Cure: an efficient clustering algorithm for large databases

Clustering, in data mining, is useful for discovering groups and identifying interesting distributions in the underlying data. Traditional clustering algorithms either favor clusters with spherical shapes and similar sizes, or are very fragile in the presence of outliers. We propose a new clustering...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Information systems (Oxford) Ročník 26; číslo 1; s. 35 - 58
Hlavní autori: Guha, Sudipto, Rastogi, Rajeev, Shim, Kyuseok
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.03.2001
Predmet:
ISSN:0306-4379, 1873-6076
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Clustering, in data mining, is useful for discovering groups and identifying interesting distributions in the underlying data. Traditional clustering algorithms either favor clusters with spherical shapes and similar sizes, or are very fragile in the presence of outliers. We propose a new clustering algorithm called CURE that is more robust to outliers, and identifies clusters having non-spherical shapes and wide variances in size. CURE achieves this by representing each cluster by a certain fixed number of points that are generated by selecting well scattered points from the cluster and then shrinking them toward the center of the cluster by a specified fraction. Having more than one representative point per cluster allows CURE to adjust well to the geometry of non-spherical shapes and the shrinking helps to dampen the effects of outliers. To handle large databases, CURE employs a combination of random sampling and partitioning. A random sample drawn from the data set is first partitioned and each partition is partially clustered. The partial clusters are then clustered in a second pass to yield the desired clusters. Our experimental results confirm that the quality of clusters produced by CURE is much better than those found by existing algorithms. Furthermore, they demonstrate that random sampling and partitioning enable CURE to not only outperform existing algorithms but also to scale well for large databases without sacrificing clustering quality.
AbstractList Clustering, in data mining, is useful for discovering groups and identifying interesting distributions in the underlying data. Traditional clustering algorithms either favor clusters with spherical shapes and similar sizes, or are very fragile in the presence of outliers. We propose a new clustering algorithm called CURE that is more robust to outliers, and identifies clusters having non-spherical shapes and wide variances in size. CURE achieves this by representing each cluster by a certain fixed number of points that are generated by selecting well scattered points from the cluster and then shrinking them toward the center of the cluster by a specified fraction. Having more than one representative point per cluster allows CURE to adjust well to the geometry of non-spherical shapes and the shrinking helps to dampen the effects of outliers. To handle large databases, CURE employs a combination of random sampling and partitioning. A random sample drawn from the data set is first partitioned and each partition is partially clustered. The partial clusters are then clustered in a second pass to yield the desired clusters. Our experimental results confirm that the quality of clusters produced by CURE is much better than those found by existing algorithms. Furthermore, they demonstrate that random sampling and partitioning enable CURE to not only outperform existing algorithms but also to scale well for large databases without sacrificing clustering quality. copyright 2001 Published by Elsevier Science Ltd.
Clustering, in data mining, is useful for discovering groups and identifying interesting distributions in the underlying data. Traditional clustering algorithms either favour clusters with spherical shapes and similar sizes, or are very fragile in the presence of outliers. Proposes a new clustering algorithm called CURE that is more robust to outliers and identifies clusters having non-spherical shapes and wide variances in size. CURE achieves this by representing each cluster by a certain fixed number of points that are generated by selecting well scattered points from the cluster and then shrinking them toward the centre of the cluster by a specified fraction. Experimental results confirm that the quality of clusters produced by CURE is much better than those found by existing algorithms. (Original abstract - amended)
Clustering, in data mining, is useful for discovering groups and identifying interesting distributions in the underlying data. Traditional clustering algorithms either favor clusters with spherical shapes and similar sizes, or are very fragile in the presence of outliers. We propose a new clustering algorithm called CURE that is more robust to outliers, and identifies clusters having non-spherical shapes and wide variances in size. CURE achieves this by representing each cluster by a certain fixed number of points that are generated by selecting well scattered points from the cluster and then shrinking them toward the center of the cluster by a specified fraction. Having more than one representative point per cluster allows CURE to adjust well to the geometry of non-spherical shapes and the shrinking helps to dampen the effects of outliers. To handle large databases, CURE employs a combination of random sampling and partitioning. A random sample drawn from the data set is first partitioned and each partition is partially clustered. The partial clusters are then clustered in a second pass to yield the desired clusters. Our experimental results confirm that the quality of clusters produced by CURE is much better than those found by existing algorithms. Furthermore, they demonstrate that random sampling and partitioning enable CURE to not only outperform existing algorithms but also to scale well for large databases without sacrificing clustering quality.
Author Rastogi, Rajeev
Shim, Kyuseok
Guha, Sudipto
Author_xml – sequence: 1
  givenname: Sudipto
  surname: Guha
  fullname: Guha, Sudipto
  organization: Stanford University, Stanford, CA 94305, USA
– sequence: 2
  givenname: Rajeev
  surname: Rastogi
  fullname: Rastogi, Rajeev
  organization: Bell Laboratories, Murray Hill, NJ 07974, USA
– sequence: 3
  givenname: Kyuseok
  surname: Shim
  fullname: Shim, Kyuseok
  organization: Korea Advanced Institute of Science and Technology and, Advanced Information Technology Research Center, Taejon 305-701, Korea
BookMark eNqFkE1LAzEQhoNUsK3-BGFPoofVZPOxiT2IFL-g4EE9h2w-amS7qUlW8N-7bcWDl85lmOF5h-GZgFEXOgvAKYKXCCJ29QIxZCXBtTiH6AIOxUtyAMaI17hksGYjMP5DjsAkpY-BqagQYzCb99FeF6orrHNee9vlQrd9yjb6blmodhmiz--rwoVYtCoubWFUVo1KNh2DQ6faZE9--xS83d-9zh_LxfPD0_x2UWrMRC6NI6ypqGYGklpgZLBonBCCczVsGq3V8BeFhqqKYs6ZqTWqmoZVkFAnMMVTcLa7u47hs7cpy5VP2rat6mzok6Q1JQhysResGOOEVBuQ7kAdQ0rROrmOfqXit0RQbpzKrVO5ESYhklunwzQFs3857bPKPnQ5Kt_uTd_s0naQ9eVtlGkjXFvjo9VZmuD3XPgBHJuRBQ
CitedBy_id crossref_primary_10_1007_s11042_021_10594_9
crossref_primary_10_1016_j_infsof_2020_106456
crossref_primary_10_1109_TCBB_2020_2978188
crossref_primary_10_1016_j_eij_2015_11_004
crossref_primary_10_1007_s10462_016_9477_7
crossref_primary_10_1016_j_eswa_2020_113367
crossref_primary_10_1109_ACCESS_2021_3081500
crossref_primary_10_1007_s11432_010_3112_z
crossref_primary_10_1016_j_measurement_2020_108216
crossref_primary_10_1007_s11042_019_7663_8
crossref_primary_10_1016_j_eswa_2019_112947
crossref_primary_10_1007_s00521_019_04297_4
crossref_primary_10_1002_cpe_3545
crossref_primary_10_1057_ori_2011_15
crossref_primary_10_1002_cpe_6121
crossref_primary_10_1002_jbio_201500285
crossref_primary_10_1109_ACCESS_2019_2957807
crossref_primary_10_1007_s11750_014_0333_0
crossref_primary_10_3390_electronics12102316
crossref_primary_10_1016_j_eswa_2023_120633
crossref_primary_10_1109_TPAMI_2013_28
crossref_primary_10_1080_17445760_2018_1446210
crossref_primary_10_1109_TKDE_2018_2842191
crossref_primary_10_1109_TFUZZ_2013_2294355
crossref_primary_10_1016_j_is_2016_02_007
crossref_primary_10_1016_j_infsof_2008_06_004
crossref_primary_10_1080_0951192X_2014_880809
crossref_primary_10_1109_69_877502
crossref_primary_10_3390_ijgi6090272
crossref_primary_10_3390_en14206778
crossref_primary_10_1007_s13042_015_0451_5
crossref_primary_10_1007_s13042_020_01206_3
crossref_primary_10_3390_ijgi12030117
crossref_primary_10_3390_s23115350
crossref_primary_10_1016_j_ins_2021_02_017
crossref_primary_10_1109_TPAMI_2014_2343223
crossref_primary_10_1016_j_engappai_2023_107438
crossref_primary_10_1016_j_fss_2017_11_003
crossref_primary_10_1016_j_neucom_2006_10_034
crossref_primary_10_1080_13658816_2025_2478463
crossref_primary_10_1016_j_patcog_2020_107589
crossref_primary_10_3390_informatics4030024
crossref_primary_10_1016_j_is_2012_09_001
crossref_primary_10_1038_s41467_022_33136_9
crossref_primary_10_1002_cpe_6717
crossref_primary_10_1109_TPAMI_2025_3535743
crossref_primary_10_3390_ijgi10090589
crossref_primary_10_1007_s10489_006_6925_0
crossref_primary_10_1016_j_ejor_2004_05_020
crossref_primary_10_1080_13658816_2018_1541177
crossref_primary_10_3390_s20010023
crossref_primary_10_1002_prs_10060
crossref_primary_10_1007_s10853_021_05848_8
crossref_primary_10_32604_cmc_2024_046314
crossref_primary_10_1007_s10489_016_0814_y
crossref_primary_10_1109_ACCESS_2025_3583240
crossref_primary_10_4018_jdwm_2013010101
crossref_primary_10_1016_j_jvcir_2018_07_009
crossref_primary_10_1108_IJCS_09_2019_0024
crossref_primary_10_1109_RBME_2010_2083647
crossref_primary_10_3390_math11234735
crossref_primary_10_1145_3480972
crossref_primary_10_1109_ACCESS_2019_2900260
crossref_primary_10_3390_ijerph16111988
crossref_primary_10_3390_ijerph16122083
crossref_primary_10_1109_ACCESS_2020_3002153
crossref_primary_10_1109_TITB_2010_2040286
crossref_primary_10_1016_j_patcog_2022_109230
crossref_primary_10_1016_j_eswa_2023_120799
crossref_primary_10_1016_j_cosrev_2020_100276
crossref_primary_10_1016_j_neucom_2021_04_029
crossref_primary_10_1002_ecm_1589
crossref_primary_10_1016_j_is_2013_11_002
crossref_primary_10_1038_s41598_025_13848_w
crossref_primary_10_3390_bdcc4030019
crossref_primary_10_1109_ACCESS_2021_3075682
crossref_primary_10_1016_j_patcog_2020_107265
crossref_primary_10_1017_dce_2024_36
crossref_primary_10_1155_2023_7493623
crossref_primary_10_1016_j_asoc_2023_110261
crossref_primary_10_1177_1063293X15580857
crossref_primary_10_1016_j_ipm_2015_11_003
crossref_primary_10_1109_ACCESS_2019_2925460
crossref_primary_10_3233_JIFS_201792
crossref_primary_10_3390_sym12010079
crossref_primary_10_1016_j_compchemeng_2024_108712
crossref_primary_10_3390_min14111089
crossref_primary_10_1016_j_eswa_2016_09_015
crossref_primary_10_1155_2021_5592323
crossref_primary_10_1109_TKDE_2018_2792021
crossref_primary_10_1016_j_ergon_2012_05_003
crossref_primary_10_1016_j_knosys_2016_06_032
crossref_primary_10_3390_ijgi13030093
crossref_primary_10_1016_j_eswa_2014_06_016
crossref_primary_10_1007_s11390_017_1797_9
crossref_primary_10_3390_rs16050870
crossref_primary_10_3390_jmse8030224
crossref_primary_10_1038_s41598_023_33214_y
crossref_primary_10_1007_s10844_013_0268_1
crossref_primary_10_1016_j_patcog_2021_108305
crossref_primary_10_1007_s10844_021_00668_3
crossref_primary_10_1186_s13638_021_01910_w
crossref_primary_10_1109_TSG_2023_3315690
crossref_primary_10_1016_j_mri_2014_02_023
crossref_primary_10_1088_1757_899X_807_1_012017
crossref_primary_10_1007_s11219_020_09505_2
crossref_primary_10_1080_0951192X_2011_592991
crossref_primary_10_1007_s00267_011_9690_8
crossref_primary_10_1016_j_eswa_2019_03_051
crossref_primary_10_3390_ijgi10100669
crossref_primary_10_1109_ACCESS_2023_3296533
crossref_primary_10_1007_s10489_022_03705_y
crossref_primary_10_1007_s13369_021_06177_3
crossref_primary_10_1016_j_fss_2004_09_014
crossref_primary_10_1016_j_simpat_2008_10_005
crossref_primary_10_1080_10580530_2011_585583
crossref_primary_10_1007_s00357_015_9166_2
crossref_primary_10_1007_s12559_022_10002_w
crossref_primary_10_1109_ACCESS_2019_2928628
crossref_primary_10_1016_j_physa_2019_121505
crossref_primary_10_1016_j_knosys_2022_108288
crossref_primary_10_1109_ACCESS_2025_3574066
crossref_primary_10_1016_j_neucom_2016_01_009
crossref_primary_10_1145_3678878
crossref_primary_10_1007_s11042_024_20105_1
crossref_primary_10_3390_electronics11172735
crossref_primary_10_3390_e13020450
crossref_primary_10_1007_s11227_023_05688_0
crossref_primary_10_1155_2021_8157293
crossref_primary_10_1016_j_asoc_2017_12_024
crossref_primary_10_1016_j_cej_2024_151828
crossref_primary_10_1109_ACCESS_2021_3108450
crossref_primary_10_3390_w11020317
crossref_primary_10_1016_j_ecoinf_2022_101935
crossref_primary_10_1016_j_is_2017_10_006
crossref_primary_10_3390_s19163540
crossref_primary_10_1007_s12083_014_0323_x
crossref_primary_10_1016_j_knosys_2022_108150
crossref_primary_10_1007_s11042_017_4396_4
crossref_primary_10_1016_j_chemolab_2007_01_005
crossref_primary_10_1080_10170660809509092
crossref_primary_10_1007_s10044_019_00783_6
crossref_primary_10_1016_j_eswa_2023_123041
crossref_primary_10_1016_j_knosys_2019_104905
crossref_primary_10_3390_w12010294
crossref_primary_10_3233_JCM_190015
crossref_primary_10_1007_s00521_020_05395_4
crossref_primary_10_1007_s13042_018_0836_3
crossref_primary_10_2478_acss_2020_0011
crossref_primary_10_1016_j_knosys_2017_09_034
crossref_primary_10_3233_WEB_160340
crossref_primary_10_3389_fninf_2021_727859
crossref_primary_10_32362_2500_316X_2019_7_6_134_150
crossref_primary_10_1371_journal_pone_0210236
crossref_primary_10_1007_s10922_022_09650_y
crossref_primary_10_1016_j_physa_2018_02_084
crossref_primary_10_1016_j_ins_2019_03_022
crossref_primary_10_1007_s00500_013_1128_1
crossref_primary_10_3233_JIFS_152647
crossref_primary_10_1111_j_1745_4603_2012_00345_x
crossref_primary_10_1109_ACCESS_2018_2866364
crossref_primary_10_1016_j_neuroimage_2017_10_058
crossref_primary_10_1007_s00500_025_10458_6
crossref_primary_10_1371_journal_pone_0083847
crossref_primary_10_1002_widm_49
crossref_primary_10_1109_TITB_2009_2021262
crossref_primary_10_1145_1754428_1754430
crossref_primary_10_1007_s00170_005_0137_3
crossref_primary_10_1016_j_patrec_2005_08_015
crossref_primary_10_3390_s17102226
crossref_primary_10_1155_2021_8178495
crossref_primary_10_1007_s10586_025_05350_9
crossref_primary_10_1016_j_ymssp_2015_02_017
crossref_primary_10_1016_j_envsoft_2018_09_021
crossref_primary_10_1109_2_781637
crossref_primary_10_1007_s10844_007_0044_1
crossref_primary_10_1007_s11205_020_02329_4
crossref_primary_10_1016_j_neunet_2009_08_007
crossref_primary_10_1109_2_781633
crossref_primary_10_1016_j_infsof_2003_07_003
crossref_primary_10_1007_s10100_022_00824_2
crossref_primary_10_1108_GS_11_2013_0027
crossref_primary_10_1080_10106049_2018_1508313
crossref_primary_10_3390_ijgi7030094
crossref_primary_10_1109_TFUZZ_2012_2201485
crossref_primary_10_1109_TITS_2022_3142778
crossref_primary_10_1007_s42154_022_00205_0
crossref_primary_10_1631_jzus_A0720058
crossref_primary_10_1016_j_eswa_2019_04_048
crossref_primary_10_1016_j_engappai_2024_108635
crossref_primary_10_15558_fir_v5i8_109
crossref_primary_10_1016_j_ins_2020_04_016
crossref_primary_10_1002_cpe_5094
crossref_primary_10_1007_s10586_022_03917_4
crossref_primary_10_1088_1755_1315_793_1_012017
crossref_primary_10_1109_ACCESS_2022_3217769
crossref_primary_10_1007_s10489_021_02389_0
crossref_primary_10_1016_j_asoc_2023_110665
crossref_primary_10_3390_app12042191
crossref_primary_10_1016_j_patcog_2025_112243
crossref_primary_10_1007_s00500_015_1698_1
Cites_doi 10.1145/3147.3165
10.1145/355744.355745
10.1090/pspum/007/0164283
ContentType Journal Article
Copyright 2001
Copyright_xml – notice: 2001
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
E3H
F2A
DOI 10.1016/S0306-4379(01)00008-4
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Library and Information Science Abstracts (LISA)
DatabaseTitleList Computer and Information Systems Abstracts
Library and Information Science Abstracts (LISA)

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1873-6076
EndPage 58
ExternalDocumentID 10_1016_S0306_4379_01_00008_4
S0306437901000084
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
13V
1B1
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
63O
7-5
71M
77K
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABKBG
ABMAC
ABMVD
ABTAH
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNNM
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HAMUX
HF~
HLZ
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SSV
SSZ
T5K
TN5
UHS
VH1
WUQ
XSW
ZCG
ZY4
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
E3H
F2A
ID FETCH-LOGICAL-c369t-df46b25c6d047931d39bf99988ad04bcca43750d5a253886d7c12bb62045f9353
ISICitedReferencesCount 520
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000167690000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-4379
IngestDate Thu Oct 02 11:27:38 EDT 2025
Wed Oct 01 14:41:32 EDT 2025
Tue Nov 18 21:53:57 EST 2025
Sat Nov 29 06:20:11 EST 2025
Fri Feb 23 02:35:47 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Clustering Algorithms
Data Mining
Knowledge Discovery
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c369t-df46b25c6d047931d39bf99988ad04bcca43750d5a253886d7c12bb62045f9353
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 26684429
PQPubID 23500
PageCount 24
ParticipantIDs proquest_miscellaneous_57541089
proquest_miscellaneous_26684429
crossref_primary_10_1016_S0306_4379_01_00008_4
crossref_citationtrail_10_1016_S0306_4379_01_00008_4
elsevier_sciencedirect_doi_10_1016_S0306_4379_01_00008_4
PublicationCentury 2000
PublicationDate 2001-03-01
PublicationDateYYYYMMDD 2001-03-01
PublicationDate_xml – month: 03
  year: 2001
  text: 2001-03-01
  day: 01
PublicationDecade 2000
PublicationTitle Information systems (Oxford)
PublicationYear 2001
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ng, Han (BIB10) 1994
Sellis, Roussopoulos, Faloutsos (BIB14) 1987
Jain, Dubes (BIB8) 1988
Samet (BIB12) 1989
Cormen, Leiserson, Rivest (BIB2) 1990
Han, Karypis, Kumar, Mobasher (BIB7) 1997
Ester, Kriegel, Sander, Xu (BIB4) 1996
Motwani, Raghavan (BIB9) 1995
Zhang, Ramakrishnan, Livny (BIB17) 1996
Vitter (BIB16) 1985; 11
Ester, Kriegel, Xu (BIB5) 1995
Friedman, Bentley, Finkel (BIB6) 1977; 3
Toivonen (BIB15) 1996
Coxeter (BIB3) 1964; 7
Samet (BIB13) 1990
Olson (BIB11) 1993
Beckmann, Kriegel, Schneider, Seeger (BIB1) 1990
Samet (10.1016/S0306-4379(01)00008-4_BIB12) 1989
Ester (10.1016/S0306-4379(01)00008-4_BIB4) 1996
Vitter (10.1016/S0306-4379(01)00008-4_BIB16) 1985; 11
Sellis (10.1016/S0306-4379(01)00008-4_BIB14) 1987
Toivonen (10.1016/S0306-4379(01)00008-4_BIB15) 1996
Cormen (10.1016/S0306-4379(01)00008-4_BIB2) 1990
Jain (10.1016/S0306-4379(01)00008-4_BIB8) 1988
Friedman (10.1016/S0306-4379(01)00008-4_BIB6) 1977; 3
Samet (10.1016/S0306-4379(01)00008-4_BIB13) 1990
Han (10.1016/S0306-4379(01)00008-4_BIB7) 1997
Ng (10.1016/S0306-4379(01)00008-4_BIB10) 1994
Coxeter (10.1016/S0306-4379(01)00008-4_BIB3) 1964; 7
Olson (10.1016/S0306-4379(01)00008-4_BIB11) 1993
Ester (10.1016/S0306-4379(01)00008-4_BIB5) 1995
Motwani (10.1016/S0306-4379(01)00008-4_BIB9) 1995
Beckmann (10.1016/S0306-4379(01)00008-4_BIB1) 1990
Zhang (10.1016/S0306-4379(01)00008-4_BIB17) 1996
References_xml – year: 1989
  ident: BIB12
  publication-title: The Design and Analysis of Spatial Data Structures
– start-page: 322
  year: 1990
  end-page: 331
  ident: BIB1
  article-title: The
  publication-title: Proceedings of ACM SIGMOD
– year: 1995
  ident: BIB9
  publication-title: Randomized Algorithms
– year: 1990
  ident: BIB2
  publication-title: Introduction to Algorithms
– year: 1993
  ident: BIB11
  publication-title: Parallel Algorithms for Hierarchical Clustering
– volume: 11
  start-page: 37
  year: 1985
  end-page: 57
  ident: BIB16
  article-title: Random sampling with a reservoir
  publication-title: ACM Transactions on Mathematical Software
– start-page: 103
  year: 1996
  end-page: 114
  ident: BIB17
  article-title: Birch: An efficient data clustering method for very large databases
  publication-title: Proceedings of the ACM SIGMOD Conference on Management of Data
– start-page: 94
  year: 1995
  end-page: 99
  ident: BIB5
  article-title: A database interface for clustering in large spatial databases
  publication-title: International Conference on Knowledge Discovery in Databases and Data Mining (KDD-95)
– start-page: 226
  year: 1996
  end-page: 231
  ident: BIB4
  article-title: A density-based algorithm for discovering clusters in large spatial database with noise
  publication-title: International Conference on Knowledge Discovery in Databases and Data Mining (KDD-96)
– volume: 3
  start-page: 209
  year: 1977
  end-page: 226
  ident: BIB6
  article-title: An algorithm for finding best matches in logarithmic expected time
  publication-title: ACM Transactions on Mathematical Software
– start-page: 134
  year: 1996
  end-page: 145
  ident: BIB15
  article-title: Sampling large databases for association rules
  publication-title: Proceedings of the VLDB Conference
– start-page: 9
  year: 1997
  end-page: 13
  ident: BIB7
  article-title: Clustering based on association rule hypergraphs
  publication-title: 1997 SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery
– year: 1988
  ident: BIB8
  publication-title: Algorithms for Clustering Data
– start-page: 507
  year: 1987
  end-page: 518
  ident: BIB14
  article-title: The
  publication-title: Proceedings of the 13th International Conference on VLDB
– year: 1990
  ident: BIB13
  publication-title: The Design and Analysis of Spatial Data Structures
– start-page: 144
  year: 1994
  end-page: 155
  ident: BIB10
  article-title: Efficient and effective clustering methods for spatial data mining
  publication-title: Proceedings of the VLDB Conference
– volume: 7
  start-page: 53
  year: 1964
  end-page: 71
  ident: BIB3
  article-title: An upper bound for the number of equal nonoverlaping spheres that can touch another of the same size
  publication-title: Symposia in Pure Mathematics
– volume: 11
  start-page: 37
  issue: 1
  year: 1985
  ident: 10.1016/S0306-4379(01)00008-4_BIB16
  article-title: Random sampling with a reservoir
  publication-title: ACM Transactions on Mathematical Software
  doi: 10.1145/3147.3165
– year: 1989
  ident: 10.1016/S0306-4379(01)00008-4_BIB12
– start-page: 134
  year: 1996
  ident: 10.1016/S0306-4379(01)00008-4_BIB15
  article-title: Sampling large databases for association rules
– start-page: 94
  year: 1995
  ident: 10.1016/S0306-4379(01)00008-4_BIB5
  article-title: A database interface for clustering in large spatial databases
– start-page: 103
  year: 1996
  ident: 10.1016/S0306-4379(01)00008-4_BIB17
  article-title: Birch: An efficient data clustering method for very large databases
– year: 1990
  ident: 10.1016/S0306-4379(01)00008-4_BIB2
– year: 1993
  ident: 10.1016/S0306-4379(01)00008-4_BIB11
– start-page: 322
  year: 1990
  ident: 10.1016/S0306-4379(01)00008-4_BIB1
  article-title: The R*-tree an efficient and robust access method for points and rectangles
– volume: 3
  start-page: 209
  year: 1977
  ident: 10.1016/S0306-4379(01)00008-4_BIB6
  article-title: An algorithm for finding best matches in logarithmic expected time
  publication-title: ACM Transactions on Mathematical Software
  doi: 10.1145/355744.355745
– start-page: 507
  year: 1987
  ident: 10.1016/S0306-4379(01)00008-4_BIB14
  article-title: The R+ tree: a dynamic index for multi-dimensional objects
– year: 1995
  ident: 10.1016/S0306-4379(01)00008-4_BIB9
– start-page: 144
  year: 1994
  ident: 10.1016/S0306-4379(01)00008-4_BIB10
  article-title: Efficient and effective clustering methods for spatial data mining
– volume: 7
  start-page: 53
  year: 1964
  ident: 10.1016/S0306-4379(01)00008-4_BIB3
  article-title: An upper bound for the number of equal nonoverlaping spheres that can touch another of the same size
  publication-title: Symposia in Pure Mathematics
  doi: 10.1090/pspum/007/0164283
– year: 1990
  ident: 10.1016/S0306-4379(01)00008-4_BIB13
– start-page: 226
  year: 1996
  ident: 10.1016/S0306-4379(01)00008-4_BIB4
  article-title: A density-based algorithm for discovering clusters in large spatial database with noise
– start-page: 9
  year: 1997
  ident: 10.1016/S0306-4379(01)00008-4_BIB7
  article-title: Clustering based on association rule hypergraphs
– year: 1988
  ident: 10.1016/S0306-4379(01)00008-4_BIB8
SSID ssj0002599
Score 2.175904
Snippet Clustering, in data mining, is useful for discovering groups and identifying interesting distributions in the underlying data. Traditional clustering...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 35
SubjectTerms Clustering
Clustering Algorithms
Computer applications
Data Mining
Knowledge Discovery
Title Cure: an efficient clustering algorithm for large databases
URI https://dx.doi.org/10.1016/S0306-4379(01)00008-4
https://www.proquest.com/docview/26684429
https://www.proquest.com/docview/57541089
Volume 26
WOSCitedRecordID wos000167690000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6076
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002599
  issn: 0306-4379
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLag5UAPpRRQW0rxASFQlRInTmLDqaqmbNWA2hlpblbsJO1I08x0FtSf3-cly4CqgQOXKLLiRPF7fovf8iH0RuWByiJJPSKTyKMKtiIjiniJzzIq00SHsgzYRNLtssGA_3QonTMDJ5CUJbu95ZP_SmoYA2Lr0tl_IHf9UhiAeyA6XIHscP0rwp_0zzumhLnUyRpDU_B4qEYL3RHBVCSOLsfT4fzq2mQYjnQm-KHOE9X6bNa2VV2lkmEQ2_DZnNDaEsPWCcLnhQ0a1WbleQoW5eVwKR3x4srCNn9fOmZo5VlV5VV-7OnmhW3RaYvdl1jEykHbgsRpVNub_Q9ZbY8NLuoXwx9o1ABuzFhX-rPUH7v7Q5z2z85ErzPovZ3ceBo6TIfYHY7KQ7QeJBEH6bx-_LUz-FYrZPDwuA0m2Q81hVwfmq-_88l79-X7TJTflLWxQHpbaNO5DvjYkvwpepCX2-hJBcuBnZTeRhutHpPP0CfNDx9xWuKaG3DDDbjmBgxUxYYbcM0Nz1H_tNM7-eI5xAxPhTGfe1lBYxlEKs40ckBIspDLAlwAxlIYkbBb4VcjP4vSABQdi7NEkUBKg0lQ8DAKX6C1clzmOwiDJx7QpAiLXAdmlUx9mRIVgG7MY_Ap-C6i1SIJ5drJa1STkWjyBmFthV5b4RNh1lbQXXRUT5vYfiqrJrCKAsIZhdbYE8BHq6a-rigmQGjqSFha5uPFTIBVyihYYvc_AV4MJT7jeyufeIkeN_tlH63Np4v8FXqkfs2Hs-mB48U7EKWOaA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CURE%3A+an+efficient+clustering+algorithm+for+large+databases&rft.jtitle=Information+systems+%28Oxford%29&rft.au=Guha%2C+S&rft.au=Rastogi%2C+R&rft.au=Shim%2C+K&rft.date=2001-03-01&rft.issn=0306-4379&rft.volume=26&rft.issue=1&rft.spage=35&rft.epage=58&rft_id=info:doi/10.1016%2FS0306-4379%2801%2900008-4&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4379&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4379&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4379&client=summon