Automatic Component-Wise Design of Multiobjective Evolutionary Algorithms

Multiobjective evolutionary algorithms (MOEAs) are typically proposed, studied, and applied as monolithic blocks with a few numerical parameters that need to be set. Few works have studied how the algorithmic components of these evolutionary algorithms can be classified and combined to produce new a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on evolutionary computation Vol. 20; no. 3; pp. 403 - 417
Main Authors: Bezerra, Leonardo C. T., Lopez-Ibanez, Manuel, Stutzle, Thomas
Format: Journal Article
Language:English
Published: New York IEEE 01.06.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1089-778X, 1941-0026
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Multiobjective evolutionary algorithms (MOEAs) are typically proposed, studied, and applied as monolithic blocks with a few numerical parameters that need to be set. Few works have studied how the algorithmic components of these evolutionary algorithms can be classified and combined to produce new algorithmic designs. The motivation for studies of this latter type stem from the development of flexible software frameworks and the usage of automatic algorithm configuration methods to find novel algorithm designs. In this paper, we propose an MOEA template and a new conceptual view of its components that surpasses existing frameworks in both number of algorithms that can be instantiated from the template and flexibility to produce novel algorithmic designs. We empirically demonstrate the flexibility of our proposed framework by automatically designing MOEAs for continuous and combinatorial optimization problems. The automatically designed algorithms are often able to outperform six traditional MOEAs from the literature, even after tuning their numerical parameters.
AbstractList Multiobjective evolutionary algorithms (MOEAs) are typically proposed, studied, and applied as monolithic blocks with a few numerical parameters that need to be set. Few works have studied how the algorithmic components of these evolutionary algorithms can be classified and combined to produce new algorithmic designs. The motivation for studies of this latter type stem from the development of flexible software frameworks and the usage of automatic algorithm configuration methods to find novel algorithm designs. In this paper, we propose anMOEA template and a new conceptual view of its components that surpasses existing frameworks in both number of algorithms that can be instantiated from the template and flexibility to produce novel algorithmic designs. We empirically demonstrate the flexibility of our proposed framework by automatically designing MOEAs for continuous and combinatorial optimization problems. The automatically designed algorithms are often able to outperform six traditional MOEAs from the literature, even after tuning their numerical parameters.
Multiobjective evolutionary algorithms (MOEAs) are typically proposed, studied, and applied as monolithic blocks with a few numerical parameters that need to be set. Few works have studied how the algorithmic components of these evolutionary algorithms can be classified and combined to produce new algorithmic designs. The motivation for studies of this latter type stem from the development of flexible software frameworks and the usage of automatic algorithm configuration methods to find novel algorithm designs. In this paper, we propose an MOEA template and a new conceptual view of its components that surpasses existing frameworks in both number of algorithms that can be instantiated from the template and flexibility to produce novel algorithmic designs. We empirically demonstrate the flexibility of our proposed framework by automatically designing MOEAs for continuous and combinatorial optimization problems. The automatically designed algorithms are often able to outperform six traditional MOEAs from the literature, even after tuning their numerical parameters.
Author Lopez-Ibanez, Manuel
Bezerra, Leonardo C. T.
Stutzle, Thomas
Author_xml – sequence: 1
  givenname: Leonardo C. T.
  surname: Bezerra
  fullname: Bezerra, Leonardo C. T.
  email: lteonaci@ulb.ac.be
  organization: IRIDIA Lab., Univ. Libre de Bruxelles, Brussels, Belgium
– sequence: 2
  givenname: Manuel
  surname: Lopez-Ibanez
  fullname: Lopez-Ibanez, Manuel
  email: manuel.lopez-ibanez@ulb.ac.be
  organization: IRIDIA Lab., Univ. Libre de Bruxelles, Brussels, Belgium
– sequence: 3
  givenname: Thomas
  surname: Stutzle
  fullname: Stutzle, Thomas
  email: stuetzle@ulb.ac.be
  organization: IRIDIA Lab., Univ. Libre de Bruxelles, Brussels, Belgium
BookMark eNp9kD9PwzAQxS1UJNrCB0AskVhYUnxOHMdjVQpUKmIpfzbLdZziKolL7FTi2-OoFUMHpjud3ru79xuhQWMbjdA14AkA5ver-ftsQjDQCUlZCjQ_Q0PgKcQYk2wQepzzmLH88wKNnNtiDCkFPkSLaedtLb1R0czWu7C08fGHcTp60M5smsiW0UtXeWPXW6282etovrdVFwaNbH-iabWxrfFftbtE56WsnL461jF6e5yvZs_x8vVpMZsuY5Vk3Mc6U1xCAVRRlkqSAC9kmWpV8JxhlUia5ZxgSoCQrMwLKWmpJF0zmpQyVYlOxujusHfX2u9OOy9q45SuKtlo2zkBOaEpz3IMQXp7It3arm3CdwIYJ4xnnJGggoNKtda5Vpdi15o6hBOARQ9X9HBFD1cc4QYPO_Eo42UPxbfSVP86bw5Oo7X-u8RCWsZp8gsf9olf
CODEN ITEVF5
CitedBy_id crossref_primary_10_1016_j_ins_2023_119547
crossref_primary_10_1016_j_asoc_2020_106851
crossref_primary_10_1111_sjos_12786
crossref_primary_10_1007_s10664_019_09761_2
crossref_primary_10_1145_3612933
crossref_primary_10_1109_TAI_2020_3022339
crossref_primary_10_1162_evco_a_00241
crossref_primary_10_1162_evco_a_00263
crossref_primary_10_1109_TEVC_2015_2512930
crossref_primary_10_1162_evco_a_00245
crossref_primary_10_1016_j_ejor_2024_06_001
crossref_primary_10_1007_s10994_022_06212_w
crossref_primary_10_1016_j_swevo_2024_101838
crossref_primary_10_1162_evco_a_00217
crossref_primary_10_1007_s11721_023_00227_2
crossref_primary_10_3390_electronics12224639
crossref_primary_10_1155_2022_4544818
crossref_primary_10_1016_j_eswa_2023_121431
crossref_primary_10_1016_j_eswa_2023_121674
crossref_primary_10_1016_j_ejor_2020_07_059
crossref_primary_10_1016_j_asoc_2019_03_044
crossref_primary_10_1016_j_ins_2017_02_034
crossref_primary_10_1162_artl_a_00402
crossref_primary_10_1109_TEVC_2022_3211336
crossref_primary_10_1109_MCI_2017_2742868
crossref_primary_10_1016_j_aei_2025_103428
crossref_primary_10_1016_j_asoc_2023_110187
crossref_primary_10_1016_j_eswa_2022_117667
crossref_primary_10_1016_j_cor_2018_12_015
crossref_primary_10_1016_j_eswa_2021_115493
crossref_primary_10_1016_j_swevo_2020_100670
crossref_primary_10_1109_TEVC_2023_3314152
crossref_primary_10_1007_s11721_017_0131_z
crossref_primary_10_1109_TSMC_2018_2858843
crossref_primary_10_3390_mca27060103
crossref_primary_10_3390_pr12050869
crossref_primary_10_1016_j_swevo_2023_101248
Cites_doi 10.1007/978-3-642-19893-9_4
10.1007/978-3-642-01020-0_33
10.1109/TEVC.2013.2248159
10.1109/TEVC.2013.2281535
10.1007/978-3-319-10762-2_50
10.1162/EVCO_a_00105
10.1162/106365600568202
10.1016/j.ejor.2006.08.008
10.1162/EVCO_a_00009
10.1007/1-84628-137-7_6
10.1162/106365600568167
10.1109/CEC.2000.870274
10.1007/978-3-642-01020-0_18
10.1109/TEVC.2011.2182651
10.1007/978-3-319-09584-4_16
10.1162/evco.2007.15.1.1
10.1109/TEVC.2009.2016569
10.1109/TEVC.2003.810758
10.1109/CEC.2005.1554717
10.1016/j.cor.2010.10.008
10.1109/4235.996017
10.1109/TEVC.2007.892759
10.1162/106365600568158
10.1145/2076450.2076469
10.1504/IJAISC.2014.059280
10.1109/TEVC.2005.861417
10.1007/s10589-014-9644-1
10.1007/3-540-36970-8_35
10.1007/978-3-642-17144-4_2
10.1287/ijoc.1070.0258
10.1016/j.ejor.2010.07.023
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TEVC.2015.2474158
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Computer Science
EISSN 1941-0026
EndPage 417
ExternalDocumentID 4073927921
10_1109_TEVC_2015_2474158
7226795
Genre orig-research
GrantInformation_xml – fundername: Belgian F.R.S.-FNRS
– fundername: COMEX Project (P7/36) within the Interuniversity Attraction Poles Programme of the Belgian Science Policy Office
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c369t-e6c9a1d15c574a2319daf4ecd9870c3a568920521226f8daa5fca5b753fa4c3e3
IEDL.DBID RIE
ISICitedReferencesCount 74
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000377620600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Sun Sep 28 08:49:49 EDT 2025
Sun Nov 09 08:04:23 EST 2025
Sat Nov 29 03:13:47 EST 2025
Tue Nov 18 22:38:11 EST 2025
Tue Aug 26 16:42:57 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords multiobjective optimization
Automatic algorithm configuration
permutation flow shop problem (PFSP)
evolutionary algorithms
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c369t-e6c9a1d15c574a2319daf4ecd9870c3a568920521226f8daa5fca5b753fa4c3e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.research.manchester.ac.uk/portal/en/publications/automatic-componentwise-design-of-multiobjective-evolutionary-algorithms(fd746474-ac14-4def-be96-dcd3ece5fc4c).html
PQID 1792796972
PQPubID 85418
PageCount 15
ParticipantIDs crossref_primary_10_1109_TEVC_2015_2474158
proquest_miscellaneous_1825496801
proquest_journals_1792796972
crossref_citationtrail_10_1109_TEVC_2015_2474158
ieee_primary_7226795
PublicationCentury 2000
PublicationDate 2016-June
2016-6-00
20160601
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-June
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
fawcett (ref39) 2013
ref12
ref37
ref15
ref36
ref14
ref31
ref11
zitzler (ref4) 2004
ref32
ref10
ref2
ref19
ref18
biscani (ref16) 2010
zitzler (ref3) 2002
birattari (ref34) 2002
deb (ref7) 2001
ref24
ref23
ref26
ref25
igel (ref17) 2008; 9
ref20
ref42
coello (ref8) 2007
ref41
ref22
ref44
ref43
(ref38) 2015
lópez-ibáñez (ref21) 2011
ref28
ref27
ref29
ref9
birattari (ref33) 2004
bezerra (ref30) 2015
ref6
fonseca (ref1) 1993
ref5
ref40
References_xml – year: 2007
  ident: ref8
  publication-title: Evolutionary Algorithms for Solving Multi-Objective Problems
– ident: ref26
  doi: 10.1007/978-3-642-19893-9_4
– ident: ref43
  doi: 10.1007/978-3-642-01020-0_33
– ident: ref37
  doi: 10.1109/TEVC.2013.2248159
– ident: ref44
  doi: 10.1109/TEVC.2013.2281535
– start-page: 832
  year: 2004
  ident: ref4
  article-title: Indicator-based selection in multiobjective search
  publication-title: Parallel Problem Solving from Nature-PPSN VII
– ident: ref23
  doi: 10.1007/978-3-319-10762-2_50
– start-page: 11
  year: 2002
  ident: ref34
  article-title: A racing algorithm for configuring metaheuristics
  publication-title: Proc GECCO
– ident: ref36
  doi: 10.1162/EVCO_a_00105
– ident: ref9
  doi: 10.1162/106365600568202
– year: 2015
  ident: ref38
  publication-title: Journal of Heuristic Policies on Heuristic Search Research
– ident: ref6
  doi: 10.1016/j.ejor.2006.08.008
– ident: ref5
  doi: 10.1162/EVCO_a_00009
– year: 2004
  ident: ref33
  article-title: The problem of tuning metaheuristics as seen from a machine learning perspective
– ident: ref10
  doi: 10.1007/1-84628-137-7_6
– ident: ref24
  doi: 10.1162/106365600568167
– year: 2011
  ident: ref21
  article-title: The irace package: Iterated race for automatic algorithm configuration
– ident: ref18
  doi: 10.1109/CEC.2000.870274
– ident: ref13
  doi: 10.1007/978-3-642-01020-0_18
– ident: ref20
  doi: 10.1109/TEVC.2011.2182651
– ident: ref12
  doi: 10.1007/978-3-319-09584-4_16
– ident: ref40
  doi: 10.1162/evco.2007.15.1.1
– ident: ref19
  doi: 10.1109/TEVC.2009.2016569
– ident: ref28
  doi: 10.1109/TEVC.2003.810758
– ident: ref41
  doi: 10.1109/CEC.2005.1554717
– ident: ref32
  doi: 10.1016/j.cor.2010.10.008
– ident: ref2
  doi: 10.1109/4235.996017
– ident: ref25
  doi: 10.1109/TEVC.2007.892759
– year: 2015
  ident: ref30
  publication-title: Automatic Component-Wise Design Of Multi-Objective Evolutionary Algorithms
– ident: ref11
  doi: 10.1162/106365600568158
– ident: ref35
  doi: 10.1145/2076450.2076469
– start-page: 95
  year: 2002
  ident: ref3
  article-title: SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization
  publication-title: Proc EUROGEN
– year: 2010
  ident: ref16
  article-title: A global optimisation toolbox for massively parallel engineering optimisation
  publication-title: Proc ICAT
– ident: ref29
  doi: 10.1504/IJAISC.2014.059280
– start-page: 416
  year: 1993
  ident: ref1
  article-title: Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization
  publication-title: Proc ICGA
– ident: ref22
  doi: 10.1109/TEVC.2005.861417
– start-page: 123
  year: 2013
  ident: ref39
  article-title: Analysing differences between algorithm configurations through ablation
  publication-title: Proc MIC
– ident: ref42
  doi: 10.1007/s10589-014-9644-1
– ident: ref15
  doi: 10.1007/3-540-36970-8_35
– ident: ref27
  doi: 10.1007/978-3-642-17144-4_2
– ident: ref31
  doi: 10.1287/ijoc.1070.0258
– ident: ref14
  doi: 10.1016/j.ejor.2010.07.023
– volume: 9
  start-page: 993
  year: 2008
  ident: ref17
  article-title: Shark
  publication-title: J Mach Learn Res
– year: 2001
  ident: ref7
  publication-title: Multi-Objective Optimization Using Evolutionary Algorithms
SSID ssj0014519
Score 2.5072727
Snippet Multiobjective evolutionary algorithms (MOEAs) are typically proposed, studied, and applied as monolithic blocks with a few numerical parameters that need to...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 403
SubjectTerms Algorithm design and analysis
Algorithms
automatic algorithm configuration
Automation
Combinatorial analysis
Evolutionary algorithms
Evolutionary computation
Flexibility
Genetic algorithms
Mathematical models
Measurement
Multiobjective optimization
Optimization
permutation flowshop problem
Proposals
Sociology
Software algorithms
Statistics
Tuning
Title Automatic Component-Wise Design of Multiobjective Evolutionary Algorithms
URI https://ieeexplore.ieee.org/document/7226795
https://www.proquest.com/docview/1792796972
https://www.proquest.com/docview/1825496801
Volume 20
WOSCitedRecordID wos000377620600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UPOjBx6q4vojgSax22zya46IrehEPPvZW0iT1gW5lH4L_3kmaLYoieCs0aUq_TGamM_MNwAG1TDtmL3RTkyKiaHFHShRJlCYmLbXSHWmobzYhrq6yfl9ez8BRUwtjrfXJZ_bYXfpYvqn0xP0qOxFoKwjJZmFWCFHXajURA0eTUifTS7QYs36IYHZieXLTuzt1SVzsOKFOgWbfdJBvqvLjJPbq5Xz5fy-2AkvBjCTdGvdVmLGDFixPWzSQILEtWPzCN9iCBWda1szMa3DZnYwrT9hK3LxqgEtE908jS858VgepSuLLc6viuT4VSe89bFQ1_CDdl4dq-DR-fB2tw-157-b0IgqNFSKdcjmOLNdSdUyHaSaoQgtPGlVSq41E6dWpYjyTia_qTXiZGaUYwsYK9GxKRXVq0w2YG-BrbQKJcaKO06LkRtIC3WlpLKOUFkzzQkjRhnj6qXMdWMdd84uX3HsfscwdOrlDJw_otOGwmfJWU278NXjNwdEMDEi0YWeKZx6EcpTj2ZMIyaVI2rDf3EZxcjESNbDVBMd4j5mj3t76_cnbsIDr8zpbbAfmxsOJ3YV5_Y7wDff8nvwE0Fne6A
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9RAEJ8gmAgPgofGU8Al8clYaLf70X28wBGIcOHh1HtrtrtbxeDV3AcJ_72z270GozHhrUl3201_OzsznZnfALxnjhvP7IVuKq0ShhZ3omVFk5zavDbaZMqy0GxCjkbFZKKu1-BjVwvjnAvJZ-7IX4ZYvm3M0v8qO5ZoK0jFn8AGZ4xmbbVWFzPwRCltOr1Cm7GYxBhmlqrj8fDLiU_j4keUeRVa_KGFQluVv87ioGDOth-3tB14Hg1JMmiRfwFrbtqD7VWTBhJltgdbDxgHe7DpjcuWm3kXLgbLRRMoW4mf10zxFcnXm7kjpyGvgzQ1CQW6TfWjPRfJ8C5uVT27J4Pbb83sZvH95_wlfD4bjk_Ok9haITG5UIvECaN0ZjNuuGQabTxldc2csQrl1-Sai0LRUNdLRV1YrTkCxyv0bWrNTO7yV7A-xWW9BpLiRJPmVS2sYhU61Mo6hIdV3IhKKtmHdPWpSxN5x337i9sy-B-pKj06pUenjOj04UM35VdLuvG_wbsejm5gRKIPeys8yyiW8xJPHyqVUJL24bC7jQLloyR66poljgk-s0DN_ebfT34Hz87HV5fl5cXo01vYxLWINndsD9YXs6Xbh6fmDqGcHYT9-RuNP-Iv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Component-Wise+Design+of+Multiobjective+Evolutionary+Algorithms&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Bezerra%2C+Leonardo+C.+T.&rft.au=Lopez-Ibanez%2C+Manuel&rft.au=Stutzle%2C+Thomas&rft.date=2016-06-01&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=20&rft.issue=3&rft.spage=403&rft.epage=417&rft_id=info:doi/10.1109%2FTEVC.2015.2474158&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2015_2474158
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon