Multiple feature kernel hashing for large-scale visual search

Recently hashing has become attractive in large-scale visual search, owing to its theoretical guarantee and practical success. However, most of the state-of-the-art hashing methods can only employ a single feature type to learn hashing functions. Related research on image search, clustering, and oth...

Full description

Saved in:
Bibliographic Details
Published in:Pattern recognition Vol. 47; no. 2; pp. 748 - 757
Main Authors: Liu, Xianglong, He, Junfeng, Lang, Bo
Format: Journal Article
Language:English
Published: Kidlington Elsevier Ltd 01.02.2014
Elsevier
Subjects:
ISSN:0031-3203, 1873-5142
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Recently hashing has become attractive in large-scale visual search, owing to its theoretical guarantee and practical success. However, most of the state-of-the-art hashing methods can only employ a single feature type to learn hashing functions. Related research on image search, clustering, and other domains has proved the advantages of fusing multiple features. In this paper we propose a novel multiple feature kernel hashing framework, where hashing functions are learned to preserve certain similarities with linearly combined multiple kernels corresponding to different features. The framework is not only compatible with general types of data and diverse types of similarities indicated by different visual features, but also general for both supervised and unsupervised scenarios. We present efficient alternating optimization algorithms to learn both the hashing functions and the optimal kernel combination. Experimental results on three large-scale benchmarks CIFAR-10, NUS-WIDE and a-TRECVID show that the proposed approach can achieve superior accuracy and efficiency over state-of-the-art methods. •We propose a generic multiple feature hashing framework using multiple kernels.•Visual features are implicitly mapped and concatenated to reduce complexity.•We formulate both supervised and unsupervised hashing problems in the framework.•Alternating optimization ways efficiently learn hashing functions and the kernel space.•Experiments validate the superior performances and efficiency of the proposed approach.
AbstractList Recently hashing has become attractive in large-scale visual search, owing to its theoretical guarantee and practical success. However, most of the state-of-the-art hashing methods can only employ a single feature type to learn hashing functions. Related research on image search, clustering, and other domains has proved the advantages of fusing multiple features. In this paper we propose a novel multiple feature kernel hashing framework, where hashing functions are learned to preserve certain similarities with linearly combined multiple kernels corresponding to different features. The framework is not only compatible with general types of data and diverse types of similarities indicated by different visual features, but also general for both supervised and unsupervised scenarios. We present efficient alternating optimization algorithms to learn both the hashing functions and the optimal kernel combination. Experimental results on three large-scale benchmarks CIFAR-10, NUS-WIDE and a-TRECVID show that the proposed approach can achieve superior accuracy and efficiency over state-of-the-art methods. •We propose a generic multiple feature hashing framework using multiple kernels.•Visual features are implicitly mapped and concatenated to reduce complexity.•We formulate both supervised and unsupervised hashing problems in the framework.•Alternating optimization ways efficiently learn hashing functions and the kernel space.•Experiments validate the superior performances and efficiency of the proposed approach.
Recently hashing has become attractive in large-scale visual search, owing to its theoretical guarantee and practical success. However, most of the state-of-the-art hashing methods can only employ a single feature type to learn hashing functions. Related research on image search, clustering, and other domains has proved the advantages of fusing multiple features. In this paper we propose a novel multiple feature kernel hashing framework, where hashing functions are learned to preserve certain similarities with linearly combined multiple kernels corresponding to different features. The framework is not only compatible with general types of data and diverse types of similarities indicated by different visual features, but also general for both supervised and unsupervised scenarios. We present efficient alternating optimization algorithms to learn both the hashing functions and the optimal kernel combination. Experimental results on three large-scale benchmarks CIFAR-10, NUS-WIDE and a-TRECVID show that the proposed approach can achieve superior accuracy and efficiency over state-of-the-art methods.
Author He, Junfeng
Lang, Bo
Liu, Xianglong
Author_xml – sequence: 1
  givenname: Xianglong
  surname: Liu
  fullname: Liu, Xianglong
  email: xlliu@nlsde.buaa.edu.cn, xlliuchina@gmail.com
  organization: State Key Laboratory of Software Development Environment, Beihang University, Beijing 100191, China
– sequence: 2
  givenname: Junfeng
  surname: He
  fullname: He, Junfeng
  organization: Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
– sequence: 3
  givenname: Bo
  surname: Lang
  fullname: Lang, Bo
  organization: State Key Laboratory of Software Development Environment, Beihang University, Beijing 100191, China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27917730$$DView record in Pascal Francis
BookMark eNqFkE1r3DAQhkXZQneT_IMefCn0YkcftmUVEghLviChl-YsJvJoV1vF3khyoP8-WpxcekhOMzDP-zI8K7IYxgEJ-c5oxShrT3fVHpIZNxWnTFS0qyjnX8iSdVKUDav5giwpFawUnIpvZBXjjlIm82FJzu4nn9zeY2ER0hSw-IthQF9sIW7dsCnsGAoPYYNlNJCxFxcn8EVECGZ7TL5a8BFP3uYRebi6_LO-Ke9-X9-uL-5KI1qVSqtqYZtHC61quEWjLO97UELJvIpO1o_Q9Uy2opaNhPxXLdDUveGAtrXKiCPyc-7dh_F5wpj0k4sGvYcBxylq1giqVCfqNqM_3lA4PGwDDMZFvQ_uCcI_zaViUgqauV8zZ8IYY0CrjUuQ3DikAM5rRvXBrd7p2a0-uNW009ltDtf_hd_7P4mdzzHMrl4cBh2Nw8Fg7wKapPvRfVzwCiKil38
CODEN PTNRA8
CitedBy_id crossref_primary_10_1016_j_bdr_2024_100494
crossref_primary_10_1049_iet_ipr_2017_0770
crossref_primary_10_1109_TIP_2022_3203216
crossref_primary_10_1016_j_neucom_2021_08_125
crossref_primary_10_1109_LGRS_2020_2969970
crossref_primary_10_1016_j_neucom_2015_12_129
crossref_primary_10_1109_TCYB_2015_2474742
crossref_primary_10_1109_TPAMI_2014_2346201
crossref_primary_10_1080_01431161_2020_1797221
crossref_primary_10_1016_j_cmpb_2018_02_020
crossref_primary_10_1109_TMM_2017_2705918
crossref_primary_10_1016_j_patcog_2020_107409
crossref_primary_10_1016_j_patcog_2017_02_034
crossref_primary_10_1109_TMM_2017_2729025
crossref_primary_10_1016_j_neunet_2023_12_018
crossref_primary_10_1109_LSP_2020_3008335
crossref_primary_10_1109_TCSVT_2017_2776220
crossref_primary_10_1016_j_neucom_2016_05_109
crossref_primary_10_1016_j_eswa_2023_120913
crossref_primary_10_1016_j_neucom_2016_01_121
crossref_primary_10_1109_TIP_2017_2695895
crossref_primary_10_1109_TIP_2017_2729896
crossref_primary_10_1007_s10489_014_0600_7
crossref_primary_10_1109_TNNLS_2020_2984625
crossref_primary_10_1109_TKDE_2016_2562624
crossref_primary_10_1016_j_media_2017_09_007
crossref_primary_10_1016_j_patrec_2019_04_017
crossref_primary_10_1007_s10994_015_5496_x
crossref_primary_10_1109_TKDE_2019_2913388
crossref_primary_10_1016_j_patcog_2017_04_030
crossref_primary_10_1186_s13640_019_0428_5
crossref_primary_10_1109_TIP_2018_2821921
crossref_primary_10_1016_j_ins_2021_03_068
crossref_primary_10_1016_j_patcog_2017_02_026
crossref_primary_10_1109_TIP_2015_2419074
crossref_primary_10_1016_j_patcog_2018_10_023
crossref_primary_10_1016_j_patcog_2017_03_028
crossref_primary_10_1080_01431161_2021_1880663
crossref_primary_10_1109_TMM_2025_3565973
crossref_primary_10_1016_j_cviu_2014_03_002
crossref_primary_10_1016_j_patcog_2019_03_031
crossref_primary_10_1016_j_sigpro_2019_107332
crossref_primary_10_1109_TKDE_2023_3282921
crossref_primary_10_1109_TNNLS_2020_2965992
crossref_primary_10_1109_TMM_2020_3037456
crossref_primary_10_1109_TNNLS_2017_2689242
crossref_primary_10_1049_cvi2_12153
crossref_primary_10_1007_s12145_024_01466_5
crossref_primary_10_1016_j_patcog_2019_107116
crossref_primary_10_1109_TMM_2017_2699863
crossref_primary_10_1145_3178119
crossref_primary_10_1007_s11280_018_0540_y
crossref_primary_10_1016_j_neucom_2015_11_132
crossref_primary_10_1016_j_patcog_2016_09_041
crossref_primary_10_1007_s10462_017_9591_1
crossref_primary_10_1007_s11042_015_3159_3
crossref_primary_10_1016_j_imavis_2014_08_006
crossref_primary_10_1109_TIP_2016_2593344
crossref_primary_10_1016_j_ins_2023_120064
crossref_primary_10_1109_TIP_2016_2631883
crossref_primary_10_1016_j_patcog_2019_03_022
crossref_primary_10_1109_TIP_2015_2421443
crossref_primary_10_1016_j_patcog_2017_03_020
crossref_primary_10_1109_TMM_2019_2912714
crossref_primary_10_1145_3477180
crossref_primary_10_1016_j_jvcir_2022_103467
crossref_primary_10_1016_j_patcog_2019_107040
crossref_primary_10_1109_TIP_2015_2505180
crossref_primary_10_1016_j_media_2016_07_011
crossref_primary_10_1016_j_patcog_2019_107082
crossref_primary_10_1016_j_patcog_2017_10_007
crossref_primary_10_1109_TMM_2020_2978593
crossref_primary_10_1016_j_neucom_2017_09_045
Cites_doi 10.1145/276698.276876
10.1109/ICCV.2003.1238424
10.1145/2393347.2396337
10.1145/1646396.1646421
10.1145/1646396.1646452
10.1109/TMM.2012.2190388
10.1145/2324796.2324819
10.1145/2009916.2009950
10.1145/361002.361007
10.1145/2072298.2072485
10.1145/509907.509965
10.1109/ICCV.2009.5459169
10.1137/080738970
10.1109/CVPR.2012.6247912
10.1109/CVPR.2006.68
10.1145/1015330.1015424
10.1145/1835804.1835946
10.1109/CVPR.2010.5539994
10.1023/B:VISI.0000029664.99615.94
10.1145/2072298.2072354
10.1109/TPAMI.2011.114
10.1145/997817.997857
10.1109/CVPR.2012.6247924
10.1023/A:1011139631724
10.1109/CVPR.2010.5540024
10.1109/CVPR.2012.6248023
10.1145/1459359.1459388
10.1109/ICCV.2009.5459466
ContentType Journal Article
Copyright 2013 Elsevier Ltd
2014 INIST-CNRS
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.patcog.2013.08.022
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1873-5142
EndPage 757
ExternalDocumentID 27917730
10_1016_j_patcog_2013_08_022
S0031320313003452
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
BNPGV
IQODW
SSH
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c369t-f943f5bfa6952fec9f2dda9397c9f3874ba8d17634757a14243ec4dc2aef6f9c3
ISICitedReferencesCount 87
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000329413000022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-3203
IngestDate Sun Sep 28 02:37:42 EDT 2025
Wed Apr 02 07:25:17 EDT 2025
Sat Nov 29 03:52:13 EST 2025
Tue Nov 18 21:44:04 EST 2025
Fri Feb 23 02:25:25 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Compact hashing
Multiple features
Locality-sensitive hashing
Multiple kernels
Performance evaluation
Automatic classification
State of the art
Similarity
Image retrieval
Information retrieval
Unsupervised classification
Signal classification
Optimization
Kernel method
Accuracy
Algorithm performance
Visual search
Hashing
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c369t-f943f5bfa6952fec9f2dda9397c9f3874ba8d17634757a14243ec4dc2aef6f9c3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1530998346
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_1530998346
pascalfrancis_primary_27917730
crossref_citationtrail_10_1016_j_patcog_2013_08_022
crossref_primary_10_1016_j_patcog_2013_08_022
elsevier_sciencedirect_doi_10_1016_j_patcog_2013_08_022
PublicationCentury 2000
PublicationDate 2014-02-01
PublicationDateYYYYMMDD 2014-02-01
PublicationDate_xml – month: 02
  year: 2014
  text: 2014-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Pattern recognition
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Oliva, Torralba (bib16) 2001; 42
Hassan, Chaudhury, Gopal (bib29) 2012; 14
J. Song, Y. Yang, Z. Huang, H.T. Shen, R. Hong, Multiple feature hashing for real-time large scale near-duplicate video retrieval, in: ACM MM, 2011.
J. Wright, A. Ganesh, S. Rao, Y. Peng, Y. Ma, Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization, in: NIPS, 2009.
G. Shakhnarovich, P. Viola, T. Darrell, Fast pose estimation with parameter-sensitive hashing, in: IEEE ICCV, 2003.
P. Jain, S. Vijayanarasimhan, K. Grauman, Hashing hyperplane queries to near points with applications to large-scale active learning, in: NIPS, 2010.
T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, Y. Zheng, Nus-wide: a real-world web image database from national university of singapore, in: ACM CIVR, 2009.
F.R. Bach, G.R.G. Lanckriet, M.I. Jordan, Multiple kernel learning, conic duality, and the SMO algorithm, in: ICML, ACM, 2004.
B. Kulis, K. Grauman, Kernelized locality-sensitive hashing for scalable image search, in: IEEE ICCV, 2009.
S. Lazebnik, C. Schmid, J. Ponce, Beyond bags of features: spatial pyramid matching for recognizing natural scene categories, in: IEEE CVPR, 2006.
J. He, J. Feng, X. Liu, T. Cheng, T.-H. Lin, H. Chung, S.-F. Chang, Mobile product search with bag of hash bits and boundary reranking, in: IEEE CVPR, 2012.
P. Gehler, S. Nowozin, On feature combination for multiclass object classification, in: IEEE CVPR, 2009.
Y. Weiss, A. Torralba, R. Fergus, Spectral hashing, in: NIPS, 2008.
D. Zhang, F. Wang, L. Si, Composite hashing with multiple information sources, in: ACM SIGIR, 2011.
J. He, W. Liu, S.-F. Chang, Scalable similarity search with optimized kernel hashing, in: ACM SIGKDD, 2010.
G. Ye, D. Liu, I.-H. Jhuo, S.-F. Chang, Robust late fusion with rank minimization, in: IEEE CVPR, 2012.
W. Liu, J. Wang, S. Kumar, S.-F. Chang, Hashing with graphs, in: ICML, 2011.
Gonen, Alpaydin (bib24) 2011
W. Kong, W.-J. Li, Double-bit quantization for hashing, in: AAAI, 2012.
Cai, Candès, Shen (bib32) 2010; 20
C. Williams, M. Seeger, Using the Nystrom method to speed up kernel machines, in: NIPS, 2001.
J. Wang, S. Kumar, S.-F. Chang, Semi-supervised hashing for scalable image retrieval, in: IEEE CVPR, 2010.
Lin, Chen, Wu, Ma (bib33) 2010
P. Indyk, R. Motwani, Approximate nearest neighbors: towards removing the curse of dimensionality, in: ACM STOC, 1998.
A. Joly, O. Buisson, A posteriori multi-probe locality sensitive hashing, in: ACM MM, ACM, 2008.
X. Liu, J. He, D. Liu, B. Lang, Compact kernel hashing with multiple features, in: ACM MM, 2012.
H.-C. Huang, Y.-Y. Chuang, C.-S. Chen, Affinity aggregation for spectral clustering, in: IEEE CVPR, 2012.
Bentley (bib1) 1975; 18
Lowe (bib15) 2004; 60
Y. Mu, J. Shen, S. Yan, Weakly-supervised hashing in kernel space, in: IEEE CVPR, 2010.
F. Yu, R. Ji, M.-H. Tsai, G. Ye, S.-F. Chang, Weak attributes for large-scale image retrieval, in: IEEE CVPR, 2012.
M. Datar, N. Immorlica, P. Indyk, V.S. Mirrokni, Locality-sensitive hashing scheme based on p-stable distributions, in: ACM SOCG, 2004.
M.S. Charikar, Similarity estimation techniques from rounding algorithms, in: ACM STOC, ACM, 2002.
Duan, Tsang, Xu (bib28) 2012; 34
I.-H. Jhuo, D. Liu, D. Lee, S.-F. Chang, Robust visual domain adaptation with low-rank reconstruction, in: IEEE CVPR, 2012.
A. Krizhevsky, Learning Multiple Layers of Features from Tiny Images, Technical Report, 2009
W. Liu, J. Wang, R. Ji, Y.-G. Jiang, S.-F. Chang, Supervised hashing with kernels, in: IEEE CVPR, 2012.
M. Douze, H. Jégou, H. Sandhawalia, L. Amsaleg, C. Schmid, Evaluation of gist descriptors for web-scale image search, in: ACM CIVR, ACM, 2009.
X. Liu, Y. Mu, B. Lang, S.-F. Chang, Compact hashing for mixed image-keyword query over multi-label images, in: ACM ICMR, 2012.
10.1016/j.patcog.2013.08.022_bib20
10.1016/j.patcog.2013.08.022_bib21
10.1016/j.patcog.2013.08.022_bib22
10.1016/j.patcog.2013.08.022_bib23
Bentley (10.1016/j.patcog.2013.08.022_bib1) 1975; 18
Gonen (10.1016/j.patcog.2013.08.022_bib24) 2011
Duan (10.1016/j.patcog.2013.08.022_bib28) 2012; 34
10.1016/j.patcog.2013.08.022_bib17
10.1016/j.patcog.2013.08.022_bib39
10.1016/j.patcog.2013.08.022_bib18
10.1016/j.patcog.2013.08.022_bib19
10.1016/j.patcog.2013.08.022_bib13
10.1016/j.patcog.2013.08.022_bib35
10.1016/j.patcog.2013.08.022_bib14
10.1016/j.patcog.2013.08.022_bib36
10.1016/j.patcog.2013.08.022_bib37
10.1016/j.patcog.2013.08.022_bib38
10.1016/j.patcog.2013.08.022_bib31
10.1016/j.patcog.2013.08.022_bib10
Hassan (10.1016/j.patcog.2013.08.022_bib29) 2012; 14
10.1016/j.patcog.2013.08.022_bib11
Lowe (10.1016/j.patcog.2013.08.022_bib15) 2004; 60
10.1016/j.patcog.2013.08.022_bib12
10.1016/j.patcog.2013.08.022_bib34
10.1016/j.patcog.2013.08.022_bib6
10.1016/j.patcog.2013.08.022_bib7
10.1016/j.patcog.2013.08.022_bib8
10.1016/j.patcog.2013.08.022_bib9
10.1016/j.patcog.2013.08.022_bib30
10.1016/j.patcog.2013.08.022_bib2
10.1016/j.patcog.2013.08.022_bib3
10.1016/j.patcog.2013.08.022_bib4
10.1016/j.patcog.2013.08.022_bib5
Lin (10.1016/j.patcog.2013.08.022_bib33) 2010
Oliva (10.1016/j.patcog.2013.08.022_bib16) 2001; 42
Cai (10.1016/j.patcog.2013.08.022_bib32) 2010; 20
10.1016/j.patcog.2013.08.022_bib25
10.1016/j.patcog.2013.08.022_bib26
10.1016/j.patcog.2013.08.022_bib27
References_xml – reference: J. Wright, A. Ganesh, S. Rao, Y. Peng, Y. Ma, Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization, in: NIPS, 2009.
– reference: J. He, W. Liu, S.-F. Chang, Scalable similarity search with optimized kernel hashing, in: ACM SIGKDD, 2010.
– reference: G. Ye, D. Liu, I.-H. Jhuo, S.-F. Chang, Robust late fusion with rank minimization, in: IEEE CVPR, 2012.
– reference: X. Liu, J. He, D. Liu, B. Lang, Compact kernel hashing with multiple features, in: ACM MM, 2012.
– reference: D. Zhang, F. Wang, L. Si, Composite hashing with multiple information sources, in: ACM SIGIR, 2011.
– reference: I.-H. Jhuo, D. Liu, D. Lee, S.-F. Chang, Robust visual domain adaptation with low-rank reconstruction, in: IEEE CVPR, 2012.
– reference: P. Gehler, S. Nowozin, On feature combination for multiclass object classification, in: IEEE CVPR, 2009.
– reference: Y. Mu, J. Shen, S. Yan, Weakly-supervised hashing in kernel space, in: IEEE CVPR, 2010.
– reference: P. Jain, S. Vijayanarasimhan, K. Grauman, Hashing hyperplane queries to near points with applications to large-scale active learning, in: NIPS, 2010.
– reference: S. Lazebnik, C. Schmid, J. Ponce, Beyond bags of features: spatial pyramid matching for recognizing natural scene categories, in: IEEE CVPR, 2006.
– volume: 42
  start-page: 145
  year: 2001
  end-page: 175
  ident: bib16
  article-title: Modeling the shape of the scene
  publication-title: International Journal of Computer Vision
– reference: M. Douze, H. Jégou, H. Sandhawalia, L. Amsaleg, C. Schmid, Evaluation of gist descriptors for web-scale image search, in: ACM CIVR, ACM, 2009.
– reference: W. Liu, J. Wang, R. Ji, Y.-G. Jiang, S.-F. Chang, Supervised hashing with kernels, in: IEEE CVPR, 2012.
– reference: C. Williams, M. Seeger, Using the Nystrom method to speed up kernel machines, in: NIPS, 2001.
– reference: X. Liu, Y. Mu, B. Lang, S.-F. Chang, Compact hashing for mixed image-keyword query over multi-label images, in: ACM ICMR, 2012.
– start-page: 1
  year: 2010
  end-page: 23
  ident: bib33
  article-title: The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices
  publication-title: Mathematical Programming
– reference: J. He, J. Feng, X. Liu, T. Cheng, T.-H. Lin, H. Chung, S.-F. Chang, Mobile product search with bag of hash bits and boundary reranking, in: IEEE CVPR, 2012.
– reference: A. Joly, O. Buisson, A posteriori multi-probe locality sensitive hashing, in: ACM MM, ACM, 2008.
– reference: J. Song, Y. Yang, Z. Huang, H.T. Shen, R. Hong, Multiple feature hashing for real-time large scale near-duplicate video retrieval, in: ACM MM, 2011.
– volume: 60
  start-page: 91
  year: 2004
  end-page: 110
  ident: bib15
  article-title: Distinctive image features from scale-invariant keypoints
  publication-title: International Journal of Computer Vision
– reference: W. Kong, W.-J. Li, Double-bit quantization for hashing, in: AAAI, 2012.
– reference: B. Kulis, K. Grauman, Kernelized locality-sensitive hashing for scalable image search, in: IEEE ICCV, 2009.
– volume: 18
  start-page: 509
  year: 1975
  end-page: 517
  ident: bib1
  article-title: Multidimensional binary search trees used for associative searching
  publication-title: Communications of the ACM
– reference: P. Indyk, R. Motwani, Approximate nearest neighbors: towards removing the curse of dimensionality, in: ACM STOC, 1998.
– volume: 34
  start-page: 465
  year: 2012
  end-page: 479
  ident: bib28
  article-title: Domain transfer multiple kernel learning
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 20
  start-page: 1956
  year: 2010
  end-page: 1982
  ident: bib32
  article-title: A singular value thresholding algorithm for matrix completion
  publication-title: SIAM Journal on Optimization
– reference: M.S. Charikar, Similarity estimation techniques from rounding algorithms, in: ACM STOC, ACM, 2002.
– reference: J. Wang, S. Kumar, S.-F. Chang, Semi-supervised hashing for scalable image retrieval, in: IEEE CVPR, 2010.
– reference: Y. Weiss, A. Torralba, R. Fergus, Spectral hashing, in: NIPS, 2008.
– reference: M. Datar, N. Immorlica, P. Indyk, V.S. Mirrokni, Locality-sensitive hashing scheme based on p-stable distributions, in: ACM SOCG, 2004.
– reference: A. Krizhevsky, Learning Multiple Layers of Features from Tiny Images, Technical Report, 2009
– reference: T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, Y. Zheng, Nus-wide: a real-world web image database from national university of singapore, in: ACM CIVR, 2009.
– reference: G. Shakhnarovich, P. Viola, T. Darrell, Fast pose estimation with parameter-sensitive hashing, in: IEEE ICCV, 2003.
– start-page: 2211
  year: 2011
  end-page: 2268
  ident: bib24
  article-title: Multiple kernel learning algorithms
  publication-title: Journal of Machine Learning Research
– reference: F. Yu, R. Ji, M.-H. Tsai, G. Ye, S.-F. Chang, Weak attributes for large-scale image retrieval, in: IEEE CVPR, 2012.
– reference: H.-C. Huang, Y.-Y. Chuang, C.-S. Chen, Affinity aggregation for spectral clustering, in: IEEE CVPR, 2012.
– reference: F.R. Bach, G.R.G. Lanckriet, M.I. Jordan, Multiple kernel learning, conic duality, and the SMO algorithm, in: ICML, ACM, 2004.
– reference: W. Liu, J. Wang, S. Kumar, S.-F. Chang, Hashing with graphs, in: ICML, 2011.
– volume: 14
  start-page: 1179
  year: 2012
  end-page: 1195
  ident: bib29
  article-title: Feature combination in kernel space for distance based image hashing
  publication-title: IEEE Transactions on Multimedia
– ident: 10.1016/j.patcog.2013.08.022_bib5
  doi: 10.1145/276698.276876
– ident: 10.1016/j.patcog.2013.08.022_bib2
  doi: 10.1109/ICCV.2003.1238424
– ident: 10.1016/j.patcog.2013.08.022_bib25
  doi: 10.1145/2393347.2396337
– ident: 10.1016/j.patcog.2013.08.022_bib39
  doi: 10.1145/1646396.1646421
– ident: 10.1016/j.patcog.2013.08.022_bib36
  doi: 10.1145/1646396.1646452
– volume: 14
  start-page: 1179
  issue: 4
  year: 2012
  ident: 10.1016/j.patcog.2013.08.022_bib29
  article-title: Feature combination in kernel space for distance based image hashing
  publication-title: IEEE Transactions on Multimedia
  doi: 10.1109/TMM.2012.2190388
– ident: 10.1016/j.patcog.2013.08.022_bib11
  doi: 10.1145/2324796.2324819
– ident: 10.1016/j.patcog.2013.08.022_bib30
– ident: 10.1016/j.patcog.2013.08.022_bib22
  doi: 10.1145/2009916.2009950
– volume: 18
  start-page: 509
  year: 1975
  ident: 10.1016/j.patcog.2013.08.022_bib1
  article-title: Multidimensional binary search trees used for associative searching
  publication-title: Communications of the ACM
  doi: 10.1145/361002.361007
– ident: 10.1016/j.patcog.2013.08.022_bib18
  doi: 10.1145/2072298.2072485
– ident: 10.1016/j.patcog.2013.08.022_bib14
– ident: 10.1016/j.patcog.2013.08.022_bib6
  doi: 10.1145/509907.509965
– ident: 10.1016/j.patcog.2013.08.022_bib20
  doi: 10.1109/ICCV.2009.5459169
– volume: 20
  start-page: 1956
  issue: 4
  year: 2010
  ident: 10.1016/j.patcog.2013.08.022_bib32
  article-title: A singular value thresholding algorithm for matrix completion
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/080738970
– ident: 10.1016/j.patcog.2013.08.022_bib34
– ident: 10.1016/j.patcog.2013.08.022_bib26
  doi: 10.1109/CVPR.2012.6247912
– start-page: 2211
  year: 2011
  ident: 10.1016/j.patcog.2013.08.022_bib24
  article-title: Multiple kernel learning algorithms
  publication-title: Journal of Machine Learning Research
– ident: 10.1016/j.patcog.2013.08.022_bib38
  doi: 10.1109/CVPR.2006.68
– ident: 10.1016/j.patcog.2013.08.022_bib27
  doi: 10.1145/1015330.1015424
– ident: 10.1016/j.patcog.2013.08.022_bib12
  doi: 10.1145/1835804.1835946
– ident: 10.1016/j.patcog.2013.08.022_bib10
  doi: 10.1109/CVPR.2010.5539994
– start-page: 1
  year: 2010
  ident: 10.1016/j.patcog.2013.08.022_bib33
  article-title: The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices
  publication-title: Mathematical Programming
– volume: 60
  start-page: 91
  year: 2004
  ident: 10.1016/j.patcog.2013.08.022_bib15
  article-title: Distinctive image features from scale-invariant keypoints
  publication-title: International Journal of Computer Vision
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: 10.1016/j.patcog.2013.08.022_bib19
– ident: 10.1016/j.patcog.2013.08.022_bib4
– ident: 10.1016/j.patcog.2013.08.022_bib8
– ident: 10.1016/j.patcog.2013.08.022_bib17
  doi: 10.1145/2072298.2072354
– volume: 34
  start-page: 465
  issue: 3
  year: 2012
  ident: 10.1016/j.patcog.2013.08.022_bib28
  article-title: Domain transfer multiple kernel learning
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2011.114
– ident: 10.1016/j.patcog.2013.08.022_bib7
  doi: 10.1145/997817.997857
– ident: 10.1016/j.patcog.2013.08.022_bib31
  doi: 10.1109/CVPR.2012.6247924
– ident: 10.1016/j.patcog.2013.08.022_bib35
– ident: 10.1016/j.patcog.2013.08.022_bib3
– volume: 42
  start-page: 145
  year: 2001
  ident: 10.1016/j.patcog.2013.08.022_bib16
  article-title: Modeling the shape of the scene
  publication-title: International Journal of Computer Vision
  doi: 10.1023/A:1011139631724
– ident: 10.1016/j.patcog.2013.08.022_bib9
  doi: 10.1109/CVPR.2010.5540024
– ident: 10.1016/j.patcog.2013.08.022_bib37
  doi: 10.1109/CVPR.2012.6248023
– ident: 10.1016/j.patcog.2013.08.022_bib13
  doi: 10.1145/1459359.1459388
– ident: 10.1016/j.patcog.2013.08.022_bib23
  doi: 10.1109/ICCV.2009.5459466
– ident: 10.1016/j.patcog.2013.08.022_bib21
SSID ssj0017142
Score 2.427654
Snippet Recently hashing has become attractive in large-scale visual search, owing to its theoretical guarantee and practical success. However, most of the...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 748
SubjectTerms Analogies
Applied sciences
Compact hashing
Exact sciences and technology
Image processing
Information theory
Information, signal and communications theory
Kernels
Locality-sensitive hashing
Multiple features
Multiple kernels
Optimization
Pattern recognition
Preserves
Searching
Signal and communications theory
Signal processing
Signal representation. Spectral analysis
Signal, noise
State of the art
Telecommunications and information theory
Visual
Title Multiple feature kernel hashing for large-scale visual search
URI https://dx.doi.org/10.1016/j.patcog.2013.08.022
https://www.proquest.com/docview/1530998346
Volume 47
WOSCitedRecordID wos000329413000022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBaj3cNg7D6WXYoGewsatqVY1mM3OrbRlcI6yJuRdenSBTvESenP39HNSRdGt8FejBFxjPV9PudYOuc7CL1pqtKCY2kI01QRJipLREYN0aXMDVNMZjLzzSb4yUk1nYrTmNbc-3YCvG2rqyux-K9QwxiA7Upn_wLu4U9hAM4BdDgC7HD8I-C_pBRBa7xo5_iHWbZmPv4e2ib5vMK5y_8mPeBjxpez3pWQbK1qxVj11EtvunKXmGO02bE_nq0dNlPg1vm8i87Pr6iGSo_Wms3gcVySftdtLzHkLGUlp3WvVPuySTTytpTmhBZZME8mmM-KUwIh2DX7GhQ1I4-KLWPJg8Zm9Ls8CFXvmPSwunDxdgGuqTt3yXjUi66GcuZfxLK_Bi1Kd3DKOxNwzvsFnwiwd_uHn46mn4cdJp6zoCQfnyKVVfrcv917_S5subuQDiwbuqDsOHQfpZw9QPfi5wU-DLR4iG6Z9hG6n1p34GjJH6OBJTiyBAeW4MgSDCzBWyzBgSU4sOQJ-vbh6Oz9RxI7aRBFS7EiVjBqJ42VpZgU1ihhC62lgFgUTmnFWSMrnYOrYYCCdMWP1CimVSGNLa1Q9Cnaa7vWPEPY6bPlufKBMLzLuqFUcw1xsqS2Ulk2QjRNVK2izLzrdjKvUz7hRR2mt3bTW7smqEUxQmS4ahFkVm74PU8Y1DFUDCFgDbS54cqDa5ANtyu4yDn4uxF6nTCswdS6_TPZmm7d1xAcwPdURVn5_J9v_wLd2bxhL9Heark2r9Btdbma9cuDSNKfmuql6A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+feature+kernel+hashing+for+large-scale+visual+search&rft.jtitle=Pattern+recognition&rft.au=Liu%2C+Xianglong&rft.au=He%2C+Junfeng&rft.au=Lang%2C+Bo&rft.date=2014-02-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.eissn=1873-5142&rft.volume=47&rft.issue=2&rft.spage=748&rft.epage=757&rft_id=info:doi/10.1016%2Fj.patcog.2013.08.022&rft.externalDocID=S0031320313003452
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon