3D-Convolutional Neural Network with Generative Adversarial Network and Autoencoder for Robust Anomaly Detection in Video Surveillance

As the surveillance devices proliferate, various machine learning approaches for video anomaly detection have been attempted. We propose a hybrid deep learning model composed of a video feature extractor trained by generative adversarial network with deficient anomaly data and an anomaly detector bo...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of neural systems Ročník 30; číslo 6; s. 2050034
Hlavní autori: Shin, Wonsup, Bu, Seok-Jun, Cho, Sung-Bae
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Singapore 01.06.2020
Predmet:
ISSN:1793-6462, 1793-6462
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:As the surveillance devices proliferate, various machine learning approaches for video anomaly detection have been attempted. We propose a hybrid deep learning model composed of a video feature extractor trained by generative adversarial network with deficient anomaly data and an anomaly detector boosted by transferring the extractor. Experiments with UCSD pedestrian dataset show that it achieves 94.4% recall and 86.4% precision, which is the competitive performance in video anomaly detection.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1793-6462
1793-6462
DOI:10.1142/S0129065720500343