A Ubiquitous Clinic Recommendation System Using the Modified Mixed-Binary Nonlinear Programming-Feedforward Neural Network Approach
Most of the existing ubiquitous clinic recommendation (UCR) systems adopt linear mechanisms to aggregate the attribute-level performances of a clinic to evaluate the overall performance. However, such linear mechanisms may not be able to explain the choices of all patients. To solve this problem, th...
Uloženo v:
| Vydáno v: | Journal of theoretical and applied electronic commerce research Ročník 16; číslo 7; s. 3282 - 3298 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Curicó
MDPI AG
01.12.2021
|
| Témata: | |
| ISSN: | 0718-1876, 0718-1876 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Most of the existing ubiquitous clinic recommendation (UCR) systems adopt linear mechanisms to aggregate the attribute-level performances of a clinic to evaluate the overall performance. However, such linear mechanisms may not be able to explain the choices of all patients. To solve this problem, the modified mixed binary nonlinear programming (MMBNLP)–feedforward neural network (FNN) approach is proposed in this study. In the proposed methodology, first, the existing MBNLP model is modified to improve the successful recommendation rate using a linear recommendation mechanism. Subsequently, an FNN is constructed to fit the relationship between the attribute-level performances of a clinic and its overall performance, thereby providing possible ways to further enhance the recommendation performance. The results of a regional experiment showed that the MMBNLP–FNN approach improved the successful recommendation rate by 30%. |
|---|---|
| AbstractList | Most of the existing ubiquitous clinic recommendation (UCR) systems adopt linear mechanisms to aggregate the attribute-level performances of a clinic to evaluate the overall performance. However, such linear mechanisms may not be able to explain the choices of all patients. To solve this problem, the modified mixed binary nonlinear programming (MMBNLP)–feedforward neural network (FNN) approach is proposed in this study. In the proposed methodology, first, the existing MBNLP model is modified to improve the successful recommendation rate using a linear recommendation mechanism. Subsequently, an FNN is constructed to fit the relationship between the attribute-level performances of a clinic and its overall performance, thereby providing possible ways to further enhance the recommendation performance. The results of a regional experiment showed that the MMBNLP–FNN approach improved the successful recommendation rate by 30%. |
| Author | Lin, Yu-Cheng Chen, Toly |
| Author_xml | – sequence: 1 givenname: Yu-Cheng surname: Lin fullname: Lin, Yu-Cheng – sequence: 2 givenname: Toly surname: Chen fullname: Chen, Toly |
| BookMark | eNptUcFu1DAQjVCRaAtH7pY4p9hxNnaOy4qWldqCgD1bY3uy9ZLYW9tR6Zkfr9sFCVBPbzR6782bmZPqyAePVfWW0TPOe_p-lwEj66igTMgX1TEVTNZMiu7or_pVdZLSjtJOdpQeV7-WZKPd7exymBNZjc47Q76iCdOE3kJ2wZNv9ynjRDbJ-S3JN0iugnWDQ0uu3E-09QfnId6T6-CLHCGSLzFsI0xT4dfniHYI8Q6iJdc4RxgL5LsQf5Dlfh8DmJvX1csBxoRvfuNptTn_-H31qb78fLFeLS9rwwXNNePadIxLbdtmaLWUHeeWWuRooDeowfQCOW0a0Qx8gbpnrKEtN0MvWmP6hp9W64OvDbBT--imElsFcOqpEeJWQczOjKj6Yqc1ADXtoqWM6b7lgwHGwJoGFli83h28ygq3M6asdmGOvsRXZb7omGyELCx-YJkYUoo4KOPy01FzBDcqRtXj59Q_nyuq-j_Vn6zP8x8ArNygJA |
| CitedBy_id | crossref_primary_10_1016_j_health_2023_100147 crossref_primary_10_1007_s00500_023_09136_2 crossref_primary_10_1177_20552076231185280 |
| Cites_doi | 10.1080/15472450.2020.1713772 10.1007/s12652-014-0251-x 10.1016/j.fcij.2017.05.001 10.1109/BigComp.2018.00015 10.1016/S2213-8587(20)30156-X 10.1016/j.urology.2020.04.079 10.1016/j.compind.2017.01.003 10.1007/s10916-017-0776-6 10.3390/math9121430 10.2196/20334 10.1108/RPJ-12-2016-0209 10.1186/1472-6963-11-299 10.1016/j.rcim.2015.09.011 10.1016/j.dajour.2021.100010 10.1016/j.eswa.2006.10.020 10.1016/j.hlpt.2021.100517 10.1007/s10729-019-09473-5 10.1007/s10729-018-9441-y 10.1007/s00500-020-04891-y 10.1007/s10916-016-0469-6 10.1016/j.elerap.2017.04.003 10.1007/978-1-4757-3532-1 10.1007/s11042-011-0919-6 10.1007/s12652-015-0340-5 10.3390/app7100966 10.3233/JIFS-181172 10.1007/s10916-016-0646-7 10.1109/ACCESS.2018.2877890 10.1177/0272989X09357474 10.1108/IJHCQA-06-2013-0073 10.1007/s00170-008-1665-4 10.2196/jmir.6747 10.17509/ijost.v5i2.24585 10.1561/1100000009 10.1007/s10916-018-0943-4 10.1016/j.cie.2019.05.009 10.1093/intqhc/mzp006 10.5392/JKCA.2013.13.03.271 10.1007/b98874 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 0U~ 1-H 3V. 4T- 4U- 7WY 7WZ 7XB 87Z 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU CLZPN DWQXO FRNLG F~G HCIFZ K60 K6~ L.- L.0 M0C P5Z P62 PHGZM PHGZT PIMPY PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U DOA |
| DOI | 10.3390/jtaer16070178 |
| DatabaseName | CrossRef Global News & ABI/Inform Professional Trade PRO ProQuest Central (Corporate) Docstoc University Readers ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One Latin America & Iberia Database ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ABI/INFORM Professional Advanced ABI/INFORM Professional Standard ABI/INFORM Global Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business University Readers Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Trade PRO ABI/INFORM Complete ProQuest Central Global News & ABI/Inform Professional ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ABI/INFORM Professional Standard ProQuest Central Korea ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Advanced Technologies & Aerospace Database Latin America & Iberian Database ProQuest One Academic UKI Edition Docstoc ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Business |
| EISSN | 0718-1876 |
| EndPage | 3298 |
| ExternalDocumentID | oai_doaj_org_article_9ebabbaa0c454011b943fca11adc2a5e 10_3390_jtaer16070178 |
| GeographicLocations | Taiwan |
| GeographicLocations_xml | – name: Taiwan |
| GroupedDBID | .4S .DC 29L 2WC 635 7WY 8FE 8FG 8FL 8R4 8R5 AADQD AAYXX ABUWG ABXHO ADBBV AFFHD AFKRA AFZYC AHQJS AKVCP ALMA_UNASSIGNED_HOLDINGS APOWU ARAPS ARCSS BENPR BEZIV BGLVJ BPHCQ CCPQU CITATION CLZPN DWQXO E3Z EBR EBU EDO EPL FRNLG GROUPED_DOAJ HCIFZ I-F K60 K6~ KQ8 M0C MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQBIZ PQBZA PQGLB PQQKQ PROAC Q2X RSD RXW SCD TR2 TUS 0U~ 1-H 3V. 4T- 4U- 7XB 8FK AZQEC L.- L.0 PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c370t-13bc6138bd42f4b88633d0de3eca9cebac97e302272f35eb9112043cf974cc923 |
| IEDL.DBID | M0C |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000737767200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0718-1876 |
| IngestDate | Fri Oct 03 12:52:32 EDT 2025 Sun Nov 09 08:07:22 EST 2025 Sat Nov 29 07:09:11 EST 2025 Tue Nov 18 21:25:20 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c370t-13bc6138bd42f4b88633d0de3eca9cebac97e302272f35eb9112043cf974cc923 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/2727618278?pq-origsite=%requestingapplication% |
| PQID | 2727618278 |
| PQPubID | 28789 |
| PageCount | 17 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9ebabbaa0c454011b943fca11adc2a5e proquest_journals_2727618278 crossref_citationtrail_10_3390_jtaer16070178 crossref_primary_10_3390_jtaer16070178 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-01 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Curicó |
| PublicationPlace_xml | – name: Curicó |
| PublicationTitle | Journal of theoretical and applied electronic commerce research |
| PublicationYear | 2021 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Flint (ref_10) 2020; 8 Ghosh (ref_24) 2015; 28 Otten (ref_23) 2012; 32 Chen (ref_44) 2016; 7 Lee (ref_19) 2009; 31 (ref_33) 2020; 22 Kim (ref_5) 2011; 71 Albahri (ref_4) 2018; 42 Tealab (ref_35) 2017; 2 ref_32 Zulqarnain (ref_20) 2020; 61 ref_30 Lee (ref_22) 2008; 34 Tung (ref_16) 2009; 21 Chen (ref_21) 2021; 10 Baumel (ref_2) 2017; 41 ref_17 Bae (ref_18) 2013; 13 ref_38 Tan (ref_9) 2020; 142 ref_15 Wu (ref_34) 2014; 6 ref_37 Chen (ref_39) 2016; 38 Wang (ref_40) 2021; 1 Chen (ref_36) 2009; 42 Alkadhi (ref_26) 2020; 14 Chen (ref_42) 2018; 24 Zhao (ref_7) 2017; 19 Kupperman (ref_1) 2016; 40 Chen (ref_12) 2019; 133 Bianco (ref_41) 2018; 6 Shah (ref_3) 2017; 86 Kahraman (ref_25) 2018; 35 Chen (ref_31) 2018; 23 Ekstrand (ref_13) 2011; 4 Tang (ref_43) 2020; 25 Paranjay (ref_28) 2020; 5 ref_29 ref_27 Khatter (ref_45) 2020; 24 Chen (ref_11) 2017; 23 Chiu (ref_8) 2019; 23 Otten (ref_14) 2010; 30 Chen (ref_6) 2016; 40 |
| References_xml | – volume: 25 start-page: 439 year: 2020 ident: ref_43 article-title: Missing data imputation for traffic flow based on combination of fuzzy neural network and rough set theory publication-title: J. Intell. Transp. Syst. doi: 10.1080/15472450.2020.1713772 – volume: 6 start-page: 57 year: 2014 ident: ref_34 article-title: CART–BPN approach for estimating cycle time in wafer fabrication publication-title: J. Ambient. Intell. Humaniz. Comput. doi: 10.1007/s12652-014-0251-x – ident: ref_32 – volume: 2 start-page: 39 year: 2017 ident: ref_35 article-title: Forecasting of nonlinear time series using ANN publication-title: Futur. Comput. Inform. J. doi: 10.1016/j.fcij.2017.05.001 – ident: ref_29 doi: 10.1109/BigComp.2018.00015 – volume: 8 start-page: 474 year: 2020 ident: ref_10 article-title: COVID-19 and obesity—lack of clarity, guidance, and implications for care publication-title: Lancet Diabetes Endocrinol. doi: 10.1016/S2213-8587(20)30156-X – volume: 142 start-page: 36 year: 2020 ident: ref_9 article-title: Preserving operational capability while building capacity during the COVID-19 pandemic: A tertiary urology centre’s experience publication-title: Urology doi: 10.1016/j.urology.2020.04.079 – volume: 86 start-page: 72 year: 2017 ident: ref_3 article-title: Wearables data integration: Data-driven modeling to adjust for differences in Jawbone and Fitbit estimations of steps, calories, and resting heart-rate publication-title: Comput. Ind. doi: 10.1016/j.compind.2017.01.003 – volume: 61 start-page: 22 year: 2020 ident: ref_20 article-title: Selection of medical clinic for disease diagnosis by using TOPSIS method publication-title: Int. J. Pharm. Sci. Rev. Res. – volume: 14 start-page: 32 year: 2020 ident: ref_26 article-title: Influence of Social Media on the Patients for Choosing the Dental Clinic- A Cross-sectional Survey publication-title: J. Clin. Diagn. Res. – volume: 41 start-page: 128 year: 2017 ident: ref_2 article-title: A Systematic Review and Taxonomy of Published Quality Criteria Related to the Evaluation of User-Facing eHealth Programs publication-title: J. Med. Syst. doi: 10.1007/s10916-017-0776-6 – ident: ref_38 doi: 10.3390/math9121430 – volume: 22 start-page: e20334 year: 2020 ident: ref_33 article-title: Features and Functionalities of Smartphone Apps Related to COVID-19: Systematic Search in App Stores and Content Analysis publication-title: J. Med. Internet Res. doi: 10.2196/20334 – volume: 24 start-page: 521 year: 2018 ident: ref_42 article-title: Multilayer fuzzy neural network for modeling a multisource uncertain unit-cost learning process in wafer fabrication publication-title: Rapid Prototyp. J. doi: 10.1108/RPJ-12-2016-0209 – ident: ref_15 doi: 10.1186/1472-6963-11-299 – volume: 38 start-page: 42 year: 2016 ident: ref_39 article-title: Estimating simulation workload in cloud manufacturing using a classifying artificial neural network ensemble approach publication-title: Robot. Comput. Manuf. doi: 10.1016/j.rcim.2015.09.011 – volume: 1 start-page: 100010 year: 2021 ident: ref_40 article-title: A fuzzy deep predictive analytics approach for enhancing cycle time range estimation precision in wafer fabrication publication-title: Decis. Anal. J. doi: 10.1016/j.dajour.2021.100010 – volume: 31 start-page: 15 year: 2009 ident: ref_19 article-title: Study on selection factor in choosing dental clinic publication-title: J. Korean Acad. Dent. Technol. – volume: 34 start-page: 806 year: 2008 ident: ref_22 article-title: The exploration of consumers’ behavior in choosing hospital by the application of neural network publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2006.10.020 – volume: 10 start-page: 100517 year: 2021 ident: ref_21 article-title: A FAHP-FTOPSIS approach for choosing mid-term occupational healthcare measures amid the COVID-19 pandemic publication-title: Health Policy Technol. doi: 10.1016/j.hlpt.2021.100517 – volume: 23 start-page: 239 year: 2019 ident: ref_8 article-title: Assessing sustainable effectiveness of the adjustment mechanism of a ubiquitous clinic recommendation system publication-title: Health Care Manag. Sci. doi: 10.1007/s10729-019-09473-5 – volume: 23 start-page: 173 year: 2018 ident: ref_31 article-title: Mining the preferences of patients for ubiquitous clinic recommendation publication-title: Health Care Manag. Sci. doi: 10.1007/s10729-018-9441-y – volume: 24 start-page: 9321 year: 2020 ident: ref_45 article-title: An intelligent personalized web blog searching technique using fuzzy-based feedback recurrent neural network publication-title: Soft Comput. doi: 10.1007/s00500-020-04891-y – volume: 40 start-page: 113 year: 2016 ident: ref_6 article-title: Ubiquitous Multicriteria Clinic Recommendation System publication-title: J. Med. Syst. doi: 10.1007/s10916-016-0469-6 – volume: 23 start-page: 14 year: 2017 ident: ref_11 article-title: Ubiquitous clinic recommendation by predicting a patient’s preferences publication-title: Electron. Commer. Res. Appl. doi: 10.1016/j.elerap.2017.04.003 – ident: ref_30 doi: 10.1007/978-1-4757-3532-1 – volume: 71 start-page: 873 year: 2011 ident: ref_5 article-title: Ontology-based healthcare context information model to implement ubiquitous environment publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-011-0919-6 – volume: 7 start-page: 801 year: 2016 ident: ref_44 article-title: Fuzzy neural network approach to optimizing process performance by using multiple responses publication-title: J. Ambient. Intell. Humaniz. Comput. doi: 10.1007/s12652-015-0340-5 – ident: ref_27 doi: 10.3390/app7100966 – volume: 35 start-page: 6353 year: 2018 ident: ref_25 article-title: A novel hesitant fuzzy EDAS method and its application to hospital selection publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/JIFS-181172 – volume: 32 start-page: 64 year: 2012 ident: ref_23 article-title: Choosing between hospitals: The influence of the experiences of other patients publication-title: Med. Decis. Mak. – volume: 40 start-page: 278 year: 2016 ident: ref_1 article-title: Model of Current Practice Regarding Prescriptions of Controlled Substances and the Perceived Benefits of E-Prescribing in an Academic Medical Center publication-title: J. Med. Syst. doi: 10.1007/s10916-016-0646-7 – volume: 6 start-page: 64270 year: 2018 ident: ref_41 article-title: Benchmark Analysis of Representative Deep Neural Network Architectures publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2877890 – volume: 30 start-page: 544 year: 2010 ident: ref_14 article-title: Choosing a Hospital for Surgery: The Importance of Information on Quality of Care publication-title: Med. Decis. Mak. doi: 10.1177/0272989X09357474 – volume: 28 start-page: 27 year: 2015 ident: ref_24 article-title: An empirical study on hospital selection in India publication-title: Int. J. Health Care Qual. Assur. doi: 10.1108/IJHCQA-06-2013-0073 – ident: ref_17 – volume: 42 start-page: 1206 year: 2009 ident: ref_36 article-title: Lot cycle time prediction in a ramping-up semiconductor manufacturing factory with a SOM–FBPN-ensemble approach with multiple buckets and partial normalization publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-008-1665-4 – volume: 19 start-page: e134 year: 2017 ident: ref_7 article-title: Web-Based Medical Appointment Systems: A Systematic Review publication-title: J. Med. Internet Res. doi: 10.2196/jmir.6747 – volume: 5 start-page: 217 year: 2020 ident: ref_28 article-title: A Neural Network Aided Real-Time Hospital Recommendation System publication-title: Indones. J. Sci. Technol. doi: 10.17509/ijost.v5i2.24585 – volume: 4 start-page: 81 year: 2011 ident: ref_13 article-title: Collaborative filtering recommender systems publication-title: Found. Trends Hum.-Comput. Interact. doi: 10.1561/1100000009 – volume: 42 start-page: 80 year: 2018 ident: ref_4 article-title: Systematic Review of Real-time Remote Health Monitoring System in Triage and Priority-Based Sensor Technology: Taxonomy, Open Challenges, Motivation and Recommendations publication-title: J. Med. Syst. doi: 10.1007/s10916-018-0943-4 – volume: 133 start-page: 165 year: 2019 ident: ref_12 article-title: A classifying ubiquitous clinic recommendation approach for forming patient groups and recommending suitable clinics publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2019.05.009 – volume: 21 start-page: 206 year: 2009 ident: ref_16 article-title: Patient satisfaction with and recommendation of a primary care provider: Associations of perceived quality and patient education publication-title: Int. J. Qual. Health Care doi: 10.1093/intqhc/mzp006 – volume: 13 start-page: 271 year: 2013 ident: ref_18 article-title: Analysis of Selection Criteria of Consumers for Dental Clinic publication-title: J. Korea Contents Assoc. doi: 10.5392/JKCA.2013.13.03.271 – ident: ref_37 doi: 10.1007/b98874 |
| SSID | ssj0068600 |
| Score | 2.2715492 |
| Snippet | Most of the existing ubiquitous clinic recommendation (UCR) systems adopt linear mechanisms to aggregate the attribute-level performances of a clinic to... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 3282 |
| SubjectTerms | Artificial neural networks clinic Clinics Coronaviruses COVID-19 Decision making Dentists Electronic commerce feedforward neural network Methods mixed-binary nonlinear programming Neural networks Nonlinear programming Patient satisfaction Performance evaluation Questionnaires Recommender systems ubiquitous recommendation User needs |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF5ERLyIT6xW2YN4MjTJ5rE5tmLxYEMPFnoL-4SKbTVtxbt_3JlsUiwiXryGIdnszM43A99-Q8h1HCQCYE94NuDGQ8TyRIIMAKFTqCakb3Xl6cc0z_l4nA2_jfpCTpiTB3Yb18mMFFIK4SvUigsCmUXMKhEEQqtQxAazr59mTTPlcnDCAcedoiaDpr7zvBSmRCk1HEa_gUCVUP-PPFyBS_-A7NdVIe261RySLTM7IrsNKf2YfHbpSE7eVnD8VgvqtDwpdo7TqamnIlGnPU4rDgCFso4O5npiocKkg8mH0V6vunlLc6eNIUo6dNSsKdh7fQAxKF-RQktRrwMWkzuCOO3WquMnZNS_f7p78OrxCZ5iqY9D5qUCsOZSR6GNJOcJY9rXhhklMgXbqrLUMJQQDC2LjYS0hxdllYUWQyko_E7J9mw-M2eERtxKnSRas4hFwiYyDrmxzM9CAa-IbYvcNltaqFpbHEdcvBTQY6AHig0PtMjN2vzViWr8ZthD_6yNUAu7egARUtQRUvwVIS3Sbrxb1Ad0UcBPpwn0Vik__49vXJC9EMkuFc-lTbaX5cpckh31vpwsyqsqNr8A71juUQ priority: 102 providerName: Directory of Open Access Journals |
| Title | A Ubiquitous Clinic Recommendation System Using the Modified Mixed-Binary Nonlinear Programming-Feedforward Neural Network Approach |
| URI | https://www.proquest.com/docview/2727618278 https://doaj.org/article/9ebabbaa0c454011b943fca11adc2a5e |
| Volume | 16 |
| WOSCitedRecordID | wos000737767200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ (Directory of Open Access Journals) customDbUrl: eissn: 0718-1876 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0068600 issn: 0718-1876 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 0718-1876 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0068600 issn: 0718-1876 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 0718-1876 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0068600 issn: 0718-1876 databaseCode: 7WY dateStart: 20070401 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 0718-1876 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0068600 issn: 0718-1876 databaseCode: M0C dateStart: 20070401 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Latin America & Iberia Database customDbUrl: eissn: 0718-1876 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0068600 issn: 0718-1876 databaseCode: CLZPN dateStart: 20070401 isFulltext: true titleUrlDefault: https://search.proquest.com/latinamericaiberian providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 0718-1876 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0068600 issn: 0718-1876 databaseCode: P5Z dateStart: 20070401 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 0718-1876 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0068600 issn: 0718-1876 databaseCode: BENPR dateStart: 20070401 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 0718-1876 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0068600 issn: 0718-1876 databaseCode: PIMPY dateStart: 20070401 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoixAX3oiFsvIBccJqEufhnNBu1RVIbBQhKloukZ_VIna3ze4i7vxxZmynqEJw4ZJDMoocjWfms_P5G0JeFWkpoexJ5lJhGVYsJktkAEhTAZpQiTPe0x-qphFnZ3UbN9w2kVY55ESfqM1a4x75UQaFtgQwXIm3l1cMu0bh39XYQmOPHCCyQUrfPDkeMnEpynAEBfIvSyHsg8Ymh2X-0dettD2Kq2F7-hs1yUv3_5GZfbmZ3f_fgT4g9yLQpJMwMx6SW3b1iNwZeO6Pyc8JPVWLqx1E9G5DgzwoxcXocmljoyUa5MyppxVQQIp0vjYLB6CVzhc_rGFTf5iXNkFuQ_a0DWyvJdizGdRFQMTIyqUoAQKDaQLnnE6ikPkTcjo7-XT8jsWODEzzKsG-9UpD_RfK5JnLlRAl5yYxllsta22V1HVlOaoSZo4XVkEmxbO32sGqRWvAkk_J_mq9ss8IzYVTpiyN4TnPpStVkQnreFJnEl5RuBF5M_ik01GuHLtmfOtg2YIu7G64cEReX5tfBp2OvxlO0cHXRiiv7W-s-4suRmtXw6coJWWiUaAwTVWdc6dlmkqjM1nYETkcfN_FmN90vx3__N-PX5C7GTJjPCnmkOxv-519SW7r79vFph-Tverz-ZgcTE-a9uPY7xGM_bSGa1t8gSft-3l7_gvBTQLg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLWqgoAN74qBAl4AK6wmdh7OAqFpYdSqM1EXrdRd8BMNYmbazAyPNf_DN3KvnRRVCHZdsE2sKImPz71Ozj2XkBd5WigIe4r5VDqGEYupAhUAypaQTejE2zDT47Ku5elpdbRBfva1MCir7DkxELVdGPxGvsMh0BaQDJfy7dk5w65R-He1b6ERYXHovn-FLdvyzcE7mN-XnI_eH-_ts66rADOiTLD3ujYQw6S2GfeZlrIQwibWCWdUZZxWpiqdQGc97kXuNLAB1o8aD5m3MRUaHQDlX8syWB4oFUz2euYvZBFLXoDvWQo0Ez09haiSnU8r5Vo0c4MVIC_FwNAq4I9IEMLb6M7_9mLukttdIk2HEfn3yIab3yc3eh3_A_JjSE_09HwNjLVe0mh_SnGzPZu5rpEUjXbtNMgmKGTCdLKwUw9JOZ1MvznLdkOxMq2jnYhq6VFUs81gPBtB3IeMH1XHFC1O4GbqqKmnw86o_SE5uZJXsEU254u5e0RoJr22RWGtyESmfKFzLp0XScUVXCL3A_K6x0BjOjt27AryuYFtGUKmuQSZAXl1Mfws-pD8beAuAupiENqHhwOL9mPTsVFTwaNorVRi0IAxTXWVCW9UmipruMrdgGz3WGs6Tls2v4H2-N-nn5Ob-8eTcTM-qA-fkFscVUBBALRNNlft2j0l182X1XTZPgvLh5IPVw3LX7a4WZs |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwELWqgiou5VtsKeADcCLaxE4c54DQlrKiahvtgUoVl-BPtIjdbbO7fJz5V_w6ZuykqEJw64FrYkVJ_PxmJnl-Q8jTIhMKwp5KfCZdghErUQIVAMqWkE3o1Nsw00dlXcvT02qyQX72e2FQVtlzYiBquzD4jXzIINAKSIZLOfSdLGKyP351dp5gByn809q304gQOXTfv0L5tnx5sA9z_Yyx8Zt3r98mXYeBxPAyxT7s2kA8k9rmzOdaSsG5Ta3jzqjKOK1MVTqOLnvM88JpYAbcS2o8ZOHGVGh6APR_rYQaE-WEk-J9HwWEFHH7C3B_kgHlRH9Pzqt0-GmlXIvGbrAa5KV4GNoG_BEVQqgb3_yfX9Itst0l2HQUV8RtsuHmd8hWr--_S36M6Imenq-BydZLGm1RKRbhs5nrGkzRaONOg5yCQoZMjxd26iFZp8fTb84me2ETM62jzYhq6SSq3GYwPhlDPgCVAKqRKVqfwM3UUWtPR52B-z1yciWv4D7ZnC_m7gGhufTaCmEtz3muvNAFk87ztGIKLlH4AXnR46ExnU07dgv53EC5hvBpLsFnQJ5fDD-L_iR_G7iH4LoYhLbi4cCi_dh0LNVU8ChaK5UaNGbMMl3l3BuVZcoapgo3ILs97pqO65bNb9Dt_Pv0E7IFaGyODurDh-QGQ3FQ0AXtks1Vu3aPyHXzZTVdto_DSqLkw1Wj8hfj_mKr |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Ubiquitous+Clinic+Recommendation+System+Using+the+Modified+Mixed-Binary+Nonlinear+Programming-Feedforward+Neural+Network+Approach&rft.jtitle=Journal+of+theoretical+and+applied+electronic+commerce+research&rft.au=Lin%2C+Yu-Cheng&rft.au=Chen%2C+Toly&rft.date=2021-12-01&rft.issn=0718-1876&rft.eissn=0718-1876&rft.volume=16&rft.issue=7&rft.spage=3282&rft.epage=3298&rft_id=info:doi/10.3390%2Fjtaer16070178&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_jtaer16070178 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0718-1876&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0718-1876&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0718-1876&client=summon |