Use of Shrink Wrapping for Interval Taylor Models in Algorithms of Computer-Assisted Proof of the Existence of Periodic Trajectories in Systems of Ordinary Differential Equations

Using interval Taylor models (TM), we construct algorithms for the computer-assisted proof of the existence of periodic trajectories in systems of ordinary differential equations (ODEs). Although TMs allow one to construct guaranteed estimates for families of solutions of systems of ODEs when integr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Differential equations Ročník 57; číslo 3; s. 391 - 407
Hlavní autoři: Evstigneev, N. M., Ryabkov, O. I., Shul’min, D. A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Moscow Pleiades Publishing 01.03.2021
Springer
Témata:
ISSN:0012-2661, 1608-3083
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Using interval Taylor models (TM), we construct algorithms for the computer-assisted proof of the existence of periodic trajectories in systems of ordinary differential equations (ODEs). Although TMs allow one to construct guaranteed estimates for families of solutions of systems of ODEs when integrating ODEs over large time intervals, the interval residual included in the TMs begins to grow exponentially and becomes the dominant part of the estimate of the solution pencil, making it practically unusable. To eliminate this deficiency, the creators of the TM—K. Makino and M. Berz—proposed the idea of so-called “shrink wrapping.” We formalize the original algorithm within the framework of the TM definitions we have adopted and propose our own version of the “shrink wrapping,” more accurately adapted to the problem of the computer-aided proof of the existence of periodic trajectories.
AbstractList Using interval Taylor models (TM), we construct algorithms for the computer-assistedproof of the existence of periodic trajectories in systems of ordinary differential equations (ODEs).Although TMs allow one to construct guaranteed estimates for families of solutions of systems ofODEs when integrating ODEs over large time intervals, the interval residual included in the TMsbegins to grow exponentially and becomes the dominant part of the estimate of the solutionpencil, making it practically unusable. To eliminate this deficiency, the creators of theTM-K. Makino and M. Berz-proposed the idea of so-called "shrink wrapping."We formalize the original algorithm within the framework of the TM definitions we have adoptedand propose our own version of the "shrink wrapping," more accurately adapted to the problem ofthe computer-aided proof of the existence of periodic trajectories.
Using interval Taylor models (TM), we construct algorithms for the computer-assisted proof of the existence of periodic trajectories in systems of ordinary differential equations (ODEs). Although TMs allow one to construct guaranteed estimates for families of solutions of systems of ODEs when integrating ODEs over large time intervals, the interval residual included in the TMs begins to grow exponentially and becomes the dominant part of the estimate of the solution pencil, making it practically unusable. To eliminate this deficiency, the creators of the TM—K. Makino and M. Berz—proposed the idea of so-called “shrink wrapping.” We formalize the original algorithm within the framework of the TM definitions we have adopted and propose our own version of the “shrink wrapping,” more accurately adapted to the problem of the computer-aided proof of the existence of periodic trajectories.
Audience Academic
Author Ryabkov, O. I.
Shul’min, D. A.
Evstigneev, N. M.
Author_xml – sequence: 1
  givenname: N. M.
  surname: Evstigneev
  fullname: Evstigneev, N. M.
  email: evstigneevnm@yandex.ru
  organization: Federal Research Center “Computer Science and Control,” Russian Academy of Sciences
– sequence: 2
  givenname: O. I.
  surname: Ryabkov
  fullname: Ryabkov, O. I.
  email: oleg.ryabkov.87@gmail.com, oi-techsup@yandex.ru
  organization: Federal Research Center “Computer Science and Control,” Russian Academy of Sciences
– sequence: 3
  givenname: D. A.
  surname: Shul’min
  fullname: Shul’min, D. A.
  email: dnssh@mail.ru
  organization: Lomonosov Moscow State University
BookMark eNp9kd1qGzEQhUVJoE6aB8idXmAT_exqdy-N66aBlATskMtF0Y5suWvJleQQv1afsLN2r1oIEgidme9oOLogZz54IOSasxvOZXm7YIwLoRQXnEmG0icy4Yo1hWSNPCOTsVyM9c_kIqUNY6yteTUhv58T0GDpYh2d_0lfot7tnF9RGyK99xnimx7oUh8GvP8IPQyJOk-nwypEl9fbNLKzsN3tsbWYpuRShp4-xYA67rwGOn8fRW-O7zxBdKF3hi6j3oDJaANHy8UBm05-j7F3XscD_eqshQg-Oxxi_muvsws-fSHnVg8Jrv6el-T523w5-148PN7dz6YPhZE1ywU3tmIlA_6qdS20VKJvuCqNUkKBaZpW96DaSis7ZlaVui5tbbiCVyvaVgl5SW5Ovis9QOe8DTlqg6uHrTMYv3WoT2uupORV3SBQnwATQ0oRbGdcPs6MoBs6zrrxr7r__gpJ_g-5i26LEXzIiBOTsNevIHabsI8eE_kA-gMyX6lf
CitedBy_id crossref_primary_10_3390_math11112536
crossref_primary_10_3390_math11204336
Cites_doi 10.1007/s002080010018
10.1134/S0012266118040092
10.1023/A:1024467732637
10.1007/11558958_8
10.1137/050638448
10.1070/RM1985v040n04ABEH003624
10.1023/A:1011423909873
10.1137/1.9781611970906
10.1016/j.apnum.2006.10.006
10.1134/S0012266119090088
10.1137/1.9780898717716
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2021
COPYRIGHT 2021 Springer
Copyright_xml – notice: Pleiades Publishing, Ltd. 2021
– notice: COPYRIGHT 2021 Springer
DBID AAYXX
CITATION
DOI 10.1134/S0012266121030113
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1608-3083
EndPage 407
ExternalDocumentID A716331578
10_1134_S0012266121030113
GroupedDBID --Z
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
04Q
04W
06D
0R~
0VY
1N0
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
408
409
40D
40E
5GY
5VS
67Z
6NX
6TJ
78A
7WY
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABEFU
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABLLD
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFBBN
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
L6V
LAK
LLZTM
M0C
M0N
M2O
M4Y
M7S
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OHT
OVD
P2P
P62
P9R
PADUT
PF0
PKN
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PTHSS
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
TWZ
U2A
UG4
UOJIU
UPT
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
XU3
YLTOR
~8M
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
CITATION
M2P
PHGZM
PHGZT
PQGLB
ID FETCH-LOGICAL-c370t-1cf5040e1baa72a362d8164c6626ec889ade695a6f121054a74f7c16ebf299623
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000640213600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0012-2661
IngestDate Sat Nov 29 09:58:22 EST 2025
Tue Nov 18 22:26:18 EST 2025
Sat Nov 29 01:43:29 EST 2025
Fri Feb 21 02:48:27 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-1cf5040e1baa72a362d8164c6626ec889ade695a6f121054a74f7c16ebf299623
OpenAccessLink https://link.springer.com/content/pdf/10.1134/S0012266121030113.pdf
PageCount 17
ParticipantIDs gale_infotracacademiconefile_A716331578
crossref_citationtrail_10_1134_S0012266121030113
crossref_primary_10_1134_S0012266121030113
springer_journals_10_1134_S0012266121030113
PublicationCentury 2000
PublicationDate 20210300
2021-03-00
20210301
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 3
  year: 2021
  text: 20210300
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
PublicationTitle Differential equations
PublicationTitleAbbrev Diff Equat
PublicationYear 2021
Publisher Pleiades Publishing
Springer
Publisher_xml – name: Pleiades Publishing
– name: Springer
References MooreR.E.Methods and Applications of Interval Analysis1979ProvidenceSIAM10.1137/1.9781611970906
Pilarczyk, P., Topological-numerical approach to the existence of periodic trajectories in ODE’s, Proc. Fourth Int. Conf. Dyn. Syst. Differ. Equat. (Wilmington, May 24–27, 2002), pp. 701–708.
BerzM.MakinoK.Verified integration of ODEs and flows using differential algebraic methods on high-order Taylor modelsReliab. Comput.19984361369165214710.1023/A:1024467732637
BerzM.HoefkensJ.Verified high-order inversion of functional dependencies and interval Newton methodsReliab. Comput.200175379398186292010.1023/A:1011423909873
Tucker, W., A Rigorous ODE solver and Smale’s 14th problem, Found. Comput. Math., 2002, no. 2, pp. 53–117.
MooreR.E.KearfottR.B.CloudM.J.Introduction to Interval Analysis2009ProvidenceSIAM10.1137/1.9780898717716
EvstigneevN.M.RyabkovO.I.Algorithms for constructing isolating sets of phase flows and computer-assisted proofs with the use of interval Taylor modelsDiffer. Equations201955911981217402804210.1134/S0012266119090088
Rihm, R., Interval methods for initial value problems in ODEs, in Topics in Validated Computations, Herzberger, J., Ed., Amsterdam: Elsevier, 1994, pp. 173–207.
EvstigneevN.M.RyabkovO.I.Applicability of the interval Taylor model to the computational proof of existence of periodic trajectories in systems of ordinary differential equationsDiffer. Equations2018544525538381377610.1134/S0012266118040092
SharyiS.P.Konechnomernyi interval’nyi analiz (Finite-Dimensional Interval Analysis)2010NovosibirskNovosib. Gos. Univ.
BerzM.MakinoK.Suppression of the wrapping effect by Taylor model-based verified integrators: long-term stabilization by shrink wrappingInt. J. Differ. Equat. Appl.20051043854031133.65045
BerzM.MakinoK.Performance of Taylor model methods for validated integration of ODEsLect. Notes Comput. Sci.20063732657410.1007/11558958_8
Evstigneev, N.M. and Ryabkov, O.I., On the implementation of Taylor models on multiple graphics processing units for rigorous computations, in Parallel Computational Technologies. PCT 2020. Commun. Comput. Inf. Sci. Vol. 1263 , Sokolinsky, L. and Zymbler, M., Eds., Cham: Springer, 2020, pp. 85–99.
BabenkoK.I.On computational proofs and mathematical experiments on computersRuss. Math. Surv.198540415315410.1070/RM1985v040n04ABEH003624
LinY.StadtherrM.A.Validated solutions of initial value problems for parametric ODEsAppl. Numer. Math.20075711451162234540510.1016/j.apnum.2006.10.006
ShokinYu.I.Interval’nyi analiz (Interval Analysis)1981NovosibirskNauka
BerzM.MakinoK.Suppression of the wrapping effect by Taylor model-based verified integrators: long-term stabilization by preconditioningInt. J. Differ. Equat. Appl.200510435338423218181133.65045
Makino, K. and Berz, M., The method of shrink wrapping for the validated solution of ODEs, Michigan State Univ. Rep. MSU HEP 020510, 2002.
DobronetsB.S.Interval’naya matematika (Interval Mathematics)2004KrasnoyarskSib. Gos. Tekh. Univ.
NeherM.JacksonK.R.NedialkovN.S.On Taylor model based integration of ODEsSIAM J. Numer. Anal.2007451236262228585310.1137/050638448
2194_CR10
2194_CR11
M. Berz (2194_CR14) 2006; 3732
B.S. Dobronets (2194_CR4) 2004
K.I. Babenko (2194_CR6) 1985; 40
Y. Lin (2194_CR15) 2007; 57
2194_CR17
2194_CR18
M. Berz (2194_CR20) 2005; 10
N.M. Evstigneev (2194_CR8) 2018; 54
M. Berz (2194_CR13) 2005; 10
M. Berz (2194_CR16) 2001; 7
S.P. Sharyi (2194_CR5) 2010
R.E. Moore (2194_CR1) 1979
R.E. Moore (2194_CR2) 2009
N.M. Evstigneev (2194_CR9) 2019; 55
M. Berz (2194_CR12) 1998; 4
2194_CR7
M. Neher (2194_CR19) 2007; 45
Yu.I. Shokin (2194_CR3) 1981
References_xml – reference: LinY.StadtherrM.A.Validated solutions of initial value problems for parametric ODEsAppl. Numer. Math.20075711451162234540510.1016/j.apnum.2006.10.006
– reference: DobronetsB.S.Interval’naya matematika (Interval Mathematics)2004KrasnoyarskSib. Gos. Tekh. Univ.
– reference: EvstigneevN.M.RyabkovO.I.Applicability of the interval Taylor model to the computational proof of existence of periodic trajectories in systems of ordinary differential equationsDiffer. Equations2018544525538381377610.1134/S0012266118040092
– reference: Pilarczyk, P., Topological-numerical approach to the existence of periodic trajectories in ODE’s, Proc. Fourth Int. Conf. Dyn. Syst. Differ. Equat. (Wilmington, May 24–27, 2002), pp. 701–708.
– reference: BerzM.MakinoK.Verified integration of ODEs and flows using differential algebraic methods on high-order Taylor modelsReliab. Comput.19984361369165214710.1023/A:1024467732637
– reference: BerzM.MakinoK.Suppression of the wrapping effect by Taylor model-based verified integrators: long-term stabilization by shrink wrappingInt. J. Differ. Equat. Appl.20051043854031133.65045
– reference: BerzM.HoefkensJ.Verified high-order inversion of functional dependencies and interval Newton methodsReliab. Comput.200175379398186292010.1023/A:1011423909873
– reference: ShokinYu.I.Interval’nyi analiz (Interval Analysis)1981NovosibirskNauka
– reference: NeherM.JacksonK.R.NedialkovN.S.On Taylor model based integration of ODEsSIAM J. Numer. Anal.2007451236262228585310.1137/050638448
– reference: Tucker, W., A Rigorous ODE solver and Smale’s 14th problem, Found. Comput. Math., 2002, no. 2, pp. 53–117.
– reference: EvstigneevN.M.RyabkovO.I.Algorithms for constructing isolating sets of phase flows and computer-assisted proofs with the use of interval Taylor modelsDiffer. Equations201955911981217402804210.1134/S0012266119090088
– reference: Makino, K. and Berz, M., The method of shrink wrapping for the validated solution of ODEs, Michigan State Univ. Rep. MSU HEP 020510, 2002.
– reference: BerzM.MakinoK.Suppression of the wrapping effect by Taylor model-based verified integrators: long-term stabilization by preconditioningInt. J. Differ. Equat. Appl.200510435338423218181133.65045
– reference: SharyiS.P.Konechnomernyi interval’nyi analiz (Finite-Dimensional Interval Analysis)2010NovosibirskNovosib. Gos. Univ.
– reference: Rihm, R., Interval methods for initial value problems in ODEs, in Topics in Validated Computations, Herzberger, J., Ed., Amsterdam: Elsevier, 1994, pp. 173–207.
– reference: MooreR.E.KearfottR.B.CloudM.J.Introduction to Interval Analysis2009ProvidenceSIAM10.1137/1.9780898717716
– reference: BerzM.MakinoK.Performance of Taylor model methods for validated integration of ODEsLect. Notes Comput. Sci.20063732657410.1007/11558958_8
– reference: Evstigneev, N.M. and Ryabkov, O.I., On the implementation of Taylor models on multiple graphics processing units for rigorous computations, in Parallel Computational Technologies. PCT 2020. Commun. Comput. Inf. Sci. Vol. 1263 , Sokolinsky, L. and Zymbler, M., Eds., Cham: Springer, 2020, pp. 85–99.
– reference: MooreR.E.Methods and Applications of Interval Analysis1979ProvidenceSIAM10.1137/1.9781611970906
– reference: BabenkoK.I.On computational proofs and mathematical experiments on computersRuss. Math. Surv.198540415315410.1070/RM1985v040n04ABEH003624
– ident: 2194_CR7
  doi: 10.1007/s002080010018
– volume: 10
  start-page: 385
  issue: 4
  year: 2005
  ident: 2194_CR13
  publication-title: Int. J. Differ. Equat. Appl.
– volume-title: Interval’nyi analiz (Interval Analysis)
  year: 1981
  ident: 2194_CR3
– volume: 54
  start-page: 525
  issue: 4
  year: 2018
  ident: 2194_CR8
  publication-title: Differ. Equations
  doi: 10.1134/S0012266118040092
– ident: 2194_CR10
– ident: 2194_CR11
– volume-title: Interval’naya matematika (Interval Mathematics)
  year: 2004
  ident: 2194_CR4
– volume: 4
  start-page: 361
  year: 1998
  ident: 2194_CR12
  publication-title: Reliab. Comput.
  doi: 10.1023/A:1024467732637
– volume: 3732
  start-page: 65
  year: 2006
  ident: 2194_CR14
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/11558958_8
– volume: 45
  start-page: 236
  issue: 1
  year: 2007
  ident: 2194_CR19
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/050638448
– volume: 40
  start-page: 153
  issue: 4
  year: 1985
  ident: 2194_CR6
  publication-title: Russ. Math. Surv.
  doi: 10.1070/RM1985v040n04ABEH003624
– volume: 7
  start-page: 379
  issue: 5
  year: 2001
  ident: 2194_CR16
  publication-title: Reliab. Comput.
  doi: 10.1023/A:1011423909873
– ident: 2194_CR17
– ident: 2194_CR18
– volume-title: Methods and Applications of Interval Analysis
  year: 1979
  ident: 2194_CR1
  doi: 10.1137/1.9781611970906
– volume: 57
  start-page: 1145
  year: 2007
  ident: 2194_CR15
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2006.10.006
– volume: 55
  start-page: 1198
  issue: 9
  year: 2019
  ident: 2194_CR9
  publication-title: Differ. Equations
  doi: 10.1134/S0012266119090088
– volume: 10
  start-page: 353
  issue: 4
  year: 2005
  ident: 2194_CR20
  publication-title: Int. J. Differ. Equat. Appl.
– volume-title: Introduction to Interval Analysis
  year: 2009
  ident: 2194_CR2
  doi: 10.1137/1.9780898717716
– volume-title: Konechnomernyi interval’nyi analiz (Finite-Dimensional Interval Analysis)
  year: 2010
  ident: 2194_CR5
SSID ssj0009715
Score 2.2000687
Snippet Using interval Taylor models (TM), we construct algorithms for the computer-assisted proof of the existence of periodic trajectories in systems of ordinary...
Using interval Taylor models (TM), we construct algorithms for the computer-assistedproof of the existence of periodic trajectories in systems of ordinary...
SourceID gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 391
SubjectTerms Algorithms
Analysis
Difference and Functional Equations
Differential equations
Mathematics
Mathematics and Statistics
Numerical Methods
Ordinary Differential Equations
Partial Differential Equations
Title Use of Shrink Wrapping for Interval Taylor Models in Algorithms of Computer-Assisted Proof of the Existence of Periodic Trajectories in Systems of Ordinary Differential Equations
URI https://link.springer.com/article/10.1134/S0012266121030113
Volume 57
WOSCitedRecordID wos000640213600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Standard Collection
  customDbUrl:
  eissn: 1608-3083
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009715
  issn: 0012-2661
  databaseCode: RSV
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5B4QCHQgsVy0tzQOKlSOskjrPHFWzFAcqKUugtcvxoF5ZdWG-r_i5-ITOOU1TxkODq2GMrHs_D4_kG4JGsdFvWVmde8W2VE3WmlTfZSErrjJOtbWOi8Gu1t1cfHo6mKY879K_d-5BklNRd3ZGSc3pFzuokF9GMLy7DFdJ2NddreLf_4SfSrurLFuQZd0-hzN-SuKCMepF8MSAa9czujf9a4U3YTGYljjs-2IJLbrEN19-cY7KGbdhKxzjgk4Q1_fQWfD8IDpce949pps_4caUZr-EIyZTFeFlIjIidV49cNm0ecLbA8fxouZqtj78EHtsXhshoq5lpLE7JHPf8iabHyRk30sTcMCWGX9qZQdKRn2LAgDx1JpmQ07nPW-JZThLGl6l4CwmhOU6-daDk4TYc7E7ev3iVpTIOmSnUcJ0J4yWJCidarVWuSWPampw0U5Ev5Uxdj7R11UjqyvOPk6VWpVdGVK71pCvJPNuBjcVy4e4A-rw1WppSD1VbStdqKZwdSlsoL9g2HMCw38_GJIxzLrUxb6KvU5TNL3s0gGfnQ752AB9_6_yYmaThw090jU45DLQ6htFqxuR9FoUgKTiA5z2PNEkqhD_TvftPve_BtZxf1sSXcPdhY706cQ_gqjldz8LqYTwNPwDdngNQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VggQ9AC0gAhR8QOJRrRTvrtebY0RTFZGGiLbQ28rrRxtIkzYOiN_FL2TG621V8ZDg6rXH1no8D4_nG4DnolB1XhqVOEm3VZaXiZJOJz0hjNVW1KYOicJDORqVR0e9cczj9u1r9zYkGSR1U3ckp5xenpI6SXkw47NrcD1HhUWA-R_2P14i7cq2bEGaUPcYyvwtiSvKqBXJVwOiQc_s3PmvFd6F29GsZP2GD9Zhxc42YG3vApPVb8B6PMaevYxY06_uwY9Db9ncsf0TnOkL-7RQhNdwzNCUZeGyEBmRNV49o7JpU88mM9afHs8Xk-XJqaexbWGIBLeamMawMZrjjj7h9GzwnRpxYmoYI8PPzUQz1JGfQ8AAPXUiGZHTqc975FlKEmbbsXgLCqEpG5w3oOT-PhzuDA7e7CaxjEOiM9ldJlw7gaLC8lopmSrUmKZEJ00X6EtZXZY9ZWzRE6pw9ONErmTupOaFrR3qSjTPHsDqbD6zD4G5tNZK6Fx1ZZ0LWyvBrekKk0nHyTbsQLfdz0pHjHMqtTGtgq-T5dUve9SB1xdDzhqAj791fkFMUtHhR7paxRwGXB3BaFV99D6zjKMU7MBWyyNVlAr-z3Qf_VPvZ3Bz92BvWA3fjt49hlspvbIJr-KewOpy8dVuwg39bTnxi6fhZPwECyIGNA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VglA5QFtALFDqAxIvRayTOM4eV-2uQJRlpVLoLXL8aLcs2bJOK34Xv5CZxGlV8ZAQV2c8tuLxPGzPNwBPRabKNDcqcpJOqyzPIyWdjgZCGKutKE3ZJArvyckkPzwcTEOdU9-9du-uJNucBkJpqurXp8aFGiQp5ffymExLzBuXPrkG11N6R0_h-v6nS9Rd2ZUwiCMiD9eav2VxxTB16vnq5Whjc8Z3_nu263A7uJts2MrHBqzYahNuvb_AavWbsBG2t2fPAwb1i7vw48BbtnBs_xhH_cI-LxXhOBwxdHFZc4iIAsraaJ9RObW5Z7OKDedHi-WsPv7qqW9XMCJCESBhMmyKbrqjTzg8G32nRhyYGqa4ERZmphnazpPmIgEjeGIZENWJ5gPKMiUPs91Q1AWV05yNvrVg5f4eHIxHH3feRKG8Q6QT2a8jrp1AFWJ5qZSMFVpSk2PwpjOMsazO84EyNhsIlTn6cSJVMnVS88yWDm0oum33YbVaVPYBMBeXWgmdqr4sU2FLJbg1fWES6Tj5jD3od2tb6IB9TiU45kUTAyVp8csa9eDlRZfTFvjjb8TPSGAKUgrIV6uQ24CzI3itYohRaZJw1I49eNXJSxG0hf8z34f_RL0NN6e742Lv7eTdI1iL6fFN81juMazWyzO7BTf0eT3zyyfNJvkJgckPGA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Use+of+Shrink+Wrapping+for+Interval+Taylor+Models+in+Algorithms+of+Computer-Assisted+Proof+of+the+Existence+of+Periodic+Trajectories+in+Systems+of+Ordinary+Differential+Equations&rft.jtitle=Differential+equations&rft.au=Evstigneev%2C+N.+M.&rft.au=Ryabkov%2C+O.+I.&rft.au=Shul%E2%80%99min%2C+D.+A.&rft.date=2021-03-01&rft.pub=Pleiades+Publishing&rft.issn=0012-2661&rft.eissn=1608-3083&rft.volume=57&rft.issue=3&rft.spage=391&rft.epage=407&rft_id=info:doi/10.1134%2FS0012266121030113&rft.externalDocID=10_1134_S0012266121030113
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-2661&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-2661&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-2661&client=summon