Sparsity-Enhanced Convolutional Decomposition: A Novel Tensor-Based Paradigm for Blind Hyperspectral Unmixing
Blind hyperspectral unmixing (HU) has long been recognized as a crucial component in analyzing the hyperspectral imagery (HSI) collected by airborne and spaceborne sensors. Due to the highly ill-posed problems of such a blind source separation scheme and the effects of spectral variability in hypers...
Saved in:
| Published in: | IEEE transactions on geoscience and remote sensing Vol. 60; pp. 1 - 14 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Subjects: | |
| ISSN: | 0196-2892, 1558-0644 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Blind hyperspectral unmixing (HU) has long been recognized as a crucial component in analyzing the hyperspectral imagery (HSI) collected by airborne and spaceborne sensors. Due to the highly ill-posed problems of such a blind source separation scheme and the effects of spectral variability in hyperspectral imaging, the ability to accurately and effectively unmixing the complex HSI still remains limited. To this end, this article presents a novel blind HU model, called sparsity-enhanced convolutional decomposition (SeCoDe), by jointly capturing spatial-spectral information of HSI in a tensor-based fashion. SeCoDe benefits from two perspectives. On the one hand, the convolutional operation is employed in SeCoDe to locally model the spatial relation between the targeted pixel and its neighbors, which can be well explained by spectral bundles that are capable of addressing spectral variabilities effectively. It maintains, on the other hand, physically continuous spectral components by decomposing the HSI along with the spectral domain. With sparsity-enhanced regularization, an alternative optimization strategy with alternating direction method of multipliers (ADMM)-based optimization algorithm is devised for efficient model inference. Extensive experiments conducted on three different data sets demonstrate the superiority of the proposed SeCoDe compared to previous state-of-the-art methods. We will also release the code at https://github.com/danfenghong/IEEE_TGRS_SeCoDe to encourage the reproduction of the given results. |
|---|---|
| AbstractList | Blind hyperspectral unmixing (HU) has long been recognized as a crucial component in analyzing the hyperspectral imagery (HSI) collected by airborne and spaceborne sensors. Due to the highly ill-posed problems of such a blind source separation scheme and the effects of spectral variability in hyperspectral imaging, the ability to accurately and effectively unmixing the complex HSI still remains limited. To this end, this article presents a novel blind HU model, called sparsity-enhanced convolutional decomposition (SeCoDe), by jointly capturing spatial–spectral information of HSI in a tensor-based fashion. SeCoDe benefits from two perspectives. On the one hand, the convolutional operation is employed in SeCoDe to locally model the spatial relation between the targeted pixel and its neighbors, which can be well explained by spectral bundles that are capable of addressing spectral variabilities effectively. It maintains, on the other hand, physically continuous spectral components by decomposing the HSI along with the spectral domain. With sparsity-enhanced regularization, an alternative optimization strategy with alternating direction method of multipliers (ADMM)-based optimization algorithm is devised for efficient model inference. Extensive experiments conducted on three different data sets demonstrate the superiority of the proposed SeCoDe compared to previous state-of-the-art methods. We will also release the code at https://github.com/danfenghong/IEEE_TGRS_SeCoDe to encourage the reproduction of the given results. |
| Author | Meng, Deyu Yao, Jing Chanussot, Jocelyn Hong, Danfeng Xu, Zongben Xu, Lin |
| Author_xml | – sequence: 1 givenname: Jing orcidid: 0000-0003-1301-9758 surname: Yao fullname: Yao, Jing email: jasonyao92@gmail.com organization: School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, China – sequence: 2 givenname: Danfeng orcidid: 0000-0002-3212-9584 surname: Hong fullname: Hong, Danfeng email: danfeng.hong@dlr.de organization: German Aerospace Center (DLR), Remote Sensing Technology Institute (IMF), Weßling, Germany – sequence: 3 givenname: Lin orcidid: 0000-0003-4373-0591 surname: Xu fullname: Xu, Lin email: lin.xu5470@gmail.com organization: Shanghai Em-Data Technology Company, Ltd., Institute of Artificial Intelligence, Shanghai, China – sequence: 4 givenname: Deyu orcidid: 0000-0002-1294-8283 surname: Meng fullname: Meng, Deyu email: dymeng@mail.xjtu.edu.cn organization: School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, China – sequence: 5 givenname: Jocelyn orcidid: 0000-0003-4817-2875 surname: Chanussot fullname: Chanussot, Jocelyn email: jocelyn@hi.is organization: INRIA, CNRS, Grenoble INP, GIPSA-lab, GIPSA-lab Grenoble Alpes, Grenoble, France – sequence: 6 givenname: Zongben surname: Xu fullname: Xu, Zongben email: zbxu@mail.xjtu.edu.cn organization: School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, China |
| BackLink | https://hal.science/hal-03932933$$DView record in HAL |
| BookMark | eNp9kb1u2zAURokiAeqkfYCii4BOHeRcihIpdnOcHxcwkqBxZoKmrhIGEqmSslG_fSk47dChE0HinAt-9zsjJ847JOQThTmlIC82tz8e5wUUdM6Ay7qs3pEZrao6B16WJ2QGVPK8qGXxnpzF-ApAy4qKGekfBx2iHQ_5tXvRzmCTLb3b-243Wu90l12h8f3gE5Lu37JFduf32GUbdNGH_FLHZDzooBv73GetD9llZ12TrQ4DhjigGUMa8uR6-8u65w_ktNVdxI9v5zl5urneLFf5-v72-3Kxzg0TMOYUwGC75ZpSbFuzNdsG64rVBTRl3RoosWK0ok1hSgaiYo1gW5CSIxfJ55Kdk6_HuS-6U0OwvQ4H5bVVq8VaTW_AJCskY3ua2C9Hdgj-5w7jqF79LqToURWcAuVSCJEocaRM8DEGbJWxo552kgLaTlFQUw9q6kFNPai3HpJJ_zH_fOh_zuejYxHxLy9ZysiB_QYckpWD |
| CODEN | IGRSD2 |
| CitedBy_id | crossref_primary_10_1109_TNNLS_2021_3082289 crossref_primary_10_1109_JSTARS_2025_3594155 crossref_primary_10_1109_TGRS_2023_3289570 crossref_primary_10_1109_JSTARS_2022_3171586 crossref_primary_10_1080_01431161_2023_2274319 crossref_primary_10_1109_TGRS_2022_3206208 crossref_primary_10_1109_JSTARS_2022_3229834 crossref_primary_10_1109_TGRS_2023_3314218 crossref_primary_10_3390_rs14092071 crossref_primary_10_1109_JSTARS_2024_3392497 crossref_primary_10_1109_JSTARS_2022_3187730 crossref_primary_10_1109_TCI_2023_3321985 crossref_primary_10_1109_TGRS_2022_3210398 crossref_primary_10_3390_rs14102308 crossref_primary_10_5194_essd_15_113_2023 crossref_primary_10_1109_TGRS_2023_3282951 crossref_primary_10_1109_TIP_2023_3301769 crossref_primary_10_3390_app13169180 crossref_primary_10_1109_JSTARS_2022_3223115 crossref_primary_10_1109_TGRS_2021_3102143 crossref_primary_10_1109_TGRS_2023_3284671 crossref_primary_10_1109_TGRS_2024_3381632 crossref_primary_10_1109_JSTARS_2024_3371536 crossref_primary_10_1109_TGRS_2022_3186480 crossref_primary_10_1109_TGRS_2024_3363427 crossref_primary_10_1109_ACCESS_2023_3301614 crossref_primary_10_1109_TCI_2024_3369410 crossref_primary_10_1109_TGRS_2024_3393570 crossref_primary_10_1109_JSTARS_2022_3173676 crossref_primary_10_1109_JSTARS_2024_3359647 crossref_primary_10_1109_TGRS_2023_3258061 crossref_primary_10_1109_TGRS_2023_3324497 crossref_primary_10_1109_JSTARS_2021_3111404 crossref_primary_10_1109_TGRS_2021_3115501 crossref_primary_10_1109_TGRS_2023_3236471 crossref_primary_10_1080_01431161_2024_2334772 crossref_primary_10_1109_TGRS_2022_3228231 crossref_primary_10_1109_TGRS_2022_3152782 crossref_primary_10_1109_TGRS_2022_3232570 crossref_primary_10_3390_rs16091560 crossref_primary_10_1109_JSTARS_2024_3414936 crossref_primary_10_1109_THMS_2025_3563292 crossref_primary_10_1109_JSEN_2024_3373477 crossref_primary_10_1109_ACCESS_2025_3552439 |
| Cites_doi | 10.1201/b11656-24 10.1109/TGRS.2018.2825457 10.1109/TGRS.2020.3020823 10.1109/TCYB.2020.3028931 10.1109/WHISPERS.2014.8077595 10.1109/TGRS.2018.2890705 10.1109/TIP.2018.2799324 10.1109/TIP.2015.2495260 10.1109/JSTARS.2012.2194696 10.1109/TGRS.2005.844293 10.1109/JSTARS.2020.2980576 10.1364/JOSAA.25.003001 10.1109/TGRS.2018.2872888 10.1109/MGRS.2021.3064051 10.1109/TGRS.2019.2899129 10.1109/TGRS.2018.2889256 10.1109/JSTARS.2011.2181340 10.1137/07070111x 10.1016/j.isprsjprs.2018.10.006 10.1109/TIP.2016.2618002 10.1109/TGRS.2016.2645703 10.1109/36.911111 10.1109/TIP.2019.2893068 10.1109/TIP.2018.2878958 10.1109/TGRS.2011.2155070 10.1109/WHISPERS.2016.8071675 10.1016/j.isprsjprs.2019.09.008 10.1109/WHISPERS.2010.5594963 10.1109/TGRS.2016.2633279 10.1109/MSP.2013.2279177 10.1109/TGRS.2019.2897139 10.1109/TIP.2018.2880512 10.1109/MSP.2013.2297439 10.1016/s0034-4257(98)00037-6 10.1109/JSTSP.2018.2877497 10.1109/LGRS.2020.3011941 10.1109/TIP.2016.2601269 10.1016/j.laa.2005.06.025 10.1109/TGRS.2020.3000684 10.1109/TGRS.2020.2969024 10.1109/TSP.2015.2486746 10.1109/TGRS.2020.3015157 10.1109/TGRS.2011.2144605 10.1109/TGRS.2020.3016820 10.1109/LGRS.2019.2919755 10.1109/TGRS.2019.2957251 10.1109/JSTARS.2017.2771482 10.1109/CVPR.2018.00695 10.1016/j.rse.2011.03.003 10.1109/TIP.2016.2579259 10.1002/0470845899 10.1109/TIP.2019.2897254 10.1109/TGRS.2011.2108305 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 Attribution |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 – notice: Attribution |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M 1XC VOOES |
| DOI | 10.1109/TGRS.2021.3069845 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics Computer Science |
| EISSN | 1558-0644 |
| EndPage | 14 |
| ExternalDocumentID | oai:HAL:hal-03932933v1 10_1109_TGRS_2021_3069845 9399660 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: U1811461; 11690011; 61721002 funderid: 10.13039/501100001809 – fundername: AXA Research Fund funderid: 10.13039/501100001961 – fundername: MIAI@Grenoble Alpes grantid: ANR-19-P3IA-0003 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M 1XC VOOES |
| ID | FETCH-LOGICAL-c370t-100cefb6a11effcbcbde853820d48fc04e53151d2c430753d73b0996e67370693 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 65 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000730619400077&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-2892 |
| IngestDate | Tue Oct 14 20:52:14 EDT 2025 Tue Aug 26 15:40:22 EDT 2025 Tue Nov 18 22:37:15 EST 2025 Sat Nov 29 02:50:12 EST 2025 Wed Aug 27 05:07:52 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Convolutional codes Tensors Encoding Task analysis Optimization Hyperspectral imaging Context modeling |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 Attribution: http://creativecommons.org/licenses/by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c370t-100cefb6a11effcbcbde853820d48fc04e53151d2c430753d73b0996e67370693 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4817-2875 0000-0002-1294-8283 0000-0003-1301-9758 0000-0002-3212-9584 0000-0003-4373-0591 |
| OpenAccessLink | https://hal.science/hal-03932933 |
| PQID | 2610169777 |
| PQPubID | 85465 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_2610169777 ieee_primary_9399660 hal_primary_oai_HAL_hal_03932933v1 crossref_citationtrail_10_1109_TGRS_2021_3069845 crossref_primary_10_1109_TGRS_2021_3069845 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: Institute of Electrical and Electronics Engineers |
| References | ref13 ref12 ref15 ref14 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref50 Lin (ref51) 2010 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Song (ref46) 2018 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref55 doi: 10.1201/b11656-24 – ident: ref22 doi: 10.1109/TGRS.2018.2825457 – ident: ref14 doi: 10.1109/TGRS.2020.3020823 – ident: ref4 doi: 10.1109/TCYB.2020.3028931 – ident: ref38 doi: 10.1109/WHISPERS.2014.8077595 – ident: ref52 doi: 10.1109/TGRS.2018.2890705 – volume-title: arXiv:1009.5055 year: 2010 ident: ref51 article-title: The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices – ident: ref7 doi: 10.1109/TIP.2018.2799324 – ident: ref47 doi: 10.1109/TIP.2015.2495260 – ident: ref18 doi: 10.1109/JSTARS.2012.2194696 – ident: ref19 doi: 10.1109/TGRS.2005.844293 – ident: ref44 doi: 10.1109/JSTARS.2020.2980576 – ident: ref32 doi: 10.1364/JOSAA.25.003001 – ident: ref43 doi: 10.1109/TGRS.2018.2872888 – ident: ref1 doi: 10.1109/MGRS.2021.3064051 – ident: ref8 doi: 10.1109/TGRS.2019.2899129 – ident: ref48 doi: 10.1109/TGRS.2018.2889256 – ident: ref28 doi: 10.1109/JSTARS.2011.2181340 – year: 2018 ident: ref46 article-title: Spatial resolution improvement hyperspectral images by deconvolution joint unmixing-deconvolution – ident: ref42 doi: 10.1137/07070111x – ident: ref53 doi: 10.1016/j.isprsjprs.2018.10.006 – ident: ref11 doi: 10.1109/TIP.2016.2618002 – ident: ref2 doi: 10.1109/TGRS.2016.2645703 – ident: ref35 doi: 10.1109/36.911111 – ident: ref23 doi: 10.1109/TIP.2019.2893068 – ident: ref31 doi: 10.1109/TIP.2018.2878958 – ident: ref36 doi: 10.1109/TGRS.2011.2155070 – ident: ref26 doi: 10.1109/WHISPERS.2016.8071675 – ident: ref3 doi: 10.1016/j.isprsjprs.2019.09.008 – ident: ref37 doi: 10.1109/WHISPERS.2010.5594963 – ident: ref33 doi: 10.1109/TGRS.2016.2633279 – ident: ref25 doi: 10.1109/MSP.2013.2279177 – ident: ref5 doi: 10.1109/TGRS.2019.2897139 – ident: ref49 doi: 10.1109/TIP.2018.2880512 – ident: ref45 doi: 10.1109/MSP.2013.2297439 – ident: ref27 doi: 10.1016/s0034-4257(98)00037-6 – ident: ref30 doi: 10.1109/JSTSP.2018.2877497 – ident: ref39 doi: 10.1109/LGRS.2020.3011941 – ident: ref12 doi: 10.1109/TIP.2016.2601269 – ident: ref21 doi: 10.1016/j.laa.2005.06.025 – ident: ref15 doi: 10.1109/TGRS.2020.3000684 – ident: ref16 doi: 10.1109/TGRS.2020.2969024 – ident: ref41 doi: 10.1109/TSP.2015.2486746 – ident: ref10 doi: 10.1109/TGRS.2020.3015157 – ident: ref50 doi: 10.1109/TGRS.2011.2144605 – ident: ref17 doi: 10.1109/TGRS.2020.3016820 – ident: ref6 doi: 10.1109/LGRS.2019.2919755 – ident: ref9 doi: 10.1109/TGRS.2019.2957251 – ident: ref13 doi: 10.1109/JSTARS.2017.2771482 – ident: ref54 doi: 10.1109/CVPR.2018.00695 – ident: ref24 doi: 10.1016/j.rse.2011.03.003 – ident: ref40 doi: 10.1109/TIP.2016.2579259 – ident: ref34 doi: 10.1002/0470845899 – ident: ref29 doi: 10.1109/TIP.2019.2897254 – ident: ref20 doi: 10.1109/TGRS.2011.2108305 |
| SSID | ssj0014517 |
| Score | 2.5934193 |
| Snippet | Blind hyperspectral unmixing (HU) has long been recognized as a crucial component in analyzing the hyperspectral imagery (HSI) collected by airborne and... |
| SourceID | hal proquest crossref ieee |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Airborne sensing Algorithms Blind hyperspectral unmixing (HU) Computer Science Context modeling Convolutional codes convolutional sparse coding (CSC) Decomposition Encoding Hyperspectral imaging Ill posed problems Imagery Mathematical analysis Optimization Regularization Signal and Image Processing Signal processing Sparsity Spectra spectral bundles spectral variability (SV) Task analysis tensor decomposition Tensors |
| Title | Sparsity-Enhanced Convolutional Decomposition: A Novel Tensor-Based Paradigm for Blind Hyperspectral Unmixing |
| URI | https://ieeexplore.ieee.org/document/9399660 https://www.proquest.com/docview/2610169777 https://hal.science/hal-03932933 |
| Volume | 60 |
| WOSCitedRecordID | wos000730619400077&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED9BBdL2ABsM0a1M1rSniYDz0XzwVhjQB1ShURBvUWKfoRJNUFoq_vzduSZCGkLaWxTZTuQ727-f7wvgJ8YmKI3Wng40ERSlUq8wofGCxASIKitDm9Tn5iIZjdLb2-xyBfbbWBhEtM5neMCP1pava_XEV2WHWcjonAj6apIky1it1mIQ9X0XGh17RCICZ8H0ZXY4Pv9zRUww8A8IH2cpRy69OoNW79kD0pZW-Wc_tofM2eb__d4n2HBgUgyW0v8MK1htwcdXKQa3YN26eKrZNkyvHgvrgeGdVvfW7i9O6mrhVI-G-Y3sX-6cuI7EQIzqBT6IMRHduvGO6bjT4rJoCj25mwrCuuKYIKoWQ2Kyy4DNhga5rqaTZ_ryF7g-Ox2fDD1XbMFTYSLntB1LhaaMC99HY1SpSo10lBNA0FFqlIyQVmvf14GKaFvohzoJS0KXMXKhG5rWcAc6VV3hLggpsZ9FPudAJrqGJG-VGsJpcSKV0RF2Qb5Mf65cJnIuiPGQW0Yis5wllrPEciexLvxquzwu03C81_gHybRtxwm0h4OLnN9xJDIBnHDhd2GbJdi2csLrQu9FBXK3mmc5sUxOWkNK9_XtXt_gQ8BhEfZqpgedefOEe7CmFvPJrPluFfUv-5nlgg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD4aAwQ8cNlAFAZYiCdENtu589aNjSJKNbEO7c1K7GNWaU2mtKv4-Ry7XjQJhMRbFNlO5GP7fJ_PDeAdZlbW1pjISEMEResiqmxsI5lbiajLOvZJfX6M88mkODsrjzfgQx8Lg4je-Qx33aO35ZtWX7mrsr0yduicCPrtNEmkWEdr9TaDJBUhODqLiEbIYMMUvNybfv5-QlxQil1CyGXhYpduaKFb584H0hdX-eNE9mrm6NH__eBjeBjgJBuu5f8ENrDZggc3kgxuwV3v5KkX2zA_uay8D0Z02Jx7yz87aJtVWHw0zCd0HubBjesjG7JJu8ILNiWq23bRPik8w46rrjKzn3NGaJftE0g1bERcdh2y2dEgp8189ou-_BROjw6nB6MolFuIdJzzJR3IXKOts0oItFbXujZIypwggkkKq3mCtF9TYaRO6GBIY5PHNeHLDF2pG5rW-BlsNm2Dz4FxjmmZCJcFmQgbksR1YQmpZTnX1iQ4AH49_UqHXOSuJMaF8pyEl8pJTDmJqSCxAbzvu1yuE3H8q_FbkmnfzqXQHg3Hyr1zscgEceKVGMC2k2DfKghvADvXS0CF_bxQxDNd2po8z1_8vdcbuDeafhur8ZfJ15dwX7ogCX9RswOby-4KX8EdvVrOFt1rv2h_AxK16Mk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparsity-Enhanced+Convolutional+Decomposition%3A+A+Novel+Tensor-Based+Paradigm+for+Blind+Hyperspectral+Unmixing&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Yao%2C+Jing&rft.au=Hong%2C+Danfeng&rft.au=Xu%2C+Lin&rft.au=Meng%2C+Deyu&rft.date=2022-01-01&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=60&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTGRS.2021.3069845&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2021_3069845 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |