3D-Convolutional Neural Network with Generative Adversarial Network and Autoencoder for Robust Anomaly Detection in Video Surveillance

As the surveillance devices proliferate, various machine learning approaches for video anomaly detection have been attempted. We propose a hybrid deep learning model composed of a video feature extractor trained by generative adversarial network with deficient anomaly data and an anomaly detector bo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of neural systems Ročník 30; číslo 6; s. 2050034
Hlavní autoři: Shin, Wonsup, Bu, Seok-Jun, Cho, Sung-Bae
Médium: Journal Article
Jazyk:angličtina
Vydáno: Singapore 01.06.2020
Témata:
ISSN:1793-6462, 1793-6462
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:As the surveillance devices proliferate, various machine learning approaches for video anomaly detection have been attempted. We propose a hybrid deep learning model composed of a video feature extractor trained by generative adversarial network with deficient anomaly data and an anomaly detector boosted by transferring the extractor. Experiments with UCSD pedestrian dataset show that it achieves 94.4% recall and 86.4% precision, which is the competitive performance in video anomaly detection.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1793-6462
1793-6462
DOI:10.1142/S0129065720500343