Sparsity-Enhanced Convolutional Decomposition: A Novel Tensor-Based Paradigm for Blind Hyperspectral Unmixing

Blind hyperspectral unmixing (HU) has long been recognized as a crucial component in analyzing the hyperspectral imagery (HSI) collected by airborne and spaceborne sensors. Due to the highly ill-posed problems of such a blind source separation scheme and the effects of spectral variability in hypers...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing Vol. 60; pp. 1 - 14
Main Authors: Yao, Jing, Hong, Danfeng, Xu, Lin, Meng, Deyu, Chanussot, Jocelyn, Xu, Zongben
Format: Journal Article
Language:English
Published: New York IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Subjects:
ISSN:0196-2892, 1558-0644
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Blind hyperspectral unmixing (HU) has long been recognized as a crucial component in analyzing the hyperspectral imagery (HSI) collected by airborne and spaceborne sensors. Due to the highly ill-posed problems of such a blind source separation scheme and the effects of spectral variability in hyperspectral imaging, the ability to accurately and effectively unmixing the complex HSI still remains limited. To this end, this article presents a novel blind HU model, called sparsity-enhanced convolutional decomposition (SeCoDe), by jointly capturing spatial-spectral information of HSI in a tensor-based fashion. SeCoDe benefits from two perspectives. On the one hand, the convolutional operation is employed in SeCoDe to locally model the spatial relation between the targeted pixel and its neighbors, which can be well explained by spectral bundles that are capable of addressing spectral variabilities effectively. It maintains, on the other hand, physically continuous spectral components by decomposing the HSI along with the spectral domain. With sparsity-enhanced regularization, an alternative optimization strategy with alternating direction method of multipliers (ADMM)-based optimization algorithm is devised for efficient model inference. Extensive experiments conducted on three different data sets demonstrate the superiority of the proposed SeCoDe compared to previous state-of-the-art methods. We will also release the code at https://github.com/danfenghong/IEEE_TGRS_SeCoDe to encourage the reproduction of the given results.
AbstractList Blind hyperspectral unmixing (HU) has long been recognized as a crucial component in analyzing the hyperspectral imagery (HSI) collected by airborne and spaceborne sensors. Due to the highly ill-posed problems of such a blind source separation scheme and the effects of spectral variability in hyperspectral imaging, the ability to accurately and effectively unmixing the complex HSI still remains limited. To this end, this article presents a novel blind HU model, called sparsity-enhanced convolutional decomposition (SeCoDe), by jointly capturing spatial–spectral information of HSI in a tensor-based fashion. SeCoDe benefits from two perspectives. On the one hand, the convolutional operation is employed in SeCoDe to locally model the spatial relation between the targeted pixel and its neighbors, which can be well explained by spectral bundles that are capable of addressing spectral variabilities effectively. It maintains, on the other hand, physically continuous spectral components by decomposing the HSI along with the spectral domain. With sparsity-enhanced regularization, an alternative optimization strategy with alternating direction method of multipliers (ADMM)-based optimization algorithm is devised for efficient model inference. Extensive experiments conducted on three different data sets demonstrate the superiority of the proposed SeCoDe compared to previous state-of-the-art methods. We will also release the code at https://github.com/danfenghong/IEEE_TGRS_SeCoDe to encourage the reproduction of the given results.
Author Meng, Deyu
Yao, Jing
Chanussot, Jocelyn
Hong, Danfeng
Xu, Zongben
Xu, Lin
Author_xml – sequence: 1
  givenname: Jing
  orcidid: 0000-0003-1301-9758
  surname: Yao
  fullname: Yao, Jing
  email: jasonyao92@gmail.com
  organization: School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, China
– sequence: 2
  givenname: Danfeng
  orcidid: 0000-0002-3212-9584
  surname: Hong
  fullname: Hong, Danfeng
  email: danfeng.hong@dlr.de
  organization: German Aerospace Center (DLR), Remote Sensing Technology Institute (IMF), Weßling, Germany
– sequence: 3
  givenname: Lin
  orcidid: 0000-0003-4373-0591
  surname: Xu
  fullname: Xu, Lin
  email: lin.xu5470@gmail.com
  organization: Shanghai Em-Data Technology Company, Ltd., Institute of Artificial Intelligence, Shanghai, China
– sequence: 4
  givenname: Deyu
  orcidid: 0000-0002-1294-8283
  surname: Meng
  fullname: Meng, Deyu
  email: dymeng@mail.xjtu.edu.cn
  organization: School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, China
– sequence: 5
  givenname: Jocelyn
  orcidid: 0000-0003-4817-2875
  surname: Chanussot
  fullname: Chanussot, Jocelyn
  email: jocelyn@hi.is
  organization: INRIA, CNRS, Grenoble INP, GIPSA-lab, GIPSA-lab Grenoble Alpes, Grenoble, France
– sequence: 6
  givenname: Zongben
  surname: Xu
  fullname: Xu, Zongben
  email: zbxu@mail.xjtu.edu.cn
  organization: School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, China
BackLink https://hal.science/hal-03932933$$DView record in HAL
BookMark eNp9kb1u2zAURokiAeqkfYCii4BOHeRcihIpdnOcHxcwkqBxZoKmrhIGEqmSslG_fSk47dChE0HinAt-9zsjJ847JOQThTmlIC82tz8e5wUUdM6Ay7qs3pEZrao6B16WJ2QGVPK8qGXxnpzF-ApAy4qKGekfBx2iHQ_5tXvRzmCTLb3b-243Wu90l12h8f3gE5Lu37JFduf32GUbdNGH_FLHZDzooBv73GetD9llZ12TrQ4DhjigGUMa8uR6-8u65w_ktNVdxI9v5zl5urneLFf5-v72-3Kxzg0TMOYUwGC75ZpSbFuzNdsG64rVBTRl3RoosWK0ok1hSgaiYo1gW5CSIxfJ55Kdk6_HuS-6U0OwvQ4H5bVVq8VaTW_AJCskY3ua2C9Hdgj-5w7jqF79LqToURWcAuVSCJEocaRM8DEGbJWxo552kgLaTlFQUw9q6kFNPai3HpJJ_zH_fOh_zuejYxHxLy9ZysiB_QYckpWD
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_TNNLS_2021_3082289
crossref_primary_10_1109_JSTARS_2025_3594155
crossref_primary_10_1109_TGRS_2023_3289570
crossref_primary_10_1109_JSTARS_2022_3171586
crossref_primary_10_1080_01431161_2023_2274319
crossref_primary_10_1109_TGRS_2022_3206208
crossref_primary_10_1109_JSTARS_2022_3229834
crossref_primary_10_1109_TGRS_2023_3314218
crossref_primary_10_3390_rs14092071
crossref_primary_10_1109_JSTARS_2024_3392497
crossref_primary_10_1109_JSTARS_2022_3187730
crossref_primary_10_1109_TCI_2023_3321985
crossref_primary_10_1109_TGRS_2022_3210398
crossref_primary_10_3390_rs14102308
crossref_primary_10_5194_essd_15_113_2023
crossref_primary_10_1109_TGRS_2023_3282951
crossref_primary_10_1109_TIP_2023_3301769
crossref_primary_10_3390_app13169180
crossref_primary_10_1109_JSTARS_2022_3223115
crossref_primary_10_1109_TGRS_2021_3102143
crossref_primary_10_1109_TGRS_2023_3284671
crossref_primary_10_1109_TGRS_2024_3381632
crossref_primary_10_1109_JSTARS_2024_3371536
crossref_primary_10_1109_TGRS_2022_3186480
crossref_primary_10_1109_TGRS_2024_3363427
crossref_primary_10_1109_ACCESS_2023_3301614
crossref_primary_10_1109_TCI_2024_3369410
crossref_primary_10_1109_TGRS_2024_3393570
crossref_primary_10_1109_JSTARS_2022_3173676
crossref_primary_10_1109_JSTARS_2024_3359647
crossref_primary_10_1109_TGRS_2023_3258061
crossref_primary_10_1109_TGRS_2023_3324497
crossref_primary_10_1109_JSTARS_2021_3111404
crossref_primary_10_1109_TGRS_2021_3115501
crossref_primary_10_1109_TGRS_2023_3236471
crossref_primary_10_1080_01431161_2024_2334772
crossref_primary_10_1109_TGRS_2022_3228231
crossref_primary_10_1109_TGRS_2022_3152782
crossref_primary_10_1109_TGRS_2022_3232570
crossref_primary_10_3390_rs16091560
crossref_primary_10_1109_JSTARS_2024_3414936
crossref_primary_10_1109_THMS_2025_3563292
crossref_primary_10_1109_JSEN_2024_3373477
crossref_primary_10_1109_ACCESS_2025_3552439
Cites_doi 10.1201/b11656-24
10.1109/TGRS.2018.2825457
10.1109/TGRS.2020.3020823
10.1109/TCYB.2020.3028931
10.1109/WHISPERS.2014.8077595
10.1109/TGRS.2018.2890705
10.1109/TIP.2018.2799324
10.1109/TIP.2015.2495260
10.1109/JSTARS.2012.2194696
10.1109/TGRS.2005.844293
10.1109/JSTARS.2020.2980576
10.1364/JOSAA.25.003001
10.1109/TGRS.2018.2872888
10.1109/MGRS.2021.3064051
10.1109/TGRS.2019.2899129
10.1109/TGRS.2018.2889256
10.1109/JSTARS.2011.2181340
10.1137/07070111x
10.1016/j.isprsjprs.2018.10.006
10.1109/TIP.2016.2618002
10.1109/TGRS.2016.2645703
10.1109/36.911111
10.1109/TIP.2019.2893068
10.1109/TIP.2018.2878958
10.1109/TGRS.2011.2155070
10.1109/WHISPERS.2016.8071675
10.1016/j.isprsjprs.2019.09.008
10.1109/WHISPERS.2010.5594963
10.1109/TGRS.2016.2633279
10.1109/MSP.2013.2279177
10.1109/TGRS.2019.2897139
10.1109/TIP.2018.2880512
10.1109/MSP.2013.2297439
10.1016/s0034-4257(98)00037-6
10.1109/JSTSP.2018.2877497
10.1109/LGRS.2020.3011941
10.1109/TIP.2016.2601269
10.1016/j.laa.2005.06.025
10.1109/TGRS.2020.3000684
10.1109/TGRS.2020.2969024
10.1109/TSP.2015.2486746
10.1109/TGRS.2020.3015157
10.1109/TGRS.2011.2144605
10.1109/TGRS.2020.3016820
10.1109/LGRS.2019.2919755
10.1109/TGRS.2019.2957251
10.1109/JSTARS.2017.2771482
10.1109/CVPR.2018.00695
10.1016/j.rse.2011.03.003
10.1109/TIP.2016.2579259
10.1002/0470845899
10.1109/TIP.2019.2897254
10.1109/TGRS.2011.2108305
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Attribution
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
– notice: Attribution
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
1XC
VOOES
DOI 10.1109/TGRS.2021.3069845
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList

Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
Computer Science
EISSN 1558-0644
EndPage 14
ExternalDocumentID oai:HAL:hal-03932933v1
10_1109_TGRS_2021_3069845
9399660
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: U1811461; 11690011; 61721002
  funderid: 10.13039/501100001809
– fundername: AXA Research Fund
  funderid: 10.13039/501100001961
– fundername: MIAI@Grenoble Alpes
  grantid: ANR-19-P3IA-0003
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
1XC
VOOES
ID FETCH-LOGICAL-c370t-100cefb6a11effcbcbde853820d48fc04e53151d2c430753d73b0996e67370693
IEDL.DBID RIE
ISICitedReferencesCount 65
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000730619400077&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Tue Oct 14 20:52:14 EDT 2025
Tue Aug 26 15:40:22 EDT 2025
Tue Nov 18 22:37:15 EST 2025
Sat Nov 29 02:50:12 EST 2025
Wed Aug 27 05:07:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Convolutional codes
Tensors
Encoding
Task analysis
Optimization
Hyperspectral imaging
Context modeling
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-100cefb6a11effcbcbde853820d48fc04e53151d2c430753d73b0996e67370693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4817-2875
0000-0002-1294-8283
0000-0003-1301-9758
0000-0002-3212-9584
0000-0003-4373-0591
OpenAccessLink https://hal.science/hal-03932933
PQID 2610169777
PQPubID 85465
PageCount 14
ParticipantIDs proquest_journals_2610169777
ieee_primary_9399660
hal_primary_oai_HAL_hal_03932933v1
crossref_citationtrail_10_1109_TGRS_2021_3069845
crossref_primary_10_1109_TGRS_2021_3069845
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref50
Lin (ref51) 2010
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Song (ref46) 2018
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref55
  doi: 10.1201/b11656-24
– ident: ref22
  doi: 10.1109/TGRS.2018.2825457
– ident: ref14
  doi: 10.1109/TGRS.2020.3020823
– ident: ref4
  doi: 10.1109/TCYB.2020.3028931
– ident: ref38
  doi: 10.1109/WHISPERS.2014.8077595
– ident: ref52
  doi: 10.1109/TGRS.2018.2890705
– volume-title: arXiv:1009.5055
  year: 2010
  ident: ref51
  article-title: The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices
– ident: ref7
  doi: 10.1109/TIP.2018.2799324
– ident: ref47
  doi: 10.1109/TIP.2015.2495260
– ident: ref18
  doi: 10.1109/JSTARS.2012.2194696
– ident: ref19
  doi: 10.1109/TGRS.2005.844293
– ident: ref44
  doi: 10.1109/JSTARS.2020.2980576
– ident: ref32
  doi: 10.1364/JOSAA.25.003001
– ident: ref43
  doi: 10.1109/TGRS.2018.2872888
– ident: ref1
  doi: 10.1109/MGRS.2021.3064051
– ident: ref8
  doi: 10.1109/TGRS.2019.2899129
– ident: ref48
  doi: 10.1109/TGRS.2018.2889256
– ident: ref28
  doi: 10.1109/JSTARS.2011.2181340
– year: 2018
  ident: ref46
  article-title: Spatial resolution improvement hyperspectral images by deconvolution joint unmixing-deconvolution
– ident: ref42
  doi: 10.1137/07070111x
– ident: ref53
  doi: 10.1016/j.isprsjprs.2018.10.006
– ident: ref11
  doi: 10.1109/TIP.2016.2618002
– ident: ref2
  doi: 10.1109/TGRS.2016.2645703
– ident: ref35
  doi: 10.1109/36.911111
– ident: ref23
  doi: 10.1109/TIP.2019.2893068
– ident: ref31
  doi: 10.1109/TIP.2018.2878958
– ident: ref36
  doi: 10.1109/TGRS.2011.2155070
– ident: ref26
  doi: 10.1109/WHISPERS.2016.8071675
– ident: ref3
  doi: 10.1016/j.isprsjprs.2019.09.008
– ident: ref37
  doi: 10.1109/WHISPERS.2010.5594963
– ident: ref33
  doi: 10.1109/TGRS.2016.2633279
– ident: ref25
  doi: 10.1109/MSP.2013.2279177
– ident: ref5
  doi: 10.1109/TGRS.2019.2897139
– ident: ref49
  doi: 10.1109/TIP.2018.2880512
– ident: ref45
  doi: 10.1109/MSP.2013.2297439
– ident: ref27
  doi: 10.1016/s0034-4257(98)00037-6
– ident: ref30
  doi: 10.1109/JSTSP.2018.2877497
– ident: ref39
  doi: 10.1109/LGRS.2020.3011941
– ident: ref12
  doi: 10.1109/TIP.2016.2601269
– ident: ref21
  doi: 10.1016/j.laa.2005.06.025
– ident: ref15
  doi: 10.1109/TGRS.2020.3000684
– ident: ref16
  doi: 10.1109/TGRS.2020.2969024
– ident: ref41
  doi: 10.1109/TSP.2015.2486746
– ident: ref10
  doi: 10.1109/TGRS.2020.3015157
– ident: ref50
  doi: 10.1109/TGRS.2011.2144605
– ident: ref17
  doi: 10.1109/TGRS.2020.3016820
– ident: ref6
  doi: 10.1109/LGRS.2019.2919755
– ident: ref9
  doi: 10.1109/TGRS.2019.2957251
– ident: ref13
  doi: 10.1109/JSTARS.2017.2771482
– ident: ref54
  doi: 10.1109/CVPR.2018.00695
– ident: ref24
  doi: 10.1016/j.rse.2011.03.003
– ident: ref40
  doi: 10.1109/TIP.2016.2579259
– ident: ref34
  doi: 10.1002/0470845899
– ident: ref29
  doi: 10.1109/TIP.2019.2897254
– ident: ref20
  doi: 10.1109/TGRS.2011.2108305
SSID ssj0014517
Score 2.5934193
Snippet Blind hyperspectral unmixing (HU) has long been recognized as a crucial component in analyzing the hyperspectral imagery (HSI) collected by airborne and...
SourceID hal
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Airborne sensing
Algorithms
Blind hyperspectral unmixing (HU)
Computer Science
Context modeling
Convolutional codes
convolutional sparse coding (CSC)
Decomposition
Encoding
Hyperspectral imaging
Ill posed problems
Imagery
Mathematical analysis
Optimization
Regularization
Signal and Image Processing
Signal processing
Sparsity
Spectra
spectral bundles
spectral variability (SV)
Task analysis
tensor decomposition
Tensors
Title Sparsity-Enhanced Convolutional Decomposition: A Novel Tensor-Based Paradigm for Blind Hyperspectral Unmixing
URI https://ieeexplore.ieee.org/document/9399660
https://www.proquest.com/docview/2610169777
https://hal.science/hal-03932933
Volume 60
WOSCitedRecordID wos000730619400077&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED9BBdL2ABsM0a1M1rSniYDz0XzwVhjQB1ShURBvUWKfoRJNUFoq_vzduSZCGkLaWxTZTuQ727-f7wvgJ8YmKI3Wng40ERSlUq8wofGCxASIKitDm9Tn5iIZjdLb2-xyBfbbWBhEtM5neMCP1pava_XEV2WHWcjonAj6apIky1it1mIQ9X0XGh17RCICZ8H0ZXY4Pv9zRUww8A8IH2cpRy69OoNW79kD0pZW-Wc_tofM2eb__d4n2HBgUgyW0v8MK1htwcdXKQa3YN26eKrZNkyvHgvrgeGdVvfW7i9O6mrhVI-G-Y3sX-6cuI7EQIzqBT6IMRHduvGO6bjT4rJoCj25mwrCuuKYIKoWQ2Kyy4DNhga5rqaTZ_ryF7g-Ox2fDD1XbMFTYSLntB1LhaaMC99HY1SpSo10lBNA0FFqlIyQVmvf14GKaFvohzoJS0KXMXKhG5rWcAc6VV3hLggpsZ9FPudAJrqGJG-VGsJpcSKV0RF2Qb5Mf65cJnIuiPGQW0Yis5wllrPEciexLvxquzwu03C81_gHybRtxwm0h4OLnN9xJDIBnHDhd2GbJdi2csLrQu9FBXK3mmc5sUxOWkNK9_XtXt_gQ8BhEfZqpgedefOEe7CmFvPJrPluFfUv-5nlgg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD4aAwQ8cNlAFAZYiCdENtu589aNjSJKNbEO7c1K7GNWaU2mtKv4-Ry7XjQJhMRbFNlO5GP7fJ_PDeAdZlbW1pjISEMEResiqmxsI5lbiajLOvZJfX6M88mkODsrjzfgQx8Lg4je-Qx33aO35ZtWX7mrsr0yduicCPrtNEmkWEdr9TaDJBUhODqLiEbIYMMUvNybfv5-QlxQil1CyGXhYpduaKFb584H0hdX-eNE9mrm6NH__eBjeBjgJBuu5f8ENrDZggc3kgxuwV3v5KkX2zA_uay8D0Z02Jx7yz87aJtVWHw0zCd0HubBjesjG7JJu8ILNiWq23bRPik8w46rrjKzn3NGaJftE0g1bERcdh2y2dEgp8189ou-_BROjw6nB6MolFuIdJzzJR3IXKOts0oItFbXujZIypwggkkKq3mCtF9TYaRO6GBIY5PHNeHLDF2pG5rW-BlsNm2Dz4FxjmmZCJcFmQgbksR1YQmpZTnX1iQ4AH49_UqHXOSuJMaF8pyEl8pJTDmJqSCxAbzvu1yuE3H8q_FbkmnfzqXQHg3Hyr1zscgEceKVGMC2k2DfKghvADvXS0CF_bxQxDNd2po8z1_8vdcbuDeafhur8ZfJ15dwX7ogCX9RswOby-4KX8EdvVrOFt1rv2h_AxK16Mk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparsity-Enhanced+Convolutional+Decomposition%3A+A+Novel+Tensor-Based+Paradigm+for+Blind+Hyperspectral+Unmixing&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Yao%2C+Jing&rft.au=Hong%2C+Danfeng&rft.au=Xu%2C+Lin&rft.au=Meng%2C+Deyu&rft.date=2022-01-01&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=60&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTGRS.2021.3069845&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2021_3069845
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon