Numerical Solution Methods for a Nonlinear Operator Equation Arising in an Inverse Coefficient Problem

We consider the inverse problem of determining two unknown coefficients in a linear system of partial differential equations using additional information about one of the solution components. The problem is reduced to a nonlinear operator equation for one of the unknown coefficients. The successive...

Full description

Saved in:
Bibliographic Details
Published in:Differential equations Vol. 57; no. 7; pp. 868 - 875
Main Authors: Gavrilov, S. V., Denisov, A. M.
Format: Journal Article
Language:English
Published: Moscow Pleiades Publishing 01.07.2021
Springer
Subjects:
ISSN:0012-2661, 1608-3083
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We consider the inverse problem of determining two unknown coefficients in a linear system of partial differential equations using additional information about one of the solution components. The problem is reduced to a nonlinear operator equation for one of the unknown coefficients. The successive approximation method and the Newton method are used to solve this operator equation numerically. Results of calculations illustrating the convergence of numerical methods for solving the inverse problem are presented.
AbstractList We consider the inverse problem of determining two unknown coefficients in a linear system of partial differential equations using additional information about one of the solution components. The problem is reduced to a nonlinear operator equation for one of the unknown coefficients. The successive approximation method and the Newton method are used to solve this operator equation numerically. Results of calculations illustrating the convergence of numerical methods for solving the inverse problem are presented.
We consider the inverse problem of determining two unknown coefficients in a linearsystem of partial differential equations using additional information about one of the solutioncomponents. The problem is reduced to a nonlinear operator equation for one of the unknowncoefficients. The successive approximation method and the Newton method are used to solve thisoperator equation numerically. Results of calculations illustrating the convergence of numericalmethods for solving the inverse problem are presented.
Audience Academic
Author Gavrilov, S. V.
Denisov, A. M.
Author_xml – sequence: 1
  givenname: S. V.
  surname: Gavrilov
  fullname: Gavrilov, S. V.
  email: gvrlserg@gmail.com
  organization: Lomonosov Moscow State University
– sequence: 2
  givenname: A. M.
  surname: Denisov
  fullname: Denisov, A. M.
  email: den@cs.msu.ru
  organization: Lomonosov Moscow State University
BookMark eNp9kNtKAzEQhoMoWA8P4F1eYOtMssfLUuoBtArq9ZLNTmpkm2iyFXx7U-uVQpmLgfnnm4HvhB0674ixC4QposwvnwBQiLJEgVAB5HjAJlhCnUmo5SGbbONsmx-zkxjfAKCpsJgws9ysKVitBv7kh81oveP3NL76PnLjA1d86d1gHanAH94pqDENFx8b9bM5CzZat-LWceX4rfukEInPPRljtSU38sfgu4HWZ-zIqCHS-W8_ZS9Xi-f5TXb3cH07n91lWlYwZiiUbATKvjddXjQGKpKiUACqkXlP0GGuJXW6E6YoTWNK09Va1kYoFNDUKE_ZdHd3pQZqrTN-DEqn6mltdVJmbJrPKiylhFIUCcAdoIOPMZBp34Ndq_DVIrRbs-0_s4mp_jDajj9C0jM77CXFjozpi1tRaN_8JrhkZA_0DSW9jZk
CitedBy_id crossref_primary_10_1134_S0012266122060040
crossref_primary_10_1134_S0012266122070084
Cites_doi 10.3103/S0278641918020024
10.1134/S0012266119070073
10.1088/0266-5611/12/3/010
10.1515/156939403322004955
10.1134/S0012266117070084
10.22436/jnsa.008.05.18
10.1134/S0012266120090049
ContentType Journal Article
Copyright The Author(s) 2019
COPYRIGHT 2021 Springer
Copyright_xml – notice: The Author(s) 2019
– notice: COPYRIGHT 2021 Springer
DBID C6C
AAYXX
CITATION
DOI 10.1134/S0012266121070041
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1608-3083
EndPage 875
ExternalDocumentID A716330625
10_1134_S0012266121070041
GroupedDBID --Z
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
04Q
04W
06D
0R~
0VY
1N0
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
408
409
40D
40E
5GY
5VS
67Z
6NX
6TJ
78A
7WY
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABEFU
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABLLD
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFBBN
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
L6V
LAK
LLZTM
M0C
M0N
M2O
M4Y
M7S
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OHT
OVD
P2P
P62
P9R
PADUT
PF0
PKN
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PTHSS
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
TWZ
U2A
UG4
UOJIU
UPT
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
XU3
YLTOR
~8M
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
CITATION
M2P
PHGZM
PHGZT
PQGLB
ID FETCH-LOGICAL-c370t-12a39213ddfb459f07e325a00a934de0b14c3ebcb2f56f9f6fb8c38f2a1209813
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000686779200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0012-2661
IngestDate Sat Nov 29 09:58:21 EST 2025
Sat Nov 29 01:43:30 EST 2025
Tue Nov 18 21:48:51 EST 2025
Fri Feb 21 02:47:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-12a39213ddfb459f07e325a00a934de0b14c3ebcb2f56f9f6fb8c38f2a1209813
OpenAccessLink https://link.springer.com/10.1134/S0012266121070041
PageCount 8
ParticipantIDs gale_infotracacademiconefile_A716330625
crossref_primary_10_1134_S0012266121070041
crossref_citationtrail_10_1134_S0012266121070041
springer_journals_10_1134_S0012266121070041
PublicationCentury 2000
PublicationDate 20210700
2021-07-00
20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 7
  year: 2021
  text: 20210700
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
PublicationTitle Differential equations
PublicationTitleAbbrev Diff Equat
PublicationYear 2021
Publisher Pleiades Publishing
Springer
Publisher_xml – name: Pleiades Publishing
– name: Springer
References BimuratovS.Sh.KabanikhinS.I.Solution of one-dimensional inverse problems of electrodynamics by the Newton–Kantorovich methodComput. Math. Math. Phys.199232121729174312059930786.65099
Yan-BoMa.Newton method for estimation of the Robin coefficientJ. Nonlin. Sci. Appl.201585660669336131410.22436/jnsa.008.05.18
DenisovA.M.Existence and uniqueness of a solution of a system of nonlinear integral equationsDiffer. Equations202056911401147416524110.1134/S0012266120090049
KantorovichL.V.AkilovG.P.Funktsional’nyi analiz (Functional Analysis)1977MoscowNauka
MonchL.A Newton method for solving inverse scattering problem for a sound-hard obstacleInverse Probl.1996123309324139154110.1088/0266-5611/12/3/010
DenisovA.M.Iterative method for solving an inverse coefficient problem for a hyperbolic equationDiffer. Equations2017537943949369162910.1134/S0012266117070084
SamarskiiA.A.VabishchevichP.N.Chislennye metody resheniya obratnykh zadach matematicheskoi fiziki (Numerical Methods for Solving Inverse Problems of Mathematical Physics)2004MoscowEditorial URSS
DenisovA.M.LukshinA.V.Matematicheskie modeli neravnovesnoi dinamiki sorbtsii (Mathematical Models of Nonequilibrium Sorption Dynamics)1989MoscowIzd. Mosk. Gos. Univ.
TikhonovA.N.SamarskiiA.A.Uravneniya matematicheskoi fiziki (Equations of Mathematical Physics)1999MoscowIzd. Mosk. Gos. Univ.
KabanikhinS.I.ScherzerO.ShichleninM.A.Iteration method for solving a two-dimensional inverse problem for hyperbolic equationJ. Inverse Ill-Posed Probl.2003111123197216710.1515/156939403322004955
BaevA.V.GavrilovS.V.An iterative way of solving the inverse scattering problem for an acoustic system of equations in an absorptive layered nonhomogeneous mediumMosc. Univ. Comput. Math. Cybern.20184225562381376210.3103/S0278641918020024
DenisovA.M.Iterative method for solving an inverse problem for a hyperbolic equation with a small parameter multiplying the highest derivativeDiffer. Equations2019557940948399919810.1134/S0012266119070073
L. Monch (2232_CR5) 1996; 12
A.M. Denisov (2232_CR2) 1989
A.M. Denisov (2232_CR3) 2020; 56
L.V. Kantorovich (2232_CR12) 1977
A.N. Tikhonov (2232_CR1) 1999
A.A. Samarskii (2232_CR7) 2004
Ma. Yan-Bo (2232_CR8) 2015; 8
S.Sh. Bimuratov (2232_CR4) 1992; 32
S.I. Kabanikhin (2232_CR6) 2003; 11
A.V. Baev (2232_CR10) 2018; 42
A.M. Denisov (2232_CR11) 2019; 55
A.M. Denisov (2232_CR9) 2017; 53
References_xml – reference: BaevA.V.GavrilovS.V.An iterative way of solving the inverse scattering problem for an acoustic system of equations in an absorptive layered nonhomogeneous mediumMosc. Univ. Comput. Math. Cybern.20184225562381376210.3103/S0278641918020024
– reference: DenisovA.M.Iterative method for solving an inverse problem for a hyperbolic equation with a small parameter multiplying the highest derivativeDiffer. Equations2019557940948399919810.1134/S0012266119070073
– reference: KabanikhinS.I.ScherzerO.ShichleninM.A.Iteration method for solving a two-dimensional inverse problem for hyperbolic equationJ. Inverse Ill-Posed Probl.2003111123197216710.1515/156939403322004955
– reference: Yan-BoMa.Newton method for estimation of the Robin coefficientJ. Nonlin. Sci. Appl.201585660669336131410.22436/jnsa.008.05.18
– reference: KantorovichL.V.AkilovG.P.Funktsional’nyi analiz (Functional Analysis)1977MoscowNauka
– reference: DenisovA.M.LukshinA.V.Matematicheskie modeli neravnovesnoi dinamiki sorbtsii (Mathematical Models of Nonequilibrium Sorption Dynamics)1989MoscowIzd. Mosk. Gos. Univ.
– reference: DenisovA.M.Existence and uniqueness of a solution of a system of nonlinear integral equationsDiffer. Equations202056911401147416524110.1134/S0012266120090049
– reference: BimuratovS.Sh.KabanikhinS.I.Solution of one-dimensional inverse problems of electrodynamics by the Newton–Kantorovich methodComput. Math. Math. Phys.199232121729174312059930786.65099
– reference: TikhonovA.N.SamarskiiA.A.Uravneniya matematicheskoi fiziki (Equations of Mathematical Physics)1999MoscowIzd. Mosk. Gos. Univ.
– reference: SamarskiiA.A.VabishchevichP.N.Chislennye metody resheniya obratnykh zadach matematicheskoi fiziki (Numerical Methods for Solving Inverse Problems of Mathematical Physics)2004MoscowEditorial URSS
– reference: MonchL.A Newton method for solving inverse scattering problem for a sound-hard obstacleInverse Probl.1996123309324139154110.1088/0266-5611/12/3/010
– reference: DenisovA.M.Iterative method for solving an inverse coefficient problem for a hyperbolic equationDiffer. Equations2017537943949369162910.1134/S0012266117070084
– volume: 42
  start-page: 55
  issue: 2
  year: 2018
  ident: 2232_CR10
  publication-title: Mosc. Univ. Comput. Math. Cybern.
  doi: 10.3103/S0278641918020024
– volume-title: Uravneniya matematicheskoi fiziki (Equations of Mathematical Physics)
  year: 1999
  ident: 2232_CR1
– volume-title: Chislennye metody resheniya obratnykh zadach matematicheskoi fiziki (Numerical Methods for Solving Inverse Problems of Mathematical Physics)
  year: 2004
  ident: 2232_CR7
– volume: 55
  start-page: 940
  issue: 7
  year: 2019
  ident: 2232_CR11
  publication-title: Differ. Equations
  doi: 10.1134/S0012266119070073
– volume: 32
  start-page: 1729
  issue: 12
  year: 1992
  ident: 2232_CR4
  publication-title: Comput. Math. Math. Phys.
– volume: 12
  start-page: 309
  issue: 3
  year: 1996
  ident: 2232_CR5
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/12/3/010
– volume: 11
  start-page: 1
  issue: 1
  year: 2003
  ident: 2232_CR6
  publication-title: J. Inverse Ill-Posed Probl.
  doi: 10.1515/156939403322004955
– volume: 53
  start-page: 943
  issue: 7
  year: 2017
  ident: 2232_CR9
  publication-title: Differ. Equations
  doi: 10.1134/S0012266117070084
– volume-title: Funktsional’nyi analiz (Functional Analysis)
  year: 1977
  ident: 2232_CR12
– volume: 8
  start-page: 660
  issue: 5
  year: 2015
  ident: 2232_CR8
  publication-title: J. Nonlin. Sci. Appl.
  doi: 10.22436/jnsa.008.05.18
– volume-title: Matematicheskie modeli neravnovesnoi dinamiki sorbtsii (Mathematical Models of Nonequilibrium Sorption Dynamics)
  year: 1989
  ident: 2232_CR2
– volume: 56
  start-page: 1140
  issue: 9
  year: 2020
  ident: 2232_CR3
  publication-title: Differ. Equations
  doi: 10.1134/S0012266120090049
SSID ssj0009715
Score 2.2127304
Snippet We consider the inverse problem of determining two unknown coefficients in a linear system of partial differential equations using additional information about...
We consider the inverse problem of determining two unknown coefficients in a linearsystem of partial differential equations using additional information about...
SourceID gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 868
SubjectTerms Difference and Functional Equations
Differential equations
Mathematics
Mathematics and Statistics
Methods
Numerical Methods
Ordinary Differential Equations
Partial Differential Equations
Title Numerical Solution Methods for a Nonlinear Operator Equation Arising in an Inverse Coefficient Problem
URI https://link.springer.com/article/10.1134/S0012266121070041
Volume 57
WOSCitedRecordID wos000686779200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1608-3083
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009715
  issn: 0012-2661
  databaseCode: RSV
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA6iPuiDuqk4b-RB8EYhTdI2fRxjwwc3hzf2VtI0gcHoZrv5-03SdDK8gL6nSWgu53w553wfABf6zg8JZdTT7m3m0SiIvJSkgUc4ZZL7iAlpeWbvo8GAjUbx0NVxl3W2ex2StDd1pTtCTU2vj4050SDFcLJryLOhrR0zeg2PT6-fTLtRLVuAPdPchTK_7WLFGNVX8mpA1NqZ3u6_ZrgHdpxbCdvVPmiANZk3wXZ_yclaNkHDHeMSXjmu6et9oAaLKmQzgfUDGexbUekSancWcjiouDR4AR9m0sbkYfet4gfXw43NUwMc55Dn0FB2FKWEnam0vBTanMFhpVdzAF563efOneekFzxBIjT3fMy14-STLFMpDWKFIklwwBHiMaGZRKlPBZGpSLEKQhWrUKVMEKYwN7W4zCeHYD2f5vIIwIzwkEijgqXBjxSKIaaCNNLIJKICCdECqF6DRDheciOPMUksPiE0-fJfW-Bm-cmsIuX4rfGlWdjEHFjdr-Cu7kDPzlBfJW2NGIkGTjhogdt6XRN3ksuf-z3-U-sTsIVNNoxN9D0F6_NiIc_Apnifj8vi3O7gD_tq5Vs
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7IFNQHL1NxXvMgeKOQNumaPcqYTNzq0Cm-lTRNYDCqrtPfb5KmyvAC-p4mobmc8-Wc830AR_rObxLKqKfd28yjURh5KUlDj3DKJPcxE9LyzPaiOGaPj62Bq-Muqmz3KiRpb-pSd4Saml4_MOZEgxTDya4hzzzVBssQ5t_ePXwy7UaVbEHgmeYulPltFzPGqLqSZwOi1s5crv5rhmuw4txKdFHug3WYk3kdlvsfnKxFHdbdMS7QieOaPt0AFb-WIZsxqh7IUN-KShdIu7OIo7jk0uATdPMsbUwedV5KfnA93Mg8NaBRjniODGXHpJCo_SQtL4U2Z2hQ6tVswv1lZ9juek56wRMkwlPPD7h2nHySZSqlYUvhSJIg5BjzFqGZxKlPBZGpSAMVNlVLNVXKBGEq4KYWl_lkC2r5Uy63AWWEN4k0Klga_EihGGYqTCONTCIqsBANwNUaJMLxkht5jHFi8QmhyZf_2oCzj0-eS1KO3xofm4VNzIHV_Qru6g707Az1VXKhESPRwCkIG3BerWviTnLxc787f2p9CIvdYb-X9K7i611YCkxmjE363YPadPIq92FBvE1HxeTA7uZ3w6DoPw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7IFNEHdV5wXvMgeKOYNumaPcrcUNzqwAt7K2mawGDU2U5_v0mbTsQLiO9pEpqc5Hw553wfwJE-85uEMupo9zZxaOAHTkxi3yGcMsldzIQseGZ7QRiy4bA1sDqneZXtXoUky5oGw9KUTi8mibIaJNTU97qeuVo0YDH87Br-zFOTR2_g-v3TB-tuUEkYeI5pbsOa33bx6WKqjufPwdHizumu_nu2a7Bi3U10We6POszJdB2W-zOu1nwd6ta8c3RiOahPN0CFr2UoZ4yqhzPUL8Smc6TdXMRRWHJs8AzdTWQRq0edl5I3XA83Mk8QaJQiniJD5ZHlErWfZcFXoSeOBqWOzSY8djsP7WvHSjI4ggR46rge1w6VS5JExdRvKRxI4vkcY94iNJE4dqkgMhaxp_ymaqmmipkgTHnc1Ogyl2xBLX1O5TaghPAmkUYdS4MiKRTDTPlxoBFLQAUWogG4Wo9IWL5yI5sxjgrcQmj05b824Gz2yaQk6_it8bFZ5MgYsu5XcFuPoGdnKLGiS40kiQZUnt-A82qNI2vh-c_97vyp9SEsDq66Ue8mvN2FJc8kzBS5wHtQm2avch8WxNt0lGcHxcZ-B29z8SM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+Solution+Methods+for+a+Nonlinear+Operator+Equation+Arising+in+an+Inverse+Coefficient+Problem&rft.jtitle=Differential+equations&rft.au=Gavrilov%2C+S.+V&rft.au=Denisov%2C+A.+M&rft.date=2021-07-01&rft.pub=Springer&rft.issn=0012-2661&rft.volume=57&rft.issue=7&rft.spage=868&rft_id=info:doi/10.1134%2FS0012266121070041&rft.externalDocID=A716330625
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-2661&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-2661&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-2661&client=summon