year: 2000
  ident: bib18
  article-title: Finite Mixture Models. Wiley Series in Probability and Statistics
– year: 1981
  ident: bib2
  article-title: Pattern Recognition with Fuzzy Objective Function Algoritms
– year: 1999
  ident: bib13
  publication-title: Learning in Graphical Models
– volume: 6
  start-page: 461
  year: 1978
  end-page: 464
  ident: bib21
  article-title: Estimating the dimension of a model
  publication-title: Ann. Statist.
– reference: Zhang, Z., Kwok, J., Yeung, D.-Y., 2004. Gaussian-Wishart Process Classification. Technical Report. Department of Computer Science, Hong Kong University of Science and Technology.
– reference: Harshman, R.A., 1970. Foundations of the PARAFAC Procedure: Model and Conditions for an ‘Explanatory’ Multi-mode Factor Analysis. Working Papers in Phonetics 16. University of California, Los Angeles, USA, pp. 1–84.
– volume: 52
  start-page: 133
  year: 1990
  end-page: 143
  ident: bib1
  article-title: On estimated the scale and noncentrality matrices of a Wishart distribution
  publication-title: Sankha Ser. B
– reference: Harshman, R.A., 1972. PARAFAC 2: Mathematical and Technical Note. Working Paper in Phonetics 22. University of California, Los Angeles, USA.
– year: 2003
  ident: bib20
  article-title: Multivariate Bayesian Statistics: Models for Source Separation and Signal Unmixing
– volume: 37
  start-page: 2249
  year: 1999
  end-page: 2258
  ident: bib15
  article-title: Unsupervised classification using polarimetric decomposition and the complex Wishart classifier
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2004
  ident: bib22
  article-title: Kernel Methods for Pattern Analysis
– volume: 39
  start-page: 2332
  year: 2001
  end-page: 2342
  ident: bib6
  article-title: Unsupervised classification of multifrequency and fully polarimetric SAR images based on the H/A/alpha-Wishart classifier
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 15
  start-page: 391
  year: 2006
  end-page: 399
  ident: bib9
  article-title: Discriminant factor analysis for movement recognition: Application to dance
  publication-title: Proc. Internat. Conf. on Computer Vision and Graphics (ICCVG’06)
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  ident: bib4
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. Roy. Statist. Soc. B
– reference: Skriver, H., Nielsen, A., Conradsen, K., 2003. Evaluation of the Wishart test statistics for polarimetric SAR data. In: Internat. Geoscience and Remote Sensing Symposium (IGARSS), vol. 2, pp. 699–701.
– reference: Horta, M., Mascarenhas, N., Frery, A., 2007. Analyzing polarimetric imagery with G0p mixture models and SEM algorithm. In: Brazilian Symposium on Computer Graphics and Image Processing, 2007, p. 20.
– volume: 85
  start-page: 1
  year: 2003
  end-page: 9
  ident: bib17
  article-title: Wishart distributions associated with matrix quadratic forms
  publication-title: J. Multivariate Anal.
– year: 1986
  ident: bib12
  article-title: Principal Component Analysis
– volume: 312
  start-page: 1
  year: 2002
  end-page: 22
  ident: bib25
  article-title: On the anti-Wishart distribution
  publication-title: Physica A
– volume: 13
  start-page: 1364
  year: 1985
  end-page: 1368
  ident: bib23
  article-title: The smallest eigenvalue of a large dimensional Wishart matrix
  publication-title: Ann. Prob.
– volume: 22
  start-page: 4
  year: 2000
  end-page: 37
  ident: bib11
  article-title: Statistical pattern recognition: A review
  publication-title: IEEE Trans. Pattern Anal. Machine Intell.
– volume: 18
  start-page: 97
  year: 1994
  end-page: 119
  ident: bib14
  article-title: The ACT (STATIS method)
  publication-title: Comput. Statist. Data Anal.
– ident: 10.1016/j.patrec.2010.07.002_bib7
– ident: 10.1016/j.patrec.2010.07.002_bib24
  doi: 10.1109/IGARSS.2003.1293888
– year: 2004
  ident: 10.1016/j.patrec.2010.07.002_bib22
– volume: 28
  start-page: 781
  year: 1995
  ident: 10.1016/j.patrec.2010.07.002_bib3
  article-title: Gaussian parsimonious clustering models
  publication-title: Pattern Recognition
  doi: 10.1016/0031-3203(94)00125-6
– year: 2003
  ident: 10.1016/j.patrec.2010.07.002_bib20
– year: 2000
  ident: 10.1016/j.patrec.2010.07.002_bib18
  doi: 10.1002/0471721182
– ident: 10.1016/j.patrec.2010.07.002_bib26
– volume: 52
  start-page: 133
  year: 1990
  ident: 10.1016/j.patrec.2010.07.002_bib1
  article-title: On estimated the scale and noncentrality matrices of a Wishart distribution
  publication-title: Sankha Ser. B
– volume: 39
  start-page: 2332
  issue: 11
  year: 2001
  ident: 10.1016/j.patrec.2010.07.002_bib6
  article-title: Unsupervised classification of multifrequency and fully polarimetric SAR images based on the H/A/alpha-Wishart classifier
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.964969
– year: 1986
  ident: 10.1016/j.patrec.2010.07.002_bib12
– volume: 13
  start-page: 1364
  issue: 4
  year: 1985
  ident: 10.1016/j.patrec.2010.07.002_bib23
  article-title: The smallest eigenvalue of a large dimensional Wishart matrix
  publication-title: Ann. Prob.
  doi: 10.1214/aop/1176992819
– volume: 15
  start-page: 391
  issue: 3–4
  year: 2006
  ident: 10.1016/j.patrec.2010.07.002_bib9
  article-title: Discriminant factor analysis for movement recognition: Application to dance
  publication-title: J. Machine Graphics Vision (Special issue)
– volume: 37
  start-page: 2249
  issue: 5
  year: 1999
  ident: 10.1016/j.patrec.2010.07.002_bib15
  article-title: Unsupervised classification using polarimetric decomposition and the complex Wishart classifier
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.789621
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  ident: 10.1016/j.patrec.2010.07.002_bib4
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. Roy. Statist. Soc. B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: 10.1016/j.patrec.2010.07.002_bib10
– ident: 10.1016/j.patrec.2010.07.002_bib8
– volume: 18
  start-page: 97
  issue: 1
  year: 1994
  ident: 10.1016/j.patrec.2010.07.002_bib14
  article-title: The ACT (STATIS method)
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/0167-9473(94)90134-1
– ident: 10.1016/j.patrec.2010.07.002_bib19
– volume: 85
  start-page: 1
  year: 2003
  ident: 10.1016/j.patrec.2010.07.002_bib17
  article-title: Wishart distributions associated with matrix quadratic forms
  publication-title: J. Multivariate Anal.
  doi: 10.1016/S0047-259X(02)00012-X
– volume: 46
  start-page: 243
  year: 2004
  ident: 10.1016/j.patrec.2010.07.002_bib5
  article-title: Testing the assumption of multivariate normality
  publication-title: Psychol. Sci.
– year: 1999
  ident: 10.1016/j.patrec.2010.07.002_bib13
– volume: 312
  start-page: 1
  issue: 1
  year: 2002
  ident: 10.1016/j.patrec.2010.07.002_bib25
  article-title: On the anti-Wishart distribution
  publication-title: Physica A
  doi: 10.1016/S0378-4371(02)00739-2
– year: 1981
  ident: 10.1016/j.patrec.2010.07.002_bib2
– volume: 6
  start-page: 461
  year: 1978
  ident: 10.1016/j.patrec.2010.07.002_bib21
  article-title: Estimating the dimension of a model
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1176344136
– volume: 22
  start-page: 4
  issue: 1
  year: 2000
  ident: 10.1016/j.patrec.2010.07.002_bib11
  article-title: Statistical pattern recognition: A review
  publication-title: IEEE Trans. Pattern Anal. Machine Intell.
  doi: 10.1109/34.824819
– volume: vol. 1
  start-page: 279
  year: 1980
  ident: 10.1016/j.patrec.2010.07.002_bib16
  article-title: Tests of univariate and multivariate normality
SSID ssj0006398
Score 2.1002476
Snippet This article presents an Expectation–Maximization algorithm for the Wishart mixture model in which realizations are matrices. Given a set of matrices, an...
This article presents an Expectation-Maximization algorithm for the Wishart mixture model in which realizations are matrices. Given a set of matrices, an...
SourceID hal
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Index Database
Enrichment Source
Publisher
StartPage 2318
SubjectTerms Applied sciences
Clustering
Computer Science
Detection, estimation, filtering, equalization, prediction
EM algorithm
Engineering Sciences
Exact sciences and technology
Information, signal and communications theory
Movement recognition
Second-order cross moments
Signal and communications theory
Signal and Image Processing
Signal representation. Spectral analysis
Signal, noise
Telecommunications and information theory
Wishart mixture model
Title An Expectation–Maximization algorithm for the Wishart mixture model: Application to movement clustering
URI https://dx.doi.org/10.1016/j.patrec.2010.07.002
https://hal.science/hal-00718163
Volume 31
WOSCitedRecordID wos000282384500026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7344
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006398
  issn: 0167-8655
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZZu4eNsUu3sexSxNhbUImvkh_N1pJ2XQisY3kzsiQ3Lo4TUjfkl-z37siSHYdS2j2MgEgUy7mcT-ccSed8B6EvUoVKmzaSeTIkvvRgzvkiII5m30-5y5hidbEJOh6z6TSa9Hp_mlyYdUHLkm020fK_ihr6QNg6dfYfxN3eFDrgOQgdWhA7tA8SfFzW_MXCnLGTH3yTz22y5YAXl4tVXs3mbXThb119eVUN5vmmPkuoK-McGefU7OZp73S-qGnFq4EobjSzQmPvrFc7qUk6dWKMjUaCUUWdJ9R67KMclr8mDMicPrVbOzwvK3KmeLnLddDdjtChHUNiEjLNHpk16N0tS1DFOv21q3Ot5rfY8rsa1LP6WNmXJsX6lqY3mw5XR_rIQAkbo6fpKN2tZWtO80fxz2Ty7SQ5Px1_3323E404is-hnfGCaLeLgZ-6hlX1vkuDCBT-fnx6PD1rbTz4daxhjde_rUnKrCMHb3-lu5yeRzMdfftsya9hQmamkkrHvbl4iZ7bdQmODZ5eoZ4qD9CLpuYHtibgAD3tEFi-Rpdxie8CG27BhgFsGMCGLdiwBRs2YMMdsOFqgRuw4S3Y3qBfJ8cXX0fElu4gwqPDirgw8wMOE52nXkAdJ1OuSEPOM3gEYSokD5XMmMsdR8GSIpPc5-Aqiszlmr5Jem_RXrko1TuEqfBYlgVSyszxFR1yWOAzSiOZilQwTvvIa_7bRFhee11epUiaAMarxEgk0RJJhjrgwu0j0o5aGl6Xe66njdgS65sanzMBQN4z8jNIuf0QTecOUEt03xZofXS4A4L2csA_LHCG0fuH3OUDerKdkh_RXrW6UZ_QY7Gu8uvVocXwX6CpzA8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Expectation-Maximization+algorithm+for+the+Wishart+mixture+model.+Application+to+movement+clustering&rft.jtitle=Pattern+recognition+letters&rft.au=Hidot%2C+Sullivan&rft.au=Saint-Jean%2C+Christophe&rft.date=2010-10-15&rft.pub=Elsevier&rft.issn=0167-8655&rft.volume=31&rft.issue=14&rft.spage=2318&rft.epage=2324&rft_id=info:doi/10.1016%2Fj.patrec.2010.07.002&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-00718163v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon