Intelligent back-to-back testing with denoising autoencoder-based fault detection and DBSCAN clustering

Back-to-back (B2B) test has been introduced as a pivotal method for ensuring equivalence between model-level and implementation-level behaviour during the validation process of Automotive Software Systems (ASSs). Conventionally, the analysis of B2B execution results depends on the application of exp...

Full description

Saved in:
Bibliographic Details
Published in:Results in engineering Vol. 27; p. 105900
Main Authors: Abboush, Mohammad, Knieke, Christoph, Rausch, Andreas
Format: Journal Article
Language:English
Published: Elsevier B.V 01.09.2025
Elsevier
Subjects:
ISSN:2590-1230, 2590-1230
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Back-to-back (B2B) test has been introduced as a pivotal method for ensuring equivalence between model-level and implementation-level behaviour during the validation process of Automotive Software Systems (ASSs). Conventionally, the analysis of B2B execution results depends on the application of expert knowledge and the utilisation of predetermined thresholds for the identification of failures. This approach, however, is limited in its ability to address the complexities inherent in modern systems, particularly in the presence of non-linear dynamic multivariate behaviour under noisy conditions. To address these limitations, in this study, an intelligent analysis approach is proposed for assisting the test engineers during the analysis process of the B2B test execution results. The approach is capable of automatically detecting and clustering the faults in an efficient manner considering the noisy conditions. To this end, a CNN-LSTM-based denoising autoencoder (DAE) architecture has been developed to accurately detect the faults in the test recordings based on fault-free dataset. Furthermore, an adopting density-based clustering method, i.e., DBSCAN, has been proposed to group the detected faults based on representative features extracted from DAE. The evaluation results demonstrate the superiority of the proposed approach in comparison to state-of-the-art methods in terms of performance and computational cost with F1-score 96.15%, DBI 0.159 and testing time 5.2 ms. Additionally, the experimental findings demonstrate that the proposed approach satisfy the criteria for robustness and generalisation in the presence of noise across diverse driving scenarios with MSE of 0.00312 at 10% noise. Consequently, the proposed approach has the potential to reduce the time and effort associated with traditional analysis while improving the safety and reliability of complex dynamic vehicle systems. •Intelligent analysis of B2B test results in real-time automotive ECU software validation, considering ISO 26262.•Developing a CNN-LSTM-based DAE model for robust fault detection under noise and various driving scenarios.•Enhancing fault clustering by using representative features extracted from DAE.•Conducting a comparative study between the proposed model and advanced fault detection and clustering algorithms.
AbstractList Back-to-back (B2B) test has been introduced as a pivotal method for ensuring equivalence between model-level and implementation-level behaviour during the validation process of Automotive Software Systems (ASSs). Conventionally, the analysis of B2B execution results depends on the application of expert knowledge and the utilisation of predetermined thresholds for the identification of failures. This approach, however, is limited in its ability to address the complexities inherent in modern systems, particularly in the presence of non-linear dynamic multivariate behaviour under noisy conditions. To address these limitations, in this study, an intelligent analysis approach is proposed for assisting the test engineers during the analysis process of the B2B test execution results. The approach is capable of automatically detecting and clustering the faults in an efficient manner considering the noisy conditions. To this end, a CNN-LSTM-based denoising autoencoder (DAE) architecture has been developed to accurately detect the faults in the test recordings based on fault-free dataset. Furthermore, an adopting density-based clustering method, i.e., DBSCAN, has been proposed to group the detected faults based on representative features extracted from DAE. The evaluation results demonstrate the superiority of the proposed approach in comparison to state-of-the-art methods in terms of performance and computational cost with F1-score 96.15%, DBI 0.159 and testing time 5.2 ms. Additionally, the experimental findings demonstrate that the proposed approach satisfy the criteria for robustness and generalisation in the presence of noise across diverse driving scenarios with MSE of 0.00312 at 10% noise. Consequently, the proposed approach has the potential to reduce the time and effort associated with traditional analysis while improving the safety and reliability of complex dynamic vehicle systems. •Intelligent analysis of B2B test results in real-time automotive ECU software validation, considering ISO 26262.•Developing a CNN-LSTM-based DAE model for robust fault detection under noise and various driving scenarios.•Enhancing fault clustering by using representative features extracted from DAE.•Conducting a comparative study between the proposed model and advanced fault detection and clustering algorithms.
Back-to-back (B2B) test has been introduced as a pivotal method for ensuring equivalence between model-level and implementation-level behaviour during the validation process of Automotive Software Systems (ASSs). Conventionally, the analysis of B2B execution results depends on the application of expert knowledge and the utilisation of predetermined thresholds for the identification of failures. This approach, however, is limited in its ability to address the complexities inherent in modern systems, particularly in the presence of non-linear dynamic multivariate behaviour under noisy conditions. To address these limitations, in this study, an intelligent analysis approach is proposed for assisting the test engineers during the analysis process of the B2B test execution results. The approach is capable of automatically detecting and clustering the faults in an efficient manner considering the noisy conditions. To this end, a CNN-LSTM-based denoising autoencoder (DAE) architecture has been developed to accurately detect the faults in the test recordings based on fault-free dataset. Furthermore, an adopting density-based clustering method, i.e., DBSCAN, has been proposed to group the detected faults based on representative features extracted from DAE. The evaluation results demonstrate the superiority of the proposed approach in comparison to state-of-the-art methods in terms of performance and computational cost with F1-score 96.15%, DBI 0.159 and testing time 5.2 ms. Additionally, the experimental findings demonstrate that the proposed approach satisfy the criteria for robustness and generalisation in the presence of noise across diverse driving scenarios with MSE of 0.00312 at 10% noise. Consequently, the proposed approach has the potential to reduce the time and effort associated with traditional analysis while improving the safety and reliability of complex dynamic vehicle systems.
ArticleNumber 105900
Author Abboush, Mohammad
Knieke, Christoph
Rausch, Andreas
Author_xml – sequence: 1
  givenname: Mohammad
  orcidid: 0000-0002-5533-0029
  surname: Abboush
  fullname: Abboush, Mohammad
  email: mohammad.abboush@tu-clausthal.de
– sequence: 2
  givenname: Christoph
  surname: Knieke
  fullname: Knieke, Christoph
  email: christoph.knieke@tu-clausthal.de
– sequence: 3
  givenname: Andreas
  surname: Rausch
  fullname: Rausch, Andreas
  email: andreas.rausch@tu-clausthal.de
BookMark eNp9kMtO5DAQRS3ESDyGP2CRH0hTcRJ3skGC5tUSmlnMsLaccjm4CTay3Yzm73EThFixKrtU96jqHLF95x0xdlrBooJKnG0WwTpy44IDb3Or7QH22CHPtax4Dftf3gfsJMYNAPAuZ-vlIRvXLtE02ZFcKgaFT2Xy5a4WiWKybiz-2fRYaHLext1XbZMnh15TyHORdGHUdkp5IhEm612hnC6uLv-sLn4VOG1jorzf-JP9MGqKdPJRj9nDzfXf1V15__t2vbq4L7EWfSoN6Io6JRqBhhRB24CGZui4WZIWaqi6TqDoW10PvcChVVBjB_WAute9abE-ZuuZq73ayJdgn1X4L72y8r3hwyhVSBYnknWDLbScBOfYYEaT5rpq-n5YGkOkMquZWRh8jIHMJ68CuXMvN3J2L3fu5ew-x87nGOU7Xy0FGdFmZaRtyIryIvZ7wBtjO5J5
Cites_doi 10.1109/ACCESS.2021.3119746
10.1016/j.conengprac.2020.104637
10.3390/s24123733
10.1016/j.arcontrol.2004.12.002
10.4271/2016-01-0128
10.1109/MS.2017.82
10.1080/01441640110091215
10.3390/s22114066
10.1016/j.ijepes.2023.109464
10.1109/MCE.2018.2828440
10.1145/3572905
10.1016/j.infsof.2018.06.016
10.1109/TSE.2007.70708
10.3390/s19040972
10.1613/jair.1.13188
10.1016/j.jmsy.2023.08.005
10.1016/j.jss.2019.110458
10.1063/1.5012394
10.1109/ACCESS.2020.3024251
10.3390/s21072547
10.1016/j.knosys.2017.02.023
10.3390/s18082521
10.1016/j.patrec.2019.10.029
10.3390/s23146606
10.1016/j.ymssp.2018.02.009
10.1016/j.ymssp.2017.03.034
10.3390/s22041360
10.1080/00051144.2011.11828432
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.rineng.2025.105900
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2590-1230
ExternalDocumentID oai_doaj_org_article_34c5052e622c4cb18ed2d1499b7ffeea
10_1016_j_rineng_2025_105900
S2590123025019711
GroupedDBID 0R~
6I.
AAEDW
AAFTH
AALRI
AAXUO
AAYWO
ACVFH
ADBBV
ADCNI
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFTJW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
EBS
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
SSZ
AAYXX
CITATION
ID FETCH-LOGICAL-c369t-f0d1e8a646cfeae0540d04b82f7ed6ab1886c695d3b96cb5a03c803bcd9d9f5c3
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001527966800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2590-1230
IngestDate Fri Oct 03 12:30:47 EDT 2025
Thu Nov 27 01:09:37 EST 2025
Sat Nov 29 17:00:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Fault detection and clustering
Automotive software systems
Deep denoising autoencoder
Real-time validation
ISO 26262
DBSCAN
HIL testing
Back-to-back testing
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c369t-f0d1e8a646cfeae0540d04b82f7ed6ab1886c695d3b96cb5a03c803bcd9d9f5c3
ORCID 0000-0002-5533-0029
OpenAccessLink https://doaj.org/article/34c5052e622c4cb18ed2d1499b7ffeea
ParticipantIDs doaj_primary_oai_doaj_org_article_34c5052e622c4cb18ed2d1499b7ffeea
crossref_primary_10_1016_j_rineng_2025_105900
elsevier_sciencedirect_doi_10_1016_j_rineng_2025_105900
PublicationCentury 2000
PublicationDate September 2025
2025-09-00
2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: September 2025
PublicationDecade 2020
PublicationTitle Results in engineering
PublicationYear 2025
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Raghuvamsi, Teeparthi, Kosana (br0380) 2023; 154
Zhang, Saeed, Sadeghian (br0560) 2023; 100235
Babić, Marijan, Petrović (br0060) 2011; 52
Thara, PremaSudha (br0490) 2019; 128
Tibba, Malz, Stoermer, Nagarajan, Zhang, Chakraborty (br0530) 2016
Conrad, Fey (br0090) 2017
Vogelsang (br0550) 2020; 160
Mina, Oyori (br0330) 2015
Theissler (br0510) 2014; 23
Conrad (br0080) 2012
Theissler (br0500) 2013
Folkesson, Ayatolahi, Sangchoolie, Vinter, Islam, Karlsson (br0190) 2015
Shahapure, Nicholas (br0430) 2020
Conrad, Sadeghipour, Wiesbrock (br0100) 2005
Himmler, Lamberg, Beine (br0220) 2012
Takagi, Utsumi, Furukawa (br0480) 2013
Beine (br0070) 2010
Ziebinski, Cupek, Grzechca, Chruszczyk (br0580) 2017
Abboush, Knieke, Rausch (br0040) 2023; 23
Powers (br0370) 2020
Shokry, Hinchey (br0450) 2009
Cowton, Kyriazakis, Plötz, Bacardit (br0110) 2018; 18
Pintard, Fabre, Leeman, Kanoun, Roy (br0360) 2014
Liu, Zhou, Zhao, Shen, Xiong (br0320) 2019; 19
Li, Li, Gu, Chen (br0310) 2020; 105
Zhong, Wong, Yang (br0570) 2018; 108
Ebert, Favaro (br0180) 2017; 34
Hou, Lee, Lv, Keung (br0230) 2023; 71
Patro, Sahu (br0350) 2015
Jordan, Hauer, Foth, Pretschner (br0260) 2020
Ozaki, Tanigaki, Watanabe, Nomura, Onishi (br0340) 2022; 73
dSPACE (br0160) 2023
dSPACE (br0170) 2025
dSPACE (br0140) 2023
Abboush, Bamal, Knieke, Rausch (br0030) 2022; 22
Kukkala, Tunnell, Pasricha, Bradley (br0300) 2018; 7
Davies, Bouldin (br0130) 2009
dSPACE (br0150) 2023
Schätz, Pretschner, Huber, Philipps (br0410) 2002
Vincent, Larochelle, Bengio, Manzagol (br0540) 2008
Simulink (br0460)
Raveendran, Devika, Subramanian (br0390) 2020; 8
Stürmer, Conrad, Doerr, Pepper (br0470) 2007; 33
Theissler (br0520) 2017; 123
Kotti, Galanopoulou, Spinellis (br0290) 2023; 55
Jörges, Steffen (br0270) 2014
D'Ambrosio, Soremekun (br0120) 2017
Isermann (br0240) 2005; 29
Golias, Yannis, Antoniou (br0210) 2002; 22
Shafiq, Mashkoor, Mayr-Dorn, Egyed (br0420) 2021; 9
Jensen, Chang, Lee (br0250) 2011
Garousi, Felderer, Karapıçak, Yılmaz (br0200) 2018; 104
Abboush, Knieke, Rausch (br0050) 2024; 24
Safavi, Safavi, Hamid, Fallah (br0400) 2021; 21
br0010
Abboush, Bamal, Knieke, Rausch (br0020) 2022; 22
Koopman, Wagner (br0280) 2016; 4
Shao, Jiang, Zhao, Wang (br0440) 2017; 95
Simulink (10.1016/j.rineng.2025.105900_br0460)
Abboush (10.1016/j.rineng.2025.105900_br0050) 2024; 24
Beine (10.1016/j.rineng.2025.105900_br0070) 2010
Koopman (10.1016/j.rineng.2025.105900_br0280) 2016; 4
Thara (10.1016/j.rineng.2025.105900_br0490) 2019; 128
Jensen (10.1016/j.rineng.2025.105900_br0250) 2011
D'Ambrosio (10.1016/j.rineng.2025.105900_br0120) 2017
Himmler (10.1016/j.rineng.2025.105900_br0220) 2012
Vogelsang (10.1016/j.rineng.2025.105900_br0550) 2020; 160
Abboush (10.1016/j.rineng.2025.105900_br0020) 2022; 22
Ebert (10.1016/j.rineng.2025.105900_br0180) 2017; 34
Safavi (10.1016/j.rineng.2025.105900_br0400) 2021; 21
Golias (10.1016/j.rineng.2025.105900_br0210) 2002; 22
Babić (10.1016/j.rineng.2025.105900_br0060) 2011; 52
dSPACE (10.1016/j.rineng.2025.105900_br0170)
Vincent (10.1016/j.rineng.2025.105900_br0540) 2008
dSPACE (10.1016/j.rineng.2025.105900_br0150)
Isermann (10.1016/j.rineng.2025.105900_br0240) 2005; 29
Mina (10.1016/j.rineng.2025.105900_br0330) 2015
Conrad (10.1016/j.rineng.2025.105900_br0090) 2017
Conrad (10.1016/j.rineng.2025.105900_br0100) 2005
Shao (10.1016/j.rineng.2025.105900_br0440) 2017; 95
Tibba (10.1016/j.rineng.2025.105900_br0530) 2016
Zhong (10.1016/j.rineng.2025.105900_br0570) 2018; 108
Ozaki (10.1016/j.rineng.2025.105900_br0340) 2022; 73
Patro (10.1016/j.rineng.2025.105900_br0350)
Theissler (10.1016/j.rineng.2025.105900_br0500) 2013
Davies (10.1016/j.rineng.2025.105900_br0130) 2009
Theissler (10.1016/j.rineng.2025.105900_br0520) 2017; 123
Abboush (10.1016/j.rineng.2025.105900_br0030) 2022; 22
Kukkala (10.1016/j.rineng.2025.105900_br0300) 2018; 7
Cowton (10.1016/j.rineng.2025.105900_br0110) 2018; 18
Garousi (10.1016/j.rineng.2025.105900_br0200) 2018; 104
Hou (10.1016/j.rineng.2025.105900_br0230) 2023; 71
Jordan (10.1016/j.rineng.2025.105900_br0260) 2020
Schätz (10.1016/j.rineng.2025.105900_br0410) 2002
Takagi (10.1016/j.rineng.2025.105900_br0480) 2013
Shokry (10.1016/j.rineng.2025.105900_br0450) 2009
dSPACE (10.1016/j.rineng.2025.105900_br0160)
dSPACE (10.1016/j.rineng.2025.105900_br0140)
Raghuvamsi (10.1016/j.rineng.2025.105900_br0380) 2023; 154
Pintard (10.1016/j.rineng.2025.105900_br0360) 2014
Liu (10.1016/j.rineng.2025.105900_br0320) 2019; 19
Theissler (10.1016/j.rineng.2025.105900_br0510) 2014; 23
Ziebinski (10.1016/j.rineng.2025.105900_br0580) 2017
Abboush (10.1016/j.rineng.2025.105900_br0040) 2023; 23
Powers (10.1016/j.rineng.2025.105900_br0370)
Shafiq (10.1016/j.rineng.2025.105900_br0420) 2021; 9
Li (10.1016/j.rineng.2025.105900_br0310) 2020; 105
Conrad (10.1016/j.rineng.2025.105900_br0080) 2012
Kotti (10.1016/j.rineng.2025.105900_br0290) 2023; 55
Zhang (10.1016/j.rineng.2025.105900_br0560) 2023; 100235
Raveendran (10.1016/j.rineng.2025.105900_br0390) 2020; 8
Stürmer (10.1016/j.rineng.2025.105900_br0470) 2007; 33
Folkesson (10.1016/j.rineng.2025.105900_br0190) 2015
Shahapure (10.1016/j.rineng.2025.105900_br0430) 2020
Jörges (10.1016/j.rineng.2025.105900_br0270) 2014
References_xml – volume: 29
  start-page: 71
  year: 2005
  end-page: 85
  ident: br0240
  article-title: Model-based fault-detection and diagnosis–status and applications
  publication-title: Annu. Rev. Control
– start-page: 67
  year: 2020
  end-page: 72
  ident: br0260
  article-title: Time-series-based clustering for failure analysis in hardware-in-the-loop setups: an automotive case study
  publication-title: 2020 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)
– start-page: 2075
  year: 2017
  end-page: 2080
  ident: br0120
  article-title: Systems engineering challenges and mbse opportunities for automotive system design
  publication-title: 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
– start-page: 298
  year: 2002
  end-page: 311
  ident: br0410
  article-title: Model-based development of embedded systems
  publication-title: International Conference on Object-Oriented Information Systems
– year: 2023
  ident: br0150
  article-title: MicroAutoBox II embedded PC
– year: 2015
  ident: br0350
  article-title: Normalization: a preprocessing stage
– volume: 95
  start-page: 187
  year: 2017
  end-page: 204
  ident: br0440
  article-title: A novel deep autoencoder feature learning method for rotating machinery fault diagnosis
  publication-title: Mech. Syst. Signal Process.
– volume: 24
  start-page: 3733
  year: 2024
  ident: br0050
  article-title: A virtual testing framework for real-time validation of automotive software systems based on hardware in the loop and fault injection
  publication-title: Sensors
– volume: 4
  start-page: 15
  year: 2016
  end-page: 24
  ident: br0280
  article-title: Challenges in autonomous vehicle testing and validation
  publication-title: SAE Int. J. Transp. Saf.
– start-page: 1
  year: 2016
  end-page: 8
  ident: br0530
  article-title: Testing automotive embedded systems under x-in-the-loop setups
  publication-title: 2016 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)
– year: 2012
  ident: br0080
  article-title: Verification and validation according to iso 26262: a workflow to facilitate the development of high-integrity software
  publication-title: Embedded Real Time Software and Systems (ERTS2012)
– volume: 123
  start-page: 163
  year: 2017
  end-page: 173
  ident: br0520
  article-title: Detecting known and unknown faults in automotive systems using ensemble-based anomaly detection
  publication-title: Knowl.-Based Syst.
– volume: 23
  start-page: 26
  year: 2014
  ident: br0510
  article-title: Anomaly detection in recordings from in-vehicle networks
  publication-title: Big Data Appl.
– start-page: 1096
  year: 2008
  end-page: 1103
  ident: br0540
  article-title: Extracting and composing robust features with denoising autoencoders
  publication-title: Proceedings of the 25th International Conference on Machine Learning
– year: 2010
  ident: br0070
  article-title: A model-based reference workflow for the development of safety-critical software
  publication-title: ERTS2 2010, Embedded Real Time Software & Systems
– volume: 71
  start-page: 34
  year: 2023
  end-page: 58
  ident: br0230
  article-title: Fault detection and diagnosis of air brake system: a systematic review
  publication-title: J. Manuf. Syst.
– start-page: 1666
  year: 2011
  end-page: 1671
  ident: br0250
  article-title: A model-based design methodology for cyber-physical systems
  publication-title: 2011 7th International Wireless Communications and Mobile Computing Conference
– start-page: 125
  year: 2014
  end-page: 134
  ident: br0360
  article-title: From safety analyses to experimental validation of automotive embedded systems
  publication-title: 2014 IEEE 20th Pacific Rim International Symposium on Dependable Computing
– volume: 22
  start-page: 4066
  year: 2022
  ident: br0030
  article-title: Intelligent fault detection and classification based on hybrid deep learning methods for hardware-in-the-loop test of automotive software systems
  publication-title: Sensors
– volume: 19
  start-page: 972
  year: 2019
  ident: br0320
  article-title: Fault diagnosis of rotating machinery under noisy environment conditions based on a 1-d convolutional autoencoder and 1-d convolutional neural network
  publication-title: Sensors
– start-page: 747
  year: 2020
  end-page: 748
  ident: br0430
  article-title: Cluster quality analysis using silhouette score
  publication-title: 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA)
– volume: 18
  start-page: 2521
  year: 2018
  ident: br0110
  article-title: A combined deep learning gru-autoencoder for the early detection of respiratory disease in pigs using multiple environmental sensors
  publication-title: Sensors
– year: 2020
  ident: br0370
  article-title: Evaluation: from precision, recall and f-measure to roc, informedness, markedness and correlation
– volume: 108
  start-page: 99
  year: 2018
  end-page: 114
  ident: br0570
  article-title: Fault diagnosis of rotating machinery based on multiple probabilistic classifiers
  publication-title: Mech. Syst. Signal Process.
– volume: 100235
  year: 2023
  ident: br0560
  article-title: Deep learning in fault detection and diagnosis of building hvac systems: a systematic review with meta analysis
  publication-title: Energy AI
– volume: 8
  start-page: 169229
  year: 2020
  end-page: 169246
  ident: br0390
  article-title: Brake fault identification and fault-tolerant directional stability control of heavy road vehicles
  publication-title: IEEE Access
– volume: 73
  start-page: 1209
  year: 2022
  end-page: 1250
  ident: br0340
  article-title: Multiobjective tree-structured parzen estimator
  publication-title: J. Artif. Intell. Res.
– volume: 33
  start-page: 622
  year: 2007
  end-page: 634
  ident: br0470
  article-title: Systematic testing of model-based code generators
  publication-title: IEEE Trans. Softw. Eng.
– year: 2023
  ident: br0140
  article-title: dSPACE software tools
– year: 2017
  ident: br0580
  article-title: Review of Advanced Driver Assistance Systems (Adas)
  publication-title: AIP Conference Proceedings
– start-page: 425
  year: 2014
  end-page: 444
  ident: br0270
  article-title: Back-to-back testing of model-based code generators
  publication-title: International Symposium on Leveraging Applications of Formal Methods, Verification and Validation
– start-page: 583
  year: 2005
  end-page: 592
  ident: br0100
  article-title: Automatic evaluation of ecu software tests
  publication-title: SAE Transactions
– volume: 21
  start-page: 2547
  year: 2021
  ident: br0400
  article-title: Multi-sensor fault detection, identification, isolation and health forecasting for autonomous vehicles
  publication-title: Sensors
– volume: 34
  start-page: 33
  year: 2017
  end-page: 39
  ident: br0180
  article-title: Automotive software
  publication-title: IEEE Softw.
– volume: 55
  start-page: 1
  year: 2023
  end-page: 39
  ident: br0290
  article-title: Machine learning for software engineering: a tertiary study
  publication-title: ACM Comput. Surv.
– volume: 128
  start-page: 544
  year: 2019
  end-page: 550
  ident: br0490
  article-title: Auto-detection of epileptic seizure events using deep neural network with different feature scaling techniques
  publication-title: Pattern Recognit. Lett.
– volume: 22
  start-page: 1360
  year: 2022
  ident: br0020
  article-title: Hardware-in-the-loop-based real-time fault injection framework for dynamic behavior analysis of automotive software systems
  publication-title: Sensors
– volume: 9
  start-page: 140896
  year: 2021
  end-page: 140920
  ident: br0420
  article-title: A literature review of using machine learning in software development life cycle stages
  publication-title: IEEE Access
– year: 2023
  ident: br0160
  article-title: SCALEXIO system
– start-page: 135
  year: 2015
  end-page: 148
  ident: br0190
  article-title: Back-to-back fault injection testing in model-based development
  publication-title: Computer Safety, Reliability, and Security: 34th International Conference, SAFECOMP 2015, Proceedings 34
– volume: 154
  year: 2023
  ident: br0380
  article-title: Denoising autoencoder based topology identification in distribution systems with missing measurements
  publication-title: Int. J. Electr. Power Energy Syst.
– ident: br0010
– year: 2013
  ident: br0500
  article-title: Detecting anomalies in multivariate time series from automotive systems
– volume: 22
  start-page: 179
  year: 2002
  end-page: 196
  ident: br0210
  article-title: Classification of driver-assistance systems according to their impact on road safety and traffic efficiency
  publication-title: Transp. Rev.
– year: 2025
  ident: br0170
  article-title: Automotive simulation model-dSPACE
– volume: 104
  start-page: 14
  year: 2018
  end-page: 45
  ident: br0200
  article-title: Testing embedded software: a survey of the literature
  publication-title: Inf. Softw. Technol.
– year: 2012
  ident: br0220
  article-title: Hardware-in-the-Loop Testing in the Context of ISO 26262
– start-page: 11
  year: 2017
  ident: br0090
  article-title: Testing automotive control software
  publication-title: Automotive Embedded Systems Handbook
– volume: 160
  year: 2020
  ident: br0550
  article-title: Feature dependencies in automotive software systems: extent, awareness, and refactoring
  publication-title: J. Syst. Softw.
– volume: 7
  start-page: 18
  year: 2018
  end-page: 25
  ident: br0300
  article-title: Advanced driver-assistance systems: a path toward autonomous vehicles
  publication-title: IEEE Consum. Electron. Mag.
– start-page: 224
  year: 2009
  end-page: 227
  ident: br0130
  article-title: A cluster separation measure
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 105
  year: 2020
  ident: br0310
  article-title: Process fault diagnosis with model- and knowledge-based approaches: advances and opportunities
  publication-title: Control Eng. Pract.
– volume: 52
  start-page: 329
  year: 2011
  end-page: 338
  ident: br0060
  article-title: Introducing model-based techniques into development of real-time embedded applications
  publication-title: Automatika
– year: 2009
  ident: br0450
  article-title: Model-Based Verification of Embedded Software
– volume: 23
  start-page: 6606
  year: 2023
  ident: br0040
  article-title: Gru-based denoising autoencoder for detection and clustering of unknown single and concurrent faults during system integration testing of automotive software systems
  publication-title: Sensors
– start-page: 0563
  year: 2015
  ident: br0330
  article-title: The process of validating model and software for applying model-based development (mbd) to embedded systems more fruitfully
  publication-title: 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
– start-page: 27
  year: 2013
  end-page: 36
  ident: br0480
  article-title: Back-to-back testing framework using a machine learning method
  publication-title: Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing 2012
– ident: br0460
  article-title: Simulink - simulation und model-based design (o.j.)
– ident: 10.1016/j.rineng.2025.105900_br0370
– volume: 9
  start-page: 140896
  year: 2021
  ident: 10.1016/j.rineng.2025.105900_br0420
  article-title: A literature review of using machine learning in software development life cycle stages
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3119746
– start-page: 1096
  year: 2008
  ident: 10.1016/j.rineng.2025.105900_br0540
  article-title: Extracting and composing robust features with denoising autoencoders
– ident: 10.1016/j.rineng.2025.105900_br0150
– start-page: 135
  year: 2015
  ident: 10.1016/j.rineng.2025.105900_br0190
  article-title: Back-to-back fault injection testing in model-based development
– start-page: 11
  year: 2017
  ident: 10.1016/j.rineng.2025.105900_br0090
  article-title: Testing automotive control software
– volume: 105
  year: 2020
  ident: 10.1016/j.rineng.2025.105900_br0310
  article-title: Process fault diagnosis with model- and knowledge-based approaches: advances and opportunities
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2020.104637
– volume: 24
  start-page: 3733
  year: 2024
  ident: 10.1016/j.rineng.2025.105900_br0050
  article-title: A virtual testing framework for real-time validation of automotive software systems based on hardware in the loop and fault injection
  publication-title: Sensors
  doi: 10.3390/s24123733
– volume: 29
  start-page: 71
  year: 2005
  ident: 10.1016/j.rineng.2025.105900_br0240
  article-title: Model-based fault-detection and diagnosis–status and applications
  publication-title: Annu. Rev. Control
  doi: 10.1016/j.arcontrol.2004.12.002
– start-page: 67
  year: 2020
  ident: 10.1016/j.rineng.2025.105900_br0260
  article-title: Time-series-based clustering for failure analysis in hardware-in-the-loop setups: an automotive case study
– volume: 4
  start-page: 15
  year: 2016
  ident: 10.1016/j.rineng.2025.105900_br0280
  article-title: Challenges in autonomous vehicle testing and validation
  publication-title: SAE Int. J. Transp. Saf.
  doi: 10.4271/2016-01-0128
– volume: 34
  start-page: 33
  year: 2017
  ident: 10.1016/j.rineng.2025.105900_br0180
  article-title: Automotive software
  publication-title: IEEE Softw.
  doi: 10.1109/MS.2017.82
– start-page: 0563
  year: 2015
  ident: 10.1016/j.rineng.2025.105900_br0330
  article-title: The process of validating model and software for applying model-based development (mbd) to embedded systems more fruitfully
– start-page: 1
  year: 2016
  ident: 10.1016/j.rineng.2025.105900_br0530
  article-title: Testing automotive embedded systems under x-in-the-loop setups
– start-page: 27
  year: 2013
  ident: 10.1016/j.rineng.2025.105900_br0480
  article-title: Back-to-back testing framework using a machine learning method
– ident: 10.1016/j.rineng.2025.105900_br0170
– start-page: 2075
  year: 2017
  ident: 10.1016/j.rineng.2025.105900_br0120
  article-title: Systems engineering challenges and mbse opportunities for automotive system design
– volume: 22
  start-page: 179
  year: 2002
  ident: 10.1016/j.rineng.2025.105900_br0210
  article-title: Classification of driver-assistance systems according to their impact on road safety and traffic efficiency
  publication-title: Transp. Rev.
  doi: 10.1080/01441640110091215
– start-page: 425
  year: 2014
  ident: 10.1016/j.rineng.2025.105900_br0270
  article-title: Back-to-back testing of model-based code generators
– ident: 10.1016/j.rineng.2025.105900_br0350
– year: 2009
  ident: 10.1016/j.rineng.2025.105900_br0450
– year: 2010
  ident: 10.1016/j.rineng.2025.105900_br0070
  article-title: A model-based reference workflow for the development of safety-critical software
– volume: 22
  start-page: 4066
  year: 2022
  ident: 10.1016/j.rineng.2025.105900_br0030
  article-title: Intelligent fault detection and classification based on hybrid deep learning methods for hardware-in-the-loop test of automotive software systems
  publication-title: Sensors
  doi: 10.3390/s22114066
– volume: 154
  year: 2023
  ident: 10.1016/j.rineng.2025.105900_br0380
  article-title: Denoising autoencoder based topology identification in distribution systems with missing measurements
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2023.109464
– start-page: 224
  year: 2009
  ident: 10.1016/j.rineng.2025.105900_br0130
  article-title: A cluster separation measure
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 7
  start-page: 18
  year: 2018
  ident: 10.1016/j.rineng.2025.105900_br0300
  article-title: Advanced driver-assistance systems: a path toward autonomous vehicles
  publication-title: IEEE Consum. Electron. Mag.
  doi: 10.1109/MCE.2018.2828440
– volume: 100235
  year: 2023
  ident: 10.1016/j.rineng.2025.105900_br0560
  article-title: Deep learning in fault detection and diagnosis of building hvac systems: a systematic review with meta analysis
  publication-title: Energy AI
– volume: 55
  start-page: 1
  year: 2023
  ident: 10.1016/j.rineng.2025.105900_br0290
  article-title: Machine learning for software engineering: a tertiary study
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3572905
– ident: 10.1016/j.rineng.2025.105900_br0160
– volume: 104
  start-page: 14
  year: 2018
  ident: 10.1016/j.rineng.2025.105900_br0200
  article-title: Testing embedded software: a survey of the literature
  publication-title: Inf. Softw. Technol.
  doi: 10.1016/j.infsof.2018.06.016
– volume: 33
  start-page: 622
  year: 2007
  ident: 10.1016/j.rineng.2025.105900_br0470
  article-title: Systematic testing of model-based code generators
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/TSE.2007.70708
– year: 2012
  ident: 10.1016/j.rineng.2025.105900_br0220
– volume: 19
  start-page: 972
  year: 2019
  ident: 10.1016/j.rineng.2025.105900_br0320
  article-title: Fault diagnosis of rotating machinery under noisy environment conditions based on a 1-d convolutional autoencoder and 1-d convolutional neural network
  publication-title: Sensors
  doi: 10.3390/s19040972
– start-page: 298
  year: 2002
  ident: 10.1016/j.rineng.2025.105900_br0410
  article-title: Model-based development of embedded systems
– ident: 10.1016/j.rineng.2025.105900_br0140
– volume: 73
  start-page: 1209
  year: 2022
  ident: 10.1016/j.rineng.2025.105900_br0340
  article-title: Multiobjective tree-structured parzen estimator
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.1.13188
– volume: 71
  start-page: 34
  year: 2023
  ident: 10.1016/j.rineng.2025.105900_br0230
  article-title: Fault detection and diagnosis of air brake system: a systematic review
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2023.08.005
– volume: 160
  year: 2020
  ident: 10.1016/j.rineng.2025.105900_br0550
  article-title: Feature dependencies in automotive software systems: extent, awareness, and refactoring
  publication-title: J. Syst. Softw.
  doi: 10.1016/j.jss.2019.110458
– start-page: 583
  year: 2005
  ident: 10.1016/j.rineng.2025.105900_br0100
  article-title: Automatic evaluation of ecu software tests
– start-page: 747
  year: 2020
  ident: 10.1016/j.rineng.2025.105900_br0430
  article-title: Cluster quality analysis using silhouette score
– year: 2017
  ident: 10.1016/j.rineng.2025.105900_br0580
  article-title: Review of Advanced Driver Assistance Systems (Adas)
  doi: 10.1063/1.5012394
– year: 2012
  ident: 10.1016/j.rineng.2025.105900_br0080
  article-title: Verification and validation according to iso 26262: a workflow to facilitate the development of high-integrity software
– volume: 8
  start-page: 169229
  year: 2020
  ident: 10.1016/j.rineng.2025.105900_br0390
  article-title: Brake fault identification and fault-tolerant directional stability control of heavy road vehicles
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3024251
– ident: 10.1016/j.rineng.2025.105900_br0460
– volume: 21
  start-page: 2547
  year: 2021
  ident: 10.1016/j.rineng.2025.105900_br0400
  article-title: Multi-sensor fault detection, identification, isolation and health forecasting for autonomous vehicles
  publication-title: Sensors
  doi: 10.3390/s21072547
– volume: 123
  start-page: 163
  year: 2017
  ident: 10.1016/j.rineng.2025.105900_br0520
  article-title: Detecting known and unknown faults in automotive systems using ensemble-based anomaly detection
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.02.023
– volume: 18
  start-page: 2521
  year: 2018
  ident: 10.1016/j.rineng.2025.105900_br0110
  article-title: A combined deep learning gru-autoencoder for the early detection of respiratory disease in pigs using multiple environmental sensors
  publication-title: Sensors
  doi: 10.3390/s18082521
– volume: 128
  start-page: 544
  year: 2019
  ident: 10.1016/j.rineng.2025.105900_br0490
  article-title: Auto-detection of epileptic seizure events using deep neural network with different feature scaling techniques
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2019.10.029
– start-page: 1666
  year: 2011
  ident: 10.1016/j.rineng.2025.105900_br0250
  article-title: A model-based design methodology for cyber-physical systems
– volume: 23
  start-page: 6606
  year: 2023
  ident: 10.1016/j.rineng.2025.105900_br0040
  article-title: Gru-based denoising autoencoder for detection and clustering of unknown single and concurrent faults during system integration testing of automotive software systems
  publication-title: Sensors
  doi: 10.3390/s23146606
– year: 2013
  ident: 10.1016/j.rineng.2025.105900_br0500
– volume: 108
  start-page: 99
  year: 2018
  ident: 10.1016/j.rineng.2025.105900_br0570
  article-title: Fault diagnosis of rotating machinery based on multiple probabilistic classifiers
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.02.009
– volume: 95
  start-page: 187
  year: 2017
  ident: 10.1016/j.rineng.2025.105900_br0440
  article-title: A novel deep autoencoder feature learning method for rotating machinery fault diagnosis
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2017.03.034
– volume: 23
  start-page: 26
  year: 2014
  ident: 10.1016/j.rineng.2025.105900_br0510
  article-title: Anomaly detection in recordings from in-vehicle networks
  publication-title: Big Data Appl.
– start-page: 125
  year: 2014
  ident: 10.1016/j.rineng.2025.105900_br0360
  article-title: From safety analyses to experimental validation of automotive embedded systems
– volume: 22
  start-page: 1360
  year: 2022
  ident: 10.1016/j.rineng.2025.105900_br0020
  article-title: Hardware-in-the-loop-based real-time fault injection framework for dynamic behavior analysis of automotive software systems
  publication-title: Sensors
  doi: 10.3390/s22041360
– volume: 52
  start-page: 329
  year: 2011
  ident: 10.1016/j.rineng.2025.105900_br0060
  article-title: Introducing model-based techniques into development of real-time embedded applications
  publication-title: Automatika
  doi: 10.1080/00051144.2011.11828432
SSID ssj0002810137
Score 2.3156328
Snippet Back-to-back (B2B) test has been introduced as a pivotal method for ensuring equivalence between model-level and implementation-level behaviour during the...
SourceID doaj
crossref
elsevier
SourceType Open Website
Index Database
Publisher
StartPage 105900
SubjectTerms Automotive software systems
Back-to-back testing
DBSCAN
Deep denoising autoencoder
Fault detection and clustering
HIL testing
ISO 26262
Real-time validation
Title Intelligent back-to-back testing with denoising autoencoder-based fault detection and DBSCAN clustering
URI https://dx.doi.org/10.1016/j.rineng.2025.105900
https://doaj.org/article/34c5052e622c4cb18ed2d1499b7ffeea
Volume 27
WOSCitedRecordID wos001527966800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2590-1230
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002810137
  issn: 2590-1230
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2590-1230
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002810137
  issn: 2590-1230
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3PS8MwFMeDDA96EH_i_EUOXoNt06bNcZsTPTgEFXYL-Tk2Riez9ejfbl6zjp704qWFkiblvbbvm_DyeQjdxjaOnckdsZIaklrjv7kUcHc-uieZAiJdKDaRTybFdMpfOqW-ICcs4IGD4e5oqqHWmmVJolOt4sJ3Z7ys5yp3ztpGGnnV05lMLZoloxhYeu1euSahC3bTlTM_JUwyqG7LYVNbJxY1yP5OSOqEmYdDdLDRh3gQnusI7djyGO13qIEnaPa0xWhWWEkN9H0CZ1wBMqOcYVhcxf6HsprDSgCWdbUCXqWxawJRy2An62XlW1RNIlaJZWnw_fB1NJhgvayBneDvO0XvD-O30SPZ1EsgmjJeEReZ2BaSpUw7Ky2IMROlqkhcbg2T3nYF04xnhirOtMpkRHURUaUNN9xlmp6hXrkq7TnCKpJ-nhYZzrhJqaQKdJEGlI73IE1lH5HWcuIjYDFEmy-2EMHSAiwtgqX7aAjm3bYFqHVzwbtabFwt_nJ1H-Wtc8RGH4S477ua_zr8xX8Mf4n2oMuQYHaFetW6ttdoV39V88_1TfP--ePz9_gHBlbi0w
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+back-to-back+testing+with+denoising+autoencoder-based+fault+detection+and+DBSCAN+clustering&rft.jtitle=Results+in+engineering&rft.au=Mohammad+Abboush&rft.au=Christoph+Knieke&rft.au=Andreas+Rausch&rft.date=2025-09-01&rft.pub=Elsevier&rft.eissn=2590-1230&rft.volume=27&rft.spage=105900&rft_id=info:doi/10.1016%2Fj.rineng.2025.105900&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_34c5052e622c4cb18ed2d1499b7ffeea
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1230&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1230&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1230&client=summon