Multiple feature kernel hashing for large-scale visual search
Recently hashing has become attractive in large-scale visual search, owing to its theoretical guarantee and practical success. However, most of the state-of-the-art hashing methods can only employ a single feature type to learn hashing functions. Related research on image search, clustering, and oth...
Uloženo v:
| Vydáno v: | Pattern recognition Ročník 47; číslo 2; s. 748 - 757 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Kidlington
Elsevier Ltd
01.02.2014
Elsevier |
| Témata: | |
| ISSN: | 0031-3203, 1873-5142 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Recently hashing has become attractive in large-scale visual search, owing to its theoretical guarantee and practical success. However, most of the state-of-the-art hashing methods can only employ a single feature type to learn hashing functions. Related research on image search, clustering, and other domains has proved the advantages of fusing multiple features. In this paper we propose a novel multiple feature kernel hashing framework, where hashing functions are learned to preserve certain similarities with linearly combined multiple kernels corresponding to different features. The framework is not only compatible with general types of data and diverse types of similarities indicated by different visual features, but also general for both supervised and unsupervised scenarios. We present efficient alternating optimization algorithms to learn both the hashing functions and the optimal kernel combination. Experimental results on three large-scale benchmarks CIFAR-10, NUS-WIDE and a-TRECVID show that the proposed approach can achieve superior accuracy and efficiency over state-of-the-art methods.
•We propose a generic multiple feature hashing framework using multiple kernels.•Visual features are implicitly mapped and concatenated to reduce complexity.•We formulate both supervised and unsupervised hashing problems in the framework.•Alternating optimization ways efficiently learn hashing functions and the kernel space.•Experiments validate the superior performances and efficiency of the proposed approach. |
|---|---|
| AbstractList | Recently hashing has become attractive in large-scale visual search, owing to its theoretical guarantee and practical success. However, most of the state-of-the-art hashing methods can only employ a single feature type to learn hashing functions. Related research on image search, clustering, and other domains has proved the advantages of fusing multiple features. In this paper we propose a novel multiple feature kernel hashing framework, where hashing functions are learned to preserve certain similarities with linearly combined multiple kernels corresponding to different features. The framework is not only compatible with general types of data and diverse types of similarities indicated by different visual features, but also general for both supervised and unsupervised scenarios. We present efficient alternating optimization algorithms to learn both the hashing functions and the optimal kernel combination. Experimental results on three large-scale benchmarks CIFAR-10, NUS-WIDE and a-TRECVID show that the proposed approach can achieve superior accuracy and efficiency over state-of-the-art methods.
•We propose a generic multiple feature hashing framework using multiple kernels.•Visual features are implicitly mapped and concatenated to reduce complexity.•We formulate both supervised and unsupervised hashing problems in the framework.•Alternating optimization ways efficiently learn hashing functions and the kernel space.•Experiments validate the superior performances and efficiency of the proposed approach. Recently hashing has become attractive in large-scale visual search, owing to its theoretical guarantee and practical success. However, most of the state-of-the-art hashing methods can only employ a single feature type to learn hashing functions. Related research on image search, clustering, and other domains has proved the advantages of fusing multiple features. In this paper we propose a novel multiple feature kernel hashing framework, where hashing functions are learned to preserve certain similarities with linearly combined multiple kernels corresponding to different features. The framework is not only compatible with general types of data and diverse types of similarities indicated by different visual features, but also general for both supervised and unsupervised scenarios. We present efficient alternating optimization algorithms to learn both the hashing functions and the optimal kernel combination. Experimental results on three large-scale benchmarks CIFAR-10, NUS-WIDE and a-TRECVID show that the proposed approach can achieve superior accuracy and efficiency over state-of-the-art methods. |
| Author | He, Junfeng Lang, Bo Liu, Xianglong |
| Author_xml | – sequence: 1 givenname: Xianglong surname: Liu fullname: Liu, Xianglong email: xlliu@nlsde.buaa.edu.cn, xlliuchina@gmail.com organization: State Key Laboratory of Software Development Environment, Beihang University, Beijing 100191, China – sequence: 2 givenname: Junfeng surname: He fullname: He, Junfeng organization: Department of Electrical Engineering, Columbia University, New York, NY 10027, USA – sequence: 3 givenname: Bo surname: Lang fullname: Lang, Bo organization: State Key Laboratory of Software Development Environment, Beihang University, Beijing 100191, China |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27917730$$DView record in Pascal Francis |
| BookMark | eNqFkE1r3DAQhkXZQneT_IMefCn0YkcftmUVEghLviChl-YsJvJoV1vF3khyoP8-WpxcekhOMzDP-zI8K7IYxgEJ-c5oxShrT3fVHpIZNxWnTFS0qyjnX8iSdVKUDav5giwpFawUnIpvZBXjjlIm82FJzu4nn9zeY2ER0hSw-IthQF9sIW7dsCnsGAoPYYNlNJCxFxcn8EVECGZ7TL5a8BFP3uYRebi6_LO-Ke9-X9-uL-5KI1qVSqtqYZtHC61quEWjLO97UELJvIpO1o_Q9Uy2opaNhPxXLdDUveGAtrXKiCPyc-7dh_F5wpj0k4sGvYcBxylq1giqVCfqNqM_3lA4PGwDDMZFvQ_uCcI_zaViUgqauV8zZ8IYY0CrjUuQ3DikAM5rRvXBrd7p2a0-uNW009ltDtf_hd_7P4mdzzHMrl4cBh2Nw8Fg7wKapPvRfVzwCiKil38 |
| CODEN | PTNRA8 |
| CitedBy_id | crossref_primary_10_1016_j_bdr_2024_100494 crossref_primary_10_1049_iet_ipr_2017_0770 crossref_primary_10_1109_TIP_2022_3203216 crossref_primary_10_1016_j_neucom_2021_08_125 crossref_primary_10_1109_LGRS_2020_2969970 crossref_primary_10_1016_j_neucom_2015_12_129 crossref_primary_10_1109_TCYB_2015_2474742 crossref_primary_10_1109_TPAMI_2014_2346201 crossref_primary_10_1080_01431161_2020_1797221 crossref_primary_10_1016_j_cmpb_2018_02_020 crossref_primary_10_1109_TMM_2017_2705918 crossref_primary_10_1016_j_patcog_2020_107409 crossref_primary_10_1016_j_patcog_2017_02_034 crossref_primary_10_1109_TMM_2017_2729025 crossref_primary_10_1016_j_neunet_2023_12_018 crossref_primary_10_1109_LSP_2020_3008335 crossref_primary_10_1109_TCSVT_2017_2776220 crossref_primary_10_1016_j_neucom_2016_05_109 crossref_primary_10_1016_j_eswa_2023_120913 crossref_primary_10_1016_j_neucom_2016_01_121 crossref_primary_10_1109_TIP_2017_2695895 crossref_primary_10_1109_TIP_2017_2729896 crossref_primary_10_1007_s10489_014_0600_7 crossref_primary_10_1109_TNNLS_2020_2984625 crossref_primary_10_1109_TKDE_2016_2562624 crossref_primary_10_1016_j_media_2017_09_007 crossref_primary_10_1016_j_patrec_2019_04_017 crossref_primary_10_1007_s10994_015_5496_x crossref_primary_10_1109_TKDE_2019_2913388 crossref_primary_10_1016_j_patcog_2017_04_030 crossref_primary_10_1186_s13640_019_0428_5 crossref_primary_10_1109_TIP_2018_2821921 crossref_primary_10_1016_j_ins_2021_03_068 crossref_primary_10_1016_j_patcog_2017_02_026 crossref_primary_10_1109_TIP_2015_2419074 crossref_primary_10_1016_j_patcog_2018_10_023 crossref_primary_10_1016_j_patcog_2017_03_028 crossref_primary_10_1080_01431161_2021_1880663 crossref_primary_10_1109_TMM_2025_3565973 crossref_primary_10_1016_j_cviu_2014_03_002 crossref_primary_10_1016_j_patcog_2019_03_031 crossref_primary_10_1016_j_sigpro_2019_107332 crossref_primary_10_1109_TKDE_2023_3282921 crossref_primary_10_1109_TNNLS_2020_2965992 crossref_primary_10_1109_TMM_2020_3037456 crossref_primary_10_1109_TNNLS_2017_2689242 crossref_primary_10_1049_cvi2_12153 crossref_primary_10_1007_s12145_024_01466_5 crossref_primary_10_1016_j_patcog_2019_107116 crossref_primary_10_1109_TMM_2017_2699863 crossref_primary_10_1145_3178119 crossref_primary_10_1007_s11280_018_0540_y crossref_primary_10_1016_j_neucom_2015_11_132 crossref_primary_10_1016_j_patcog_2016_09_041 crossref_primary_10_1007_s10462_017_9591_1 crossref_primary_10_1007_s11042_015_3159_3 crossref_primary_10_1016_j_imavis_2014_08_006 crossref_primary_10_1109_TIP_2016_2593344 crossref_primary_10_1016_j_ins_2023_120064 crossref_primary_10_1109_TIP_2016_2631883 crossref_primary_10_1016_j_patcog_2019_03_022 crossref_primary_10_1109_TIP_2015_2421443 crossref_primary_10_1016_j_patcog_2017_03_020 crossref_primary_10_1109_TMM_2019_2912714 crossref_primary_10_1145_3477180 crossref_primary_10_1016_j_jvcir_2022_103467 crossref_primary_10_1016_j_patcog_2019_107040 crossref_primary_10_1109_TIP_2015_2505180 crossref_primary_10_1016_j_media_2016_07_011 crossref_primary_10_1016_j_patcog_2019_107082 crossref_primary_10_1016_j_patcog_2017_10_007 crossref_primary_10_1109_TMM_2020_2978593 crossref_primary_10_1016_j_neucom_2017_09_045 |
| Cites_doi | 10.1145/276698.276876 10.1109/ICCV.2003.1238424 10.1145/2393347.2396337 10.1145/1646396.1646421 10.1145/1646396.1646452 10.1109/TMM.2012.2190388 10.1145/2324796.2324819 10.1145/2009916.2009950 10.1145/361002.361007 10.1145/2072298.2072485 10.1145/509907.509965 10.1109/ICCV.2009.5459169 10.1137/080738970 10.1109/CVPR.2012.6247912 10.1109/CVPR.2006.68 10.1145/1015330.1015424 10.1145/1835804.1835946 10.1109/CVPR.2010.5539994 10.1023/B:VISI.0000029664.99615.94 10.1145/2072298.2072354 10.1109/TPAMI.2011.114 10.1145/997817.997857 10.1109/CVPR.2012.6247924 10.1023/A:1011139631724 10.1109/CVPR.2010.5540024 10.1109/CVPR.2012.6248023 10.1145/1459359.1459388 10.1109/ICCV.2009.5459466 |
| ContentType | Journal Article |
| Copyright | 2013 Elsevier Ltd 2014 INIST-CNRS |
| Copyright_xml | – notice: 2013 Elsevier Ltd – notice: 2014 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.patcog.2013.08.022 |
| DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Applied Sciences |
| EISSN | 1873-5142 |
| EndPage | 757 |
| ExternalDocumentID | 27917730 10_1016_j_patcog_2013_08_022 S0031320313003452 |
| GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD BNPGV IQODW SSH 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c369t-f943f5bfa6952fec9f2dda9397c9f3874ba8d17634757a14243ec4dc2aef6f9c3 |
| ISICitedReferencesCount | 87 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000329413000022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0031-3203 |
| IngestDate | Sun Sep 28 02:37:42 EDT 2025 Wed Apr 02 07:25:17 EDT 2025 Sat Nov 29 03:52:13 EST 2025 Tue Nov 18 21:44:04 EST 2025 Fri Feb 23 02:25:25 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Compact hashing Multiple features Locality-sensitive hashing Multiple kernels Performance evaluation Automatic classification State of the art Similarity Image retrieval Information retrieval Unsupervised classification Signal classification Optimization Kernel method Accuracy Algorithm performance Visual search Hashing |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c369t-f943f5bfa6952fec9f2dda9397c9f3874ba8d17634757a14243ec4dc2aef6f9c3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PQID | 1530998346 |
| PQPubID | 23500 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_1530998346 pascalfrancis_primary_27917730 crossref_citationtrail_10_1016_j_patcog_2013_08_022 crossref_primary_10_1016_j_patcog_2013_08_022 elsevier_sciencedirect_doi_10_1016_j_patcog_2013_08_022 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-02-01 |
| PublicationDateYYYYMMDD | 2014-02-01 |
| PublicationDate_xml | – month: 02 year: 2014 text: 2014-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | Pattern recognition |
| PublicationYear | 2014 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Oliva, Torralba (bib16) 2001; 42 Hassan, Chaudhury, Gopal (bib29) 2012; 14 J. Song, Y. Yang, Z. Huang, H.T. Shen, R. Hong, Multiple feature hashing for real-time large scale near-duplicate video retrieval, in: ACM MM, 2011. J. Wright, A. Ganesh, S. Rao, Y. Peng, Y. Ma, Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization, in: NIPS, 2009. G. Shakhnarovich, P. Viola, T. Darrell, Fast pose estimation with parameter-sensitive hashing, in: IEEE ICCV, 2003. P. Jain, S. Vijayanarasimhan, K. Grauman, Hashing hyperplane queries to near points with applications to large-scale active learning, in: NIPS, 2010. T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, Y. Zheng, Nus-wide: a real-world web image database from national university of singapore, in: ACM CIVR, 2009. F.R. Bach, G.R.G. Lanckriet, M.I. Jordan, Multiple kernel learning, conic duality, and the SMO algorithm, in: ICML, ACM, 2004. B. Kulis, K. Grauman, Kernelized locality-sensitive hashing for scalable image search, in: IEEE ICCV, 2009. S. Lazebnik, C. Schmid, J. Ponce, Beyond bags of features: spatial pyramid matching for recognizing natural scene categories, in: IEEE CVPR, 2006. J. He, J. Feng, X. Liu, T. Cheng, T.-H. Lin, H. Chung, S.-F. Chang, Mobile product search with bag of hash bits and boundary reranking, in: IEEE CVPR, 2012. P. Gehler, S. Nowozin, On feature combination for multiclass object classification, in: IEEE CVPR, 2009. Y. Weiss, A. Torralba, R. Fergus, Spectral hashing, in: NIPS, 2008. D. Zhang, F. Wang, L. Si, Composite hashing with multiple information sources, in: ACM SIGIR, 2011. J. He, W. Liu, S.-F. Chang, Scalable similarity search with optimized kernel hashing, in: ACM SIGKDD, 2010. G. Ye, D. Liu, I.-H. Jhuo, S.-F. Chang, Robust late fusion with rank minimization, in: IEEE CVPR, 2012. W. Liu, J. Wang, S. Kumar, S.-F. Chang, Hashing with graphs, in: ICML, 2011. Gonen, Alpaydin (bib24) 2011 W. Kong, W.-J. Li, Double-bit quantization for hashing, in: AAAI, 2012. Cai, Candès, Shen (bib32) 2010; 20 C. Williams, M. Seeger, Using the Nystrom method to speed up kernel machines, in: NIPS, 2001. J. Wang, S. Kumar, S.-F. Chang, Semi-supervised hashing for scalable image retrieval, in: IEEE CVPR, 2010. Lin, Chen, Wu, Ma (bib33) 2010 P. Indyk, R. Motwani, Approximate nearest neighbors: towards removing the curse of dimensionality, in: ACM STOC, 1998. A. Joly, O. Buisson, A posteriori multi-probe locality sensitive hashing, in: ACM MM, ACM, 2008. X. Liu, J. He, D. Liu, B. Lang, Compact kernel hashing with multiple features, in: ACM MM, 2012. H.-C. Huang, Y.-Y. Chuang, C.-S. Chen, Affinity aggregation for spectral clustering, in: IEEE CVPR, 2012. Bentley (bib1) 1975; 18 Lowe (bib15) 2004; 60 Y. Mu, J. Shen, S. Yan, Weakly-supervised hashing in kernel space, in: IEEE CVPR, 2010. F. Yu, R. Ji, M.-H. Tsai, G. Ye, S.-F. Chang, Weak attributes for large-scale image retrieval, in: IEEE CVPR, 2012. M. Datar, N. Immorlica, P. Indyk, V.S. Mirrokni, Locality-sensitive hashing scheme based on p-stable distributions, in: ACM SOCG, 2004. M.S. Charikar, Similarity estimation techniques from rounding algorithms, in: ACM STOC, ACM, 2002. Duan, Tsang, Xu (bib28) 2012; 34 I.-H. Jhuo, D. Liu, D. Lee, S.-F. Chang, Robust visual domain adaptation with low-rank reconstruction, in: IEEE CVPR, 2012. A. Krizhevsky, Learning Multiple Layers of Features from Tiny Images, Technical Report, 2009 W. Liu, J. Wang, R. Ji, Y.-G. Jiang, S.-F. Chang, Supervised hashing with kernels, in: IEEE CVPR, 2012. M. Douze, H. Jégou, H. Sandhawalia, L. Amsaleg, C. Schmid, Evaluation of gist descriptors for web-scale image search, in: ACM CIVR, ACM, 2009. X. Liu, Y. Mu, B. Lang, S.-F. Chang, Compact hashing for mixed image-keyword query over multi-label images, in: ACM ICMR, 2012. 10.1016/j.patcog.2013.08.022_bib20 10.1016/j.patcog.2013.08.022_bib21 10.1016/j.patcog.2013.08.022_bib22 10.1016/j.patcog.2013.08.022_bib23 Bentley (10.1016/j.patcog.2013.08.022_bib1) 1975; 18 Gonen (10.1016/j.patcog.2013.08.022_bib24) 2011 Duan (10.1016/j.patcog.2013.08.022_bib28) 2012; 34 10.1016/j.patcog.2013.08.022_bib17 10.1016/j.patcog.2013.08.022_bib39 10.1016/j.patcog.2013.08.022_bib18 10.1016/j.patcog.2013.08.022_bib19 10.1016/j.patcog.2013.08.022_bib13 10.1016/j.patcog.2013.08.022_bib35 10.1016/j.patcog.2013.08.022_bib14 10.1016/j.patcog.2013.08.022_bib36 10.1016/j.patcog.2013.08.022_bib37 10.1016/j.patcog.2013.08.022_bib38 10.1016/j.patcog.2013.08.022_bib31 10.1016/j.patcog.2013.08.022_bib10 Hassan (10.1016/j.patcog.2013.08.022_bib29) 2012; 14 10.1016/j.patcog.2013.08.022_bib11 Lowe (10.1016/j.patcog.2013.08.022_bib15) 2004; 60 10.1016/j.patcog.2013.08.022_bib12 10.1016/j.patcog.2013.08.022_bib34 10.1016/j.patcog.2013.08.022_bib6 10.1016/j.patcog.2013.08.022_bib7 10.1016/j.patcog.2013.08.022_bib8 10.1016/j.patcog.2013.08.022_bib9 10.1016/j.patcog.2013.08.022_bib30 10.1016/j.patcog.2013.08.022_bib2 10.1016/j.patcog.2013.08.022_bib3 10.1016/j.patcog.2013.08.022_bib4 10.1016/j.patcog.2013.08.022_bib5 Lin (10.1016/j.patcog.2013.08.022_bib33) 2010 Oliva (10.1016/j.patcog.2013.08.022_bib16) 2001; 42 Cai (10.1016/j.patcog.2013.08.022_bib32) 2010; 20 10.1016/j.patcog.2013.08.022_bib25 10.1016/j.patcog.2013.08.022_bib26 10.1016/j.patcog.2013.08.022_bib27 |
| References_xml | – reference: J. Wright, A. Ganesh, S. Rao, Y. Peng, Y. Ma, Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization, in: NIPS, 2009. – reference: J. He, W. Liu, S.-F. Chang, Scalable similarity search with optimized kernel hashing, in: ACM SIGKDD, 2010. – reference: G. Ye, D. Liu, I.-H. Jhuo, S.-F. Chang, Robust late fusion with rank minimization, in: IEEE CVPR, 2012. – reference: X. Liu, J. He, D. Liu, B. Lang, Compact kernel hashing with multiple features, in: ACM MM, 2012. – reference: D. Zhang, F. Wang, L. Si, Composite hashing with multiple information sources, in: ACM SIGIR, 2011. – reference: I.-H. Jhuo, D. Liu, D. Lee, S.-F. Chang, Robust visual domain adaptation with low-rank reconstruction, in: IEEE CVPR, 2012. – reference: P. Gehler, S. Nowozin, On feature combination for multiclass object classification, in: IEEE CVPR, 2009. – reference: Y. Mu, J. Shen, S. Yan, Weakly-supervised hashing in kernel space, in: IEEE CVPR, 2010. – reference: P. Jain, S. Vijayanarasimhan, K. Grauman, Hashing hyperplane queries to near points with applications to large-scale active learning, in: NIPS, 2010. – reference: S. Lazebnik, C. Schmid, J. Ponce, Beyond bags of features: spatial pyramid matching for recognizing natural scene categories, in: IEEE CVPR, 2006. – volume: 42 start-page: 145 year: 2001 end-page: 175 ident: bib16 article-title: Modeling the shape of the scene publication-title: International Journal of Computer Vision – reference: M. Douze, H. Jégou, H. Sandhawalia, L. Amsaleg, C. Schmid, Evaluation of gist descriptors for web-scale image search, in: ACM CIVR, ACM, 2009. – reference: W. Liu, J. Wang, R. Ji, Y.-G. Jiang, S.-F. Chang, Supervised hashing with kernels, in: IEEE CVPR, 2012. – reference: C. Williams, M. Seeger, Using the Nystrom method to speed up kernel machines, in: NIPS, 2001. – reference: X. Liu, Y. Mu, B. Lang, S.-F. Chang, Compact hashing for mixed image-keyword query over multi-label images, in: ACM ICMR, 2012. – start-page: 1 year: 2010 end-page: 23 ident: bib33 article-title: The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices publication-title: Mathematical Programming – reference: J. He, J. Feng, X. Liu, T. Cheng, T.-H. Lin, H. Chung, S.-F. Chang, Mobile product search with bag of hash bits and boundary reranking, in: IEEE CVPR, 2012. – reference: A. Joly, O. Buisson, A posteriori multi-probe locality sensitive hashing, in: ACM MM, ACM, 2008. – reference: J. Song, Y. Yang, Z. Huang, H.T. Shen, R. Hong, Multiple feature hashing for real-time large scale near-duplicate video retrieval, in: ACM MM, 2011. – volume: 60 start-page: 91 year: 2004 end-page: 110 ident: bib15 article-title: Distinctive image features from scale-invariant keypoints publication-title: International Journal of Computer Vision – reference: W. Kong, W.-J. Li, Double-bit quantization for hashing, in: AAAI, 2012. – reference: B. Kulis, K. Grauman, Kernelized locality-sensitive hashing for scalable image search, in: IEEE ICCV, 2009. – volume: 18 start-page: 509 year: 1975 end-page: 517 ident: bib1 article-title: Multidimensional binary search trees used for associative searching publication-title: Communications of the ACM – reference: P. Indyk, R. Motwani, Approximate nearest neighbors: towards removing the curse of dimensionality, in: ACM STOC, 1998. – volume: 34 start-page: 465 year: 2012 end-page: 479 ident: bib28 article-title: Domain transfer multiple kernel learning publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 20 start-page: 1956 year: 2010 end-page: 1982 ident: bib32 article-title: A singular value thresholding algorithm for matrix completion publication-title: SIAM Journal on Optimization – reference: M.S. Charikar, Similarity estimation techniques from rounding algorithms, in: ACM STOC, ACM, 2002. – reference: J. Wang, S. Kumar, S.-F. Chang, Semi-supervised hashing for scalable image retrieval, in: IEEE CVPR, 2010. – reference: Y. Weiss, A. Torralba, R. Fergus, Spectral hashing, in: NIPS, 2008. – reference: M. Datar, N. Immorlica, P. Indyk, V.S. Mirrokni, Locality-sensitive hashing scheme based on p-stable distributions, in: ACM SOCG, 2004. – reference: A. Krizhevsky, Learning Multiple Layers of Features from Tiny Images, Technical Report, 2009 – reference: T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, Y. Zheng, Nus-wide: a real-world web image database from national university of singapore, in: ACM CIVR, 2009. – reference: G. Shakhnarovich, P. Viola, T. Darrell, Fast pose estimation with parameter-sensitive hashing, in: IEEE ICCV, 2003. – start-page: 2211 year: 2011 end-page: 2268 ident: bib24 article-title: Multiple kernel learning algorithms publication-title: Journal of Machine Learning Research – reference: F. Yu, R. Ji, M.-H. Tsai, G. Ye, S.-F. Chang, Weak attributes for large-scale image retrieval, in: IEEE CVPR, 2012. – reference: H.-C. Huang, Y.-Y. Chuang, C.-S. Chen, Affinity aggregation for spectral clustering, in: IEEE CVPR, 2012. – reference: F.R. Bach, G.R.G. Lanckriet, M.I. Jordan, Multiple kernel learning, conic duality, and the SMO algorithm, in: ICML, ACM, 2004. – reference: W. Liu, J. Wang, S. Kumar, S.-F. Chang, Hashing with graphs, in: ICML, 2011. – volume: 14 start-page: 1179 year: 2012 end-page: 1195 ident: bib29 article-title: Feature combination in kernel space for distance based image hashing publication-title: IEEE Transactions on Multimedia – ident: 10.1016/j.patcog.2013.08.022_bib5 doi: 10.1145/276698.276876 – ident: 10.1016/j.patcog.2013.08.022_bib2 doi: 10.1109/ICCV.2003.1238424 – ident: 10.1016/j.patcog.2013.08.022_bib25 doi: 10.1145/2393347.2396337 – ident: 10.1016/j.patcog.2013.08.022_bib39 doi: 10.1145/1646396.1646421 – ident: 10.1016/j.patcog.2013.08.022_bib36 doi: 10.1145/1646396.1646452 – volume: 14 start-page: 1179 issue: 4 year: 2012 ident: 10.1016/j.patcog.2013.08.022_bib29 article-title: Feature combination in kernel space for distance based image hashing publication-title: IEEE Transactions on Multimedia doi: 10.1109/TMM.2012.2190388 – ident: 10.1016/j.patcog.2013.08.022_bib11 doi: 10.1145/2324796.2324819 – ident: 10.1016/j.patcog.2013.08.022_bib30 – ident: 10.1016/j.patcog.2013.08.022_bib22 doi: 10.1145/2009916.2009950 – volume: 18 start-page: 509 year: 1975 ident: 10.1016/j.patcog.2013.08.022_bib1 article-title: Multidimensional binary search trees used for associative searching publication-title: Communications of the ACM doi: 10.1145/361002.361007 – ident: 10.1016/j.patcog.2013.08.022_bib18 doi: 10.1145/2072298.2072485 – ident: 10.1016/j.patcog.2013.08.022_bib14 – ident: 10.1016/j.patcog.2013.08.022_bib6 doi: 10.1145/509907.509965 – ident: 10.1016/j.patcog.2013.08.022_bib20 doi: 10.1109/ICCV.2009.5459169 – volume: 20 start-page: 1956 issue: 4 year: 2010 ident: 10.1016/j.patcog.2013.08.022_bib32 article-title: A singular value thresholding algorithm for matrix completion publication-title: SIAM Journal on Optimization doi: 10.1137/080738970 – ident: 10.1016/j.patcog.2013.08.022_bib34 – ident: 10.1016/j.patcog.2013.08.022_bib26 doi: 10.1109/CVPR.2012.6247912 – start-page: 2211 year: 2011 ident: 10.1016/j.patcog.2013.08.022_bib24 article-title: Multiple kernel learning algorithms publication-title: Journal of Machine Learning Research – ident: 10.1016/j.patcog.2013.08.022_bib38 doi: 10.1109/CVPR.2006.68 – ident: 10.1016/j.patcog.2013.08.022_bib27 doi: 10.1145/1015330.1015424 – ident: 10.1016/j.patcog.2013.08.022_bib12 doi: 10.1145/1835804.1835946 – ident: 10.1016/j.patcog.2013.08.022_bib10 doi: 10.1109/CVPR.2010.5539994 – start-page: 1 year: 2010 ident: 10.1016/j.patcog.2013.08.022_bib33 article-title: The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices publication-title: Mathematical Programming – volume: 60 start-page: 91 year: 2004 ident: 10.1016/j.patcog.2013.08.022_bib15 article-title: Distinctive image features from scale-invariant keypoints publication-title: International Journal of Computer Vision doi: 10.1023/B:VISI.0000029664.99615.94 – ident: 10.1016/j.patcog.2013.08.022_bib19 – ident: 10.1016/j.patcog.2013.08.022_bib4 – ident: 10.1016/j.patcog.2013.08.022_bib8 – ident: 10.1016/j.patcog.2013.08.022_bib17 doi: 10.1145/2072298.2072354 – volume: 34 start-page: 465 issue: 3 year: 2012 ident: 10.1016/j.patcog.2013.08.022_bib28 article-title: Domain transfer multiple kernel learning publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2011.114 – ident: 10.1016/j.patcog.2013.08.022_bib7 doi: 10.1145/997817.997857 – ident: 10.1016/j.patcog.2013.08.022_bib31 doi: 10.1109/CVPR.2012.6247924 – ident: 10.1016/j.patcog.2013.08.022_bib35 – ident: 10.1016/j.patcog.2013.08.022_bib3 – volume: 42 start-page: 145 year: 2001 ident: 10.1016/j.patcog.2013.08.022_bib16 article-title: Modeling the shape of the scene publication-title: International Journal of Computer Vision doi: 10.1023/A:1011139631724 – ident: 10.1016/j.patcog.2013.08.022_bib9 doi: 10.1109/CVPR.2010.5540024 – ident: 10.1016/j.patcog.2013.08.022_bib37 doi: 10.1109/CVPR.2012.6248023 – ident: 10.1016/j.patcog.2013.08.022_bib13 doi: 10.1145/1459359.1459388 – ident: 10.1016/j.patcog.2013.08.022_bib23 doi: 10.1109/ICCV.2009.5459466 – ident: 10.1016/j.patcog.2013.08.022_bib21 |
| SSID | ssj0017142 |
| Score | 2.427654 |
| Snippet | Recently hashing has become attractive in large-scale visual search, owing to its theoretical guarantee and practical success. However, most of the... |
| SourceID | proquest pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 748 |
| SubjectTerms | Analogies Applied sciences Compact hashing Exact sciences and technology Image processing Information theory Information, signal and communications theory Kernels Locality-sensitive hashing Multiple features Multiple kernels Optimization Pattern recognition Preserves Searching Signal and communications theory Signal processing Signal representation. Spectral analysis Signal, noise State of the art Telecommunications and information theory Visual |
| Title | Multiple feature kernel hashing for large-scale visual search |
| URI | https://dx.doi.org/10.1016/j.patcog.2013.08.022 https://www.proquest.com/docview/1530998346 |
| Volume | 47 |
| WOSCitedRecordID | wos000329413000022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1873-5142 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017142 issn: 0031-3203 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pa9swFBZbu8Og7PdY9qNosFvwsCXFso7ZSLuOzO2hgdyE7Ehdu-CEOC398_tkSY67MLIddjFGxHbw9_npPem97yH0KR7EqeI6gS8t1hHjmkWiECZigqUQa2vOTKOuP-Z5nk2n4sz32KybdgK8qrLbW7H8r1DDGIBtS2f_Ae72pjAA5wA6HAF2OP4V8D9CiqDRjWhn_5deVXre_-naJjV5hXOb_x3VgI_u31zWtoSks6rlfdWzRnrTlrv4HKPNjv30ZJgfj0_zYzB-kzYJZ5IfjWBoI2Hw5bQ_HnrFKr-ykLCQjByWu_zc3DWfNIkoiWnXfDrBTE8T0rGF3Elo-mmVOx3qLYvtFg-uPi9h5llc2Fw72miqumrl-wLZv01cbToh4RB0gql6iPYJHwgwbvvDk9H0e7udxBPmZOP9_w81lE2i3_aT_-SjHCyVRca4lidbs3fjkpw_Q098LIGHjgPP0QNdvUBPfVyBvdWuYSi07ghjL1HLEuxZgh1LsGcJBpbgDkuwYwl2LHmFJkej86_fIt9JIyppKtaREYyaQWFUKgbE6FIYMpspAb4onNKMs0JlswSmGgYwKVv8SHXJZiVR2qRGlPQ12qsWlX6DMLj7WsVJlioF9h_i6yLWxnZAKzJVGhb3EA3vTpZeZt52O5nLkE94Jd0bl_aNS9sElZAeitqrlk5mZcfveYBFelfRuYASeLXjysN7KLaPCyTqoY8BVgmm1u6fqUovrmsJzgHEUxll6dtdN3mHHm--qPdob7261h_Qo_JmfVmvDj097wCF452P |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+feature+kernel+hashing+for+large-scale+visual+search&rft.jtitle=Pattern+recognition&rft.au=XIANGLONG+LIU&rft.au=JUNFENG+HE&rft.au=BO+LANG&rft.date=2014-02-01&rft.pub=Elsevier&rft.issn=0031-3203&rft.volume=47&rft.issue=2&rft.spage=748&rft.epage=757&rft_id=info:doi/10.1016%2Fj.patcog.2013.08.022&rft.externalDBID=n%2Fa&rft.externalDocID=27917730 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |