The Aquilegia pubiflora (Himalayan columbine) mediated synthesis of nanoceria for diverse biomedical applications
Herein, we report an eco-friendly, facile, one-pot, green synthesis of nanoceria for multiple biomedical applications. In the study, cerium oxide nanoparticles (CeO 2 -NPs) were synthesized using a simple aqueous extract of Aquilegia pubiflora as an effective reducing and capping agent. The biosynth...
Uložené v:
| Vydané v: | RSC advances Ročník 10; číslo 33; s. 19219 - 19231 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
Royal Society of Chemistry
20.05.2020
The Royal Society of Chemistry |
| Predmet: | |
| ISSN: | 2046-2069, 2046-2069 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Herein, we report an eco-friendly, facile, one-pot, green synthesis of nanoceria for multiple biomedical applications. In the study, cerium oxide nanoparticles (CeO
2
-NPs) were synthesized using a simple aqueous extract of
Aquilegia pubiflora
as an effective reducing and capping agent. The biosynthesized nanoparticles were characterized
via
UV-vis spectroscopy, X-ray powder diffraction (XRD), high-performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. The NPs were highly stable, exhibited high purity, and had a spherical morphology and mean size of 28 nm. FTIR and HPLC studies confirmed the successful capping of bioactive compounds on the nanoparticles. The well-characterized NPs were evaluated for a number of biomedical applications, and their antimicrobial (antifungal, antibacterial, and antileishmanial), protein kinase inhibition, anticancer, antioxidant, anti-diabetic and biocompatibility properties were studied. Our results showed that the
Aquilegia pubiflora
mediated CeO
2
-NPs were highly active against fungal strains, compared to the tested bacterial strains, with
Aspergillus niger
resulting in the largest zone of inhibition (15.1 ± 0.27 mm). The particles also exhibited dose dependent leishmanicidal activity with significant LC
50
values toward both the amastigote (114 μg mL
−1
) and promastigote (97 μg mL
−1
) forms of the parasite
Leishmania tropica
(KWH23). The NPs were found to be moderately active against the HepG2 cell line, showing 26.78% ± 1.16% inhibition at 200 μg mL
−1
. Last but not least, their highly biocompatible nature was observed with respect to freshly isolated human red blood cells (hRBCs), making the greenly synthesized CeO
2
-NPs a novel candidates for multidimensional medical applications. |
|---|---|
| AbstractList | Herein, we report an eco-friendly, facile, one-pot, green synthesis of nanoceria for multiple biomedical applications. In the study, cerium oxide nanoparticles (CeO₂-NPs) were synthesized using a simple aqueous extract of Aquilegia pubiflora as an effective reducing and capping agent. The biosynthesized nanoparticles were characterized via UV-vis spectroscopy, X-ray powder diffraction (XRD), high-performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. The NPs were highly stable, exhibited high purity, and had a spherical morphology and mean size of 28 nm. FTIR and HPLC studies confirmed the successful capping of bioactive compounds on the nanoparticles. The well-characterized NPs were evaluated for a number of biomedical applications, and their antimicrobial (antifungal, antibacterial, and antileishmanial), protein kinase inhibition, anticancer, antioxidant, anti-diabetic and biocompatibility properties were studied. Our results showed that the Aquilegia pubiflora mediated CeO₂-NPs were highly active against fungal strains, compared to the tested bacterial strains, with Aspergillus niger resulting in the largest zone of inhibition (15.1 ± 0.27 mm). The particles also exhibited dose dependent leishmanicidal activity with significant LC₅₀ values toward both the amastigote (114 μg mL⁻¹) and promastigote (97 μg mL⁻¹) forms of the parasite Leishmania tropica (KWH23). The NPs were found to be moderately active against the HepG2 cell line, showing 26.78% ± 1.16% inhibition at 200 μg mL⁻¹. Last but not least, their highly biocompatible nature was observed with respect to freshly isolated human red blood cells (hRBCs), making the greenly synthesized CeO₂-NPs a novel candidates for multidimensional medical applications. Herein, we report an eco-friendly, facile, one-pot, green synthesis of nanoceria for multiple biomedical applications. In the study, cerium oxide nanoparticles (CeO2-NPs) were synthesized using a simple aqueous extract of Aquilegia pubiflora as an effective reducing and capping agent. The biosynthesized nanoparticles were characterized via UV-vis spectroscopy, X-ray powder diffraction (XRD), high-performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. The NPs were highly stable, exhibited high purity, and had a spherical morphology and mean size of 28 nm. FTIR and HPLC studies confirmed the successful capping of bioactive compounds on the nanoparticles. The well-characterized NPs were evaluated for a number of biomedical applications, and their antimicrobial (antifungal, antibacterial, and antileishmanial), protein kinase inhibition, anticancer, antioxidant, anti-diabetic and biocompatibility properties were studied. Our results showed that the Aquilegia pubiflora mediated CeO2-NPs were highly active against fungal strains, compared to the tested bacterial strains, with Aspergillus niger resulting in the largest zone of inhibition (15.1 ± 0.27 mm). The particles also exhibited dose dependent leishmanicidal activity with significant LC50 values toward both the amastigote (114 μg mL-1) and promastigote (97 μg mL-1) forms of the parasite Leishmania tropica (KWH23). The NPs were found to be moderately active against the HepG2 cell line, showing 26.78% ± 1.16% inhibition at 200 μg mL-1. Last but not least, their highly biocompatible nature was observed with respect to freshly isolated human red blood cells (hRBCs), making the greenly synthesized CeO2-NPs a novel candidates for multidimensional medical applications.Herein, we report an eco-friendly, facile, one-pot, green synthesis of nanoceria for multiple biomedical applications. In the study, cerium oxide nanoparticles (CeO2-NPs) were synthesized using a simple aqueous extract of Aquilegia pubiflora as an effective reducing and capping agent. The biosynthesized nanoparticles were characterized via UV-vis spectroscopy, X-ray powder diffraction (XRD), high-performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. The NPs were highly stable, exhibited high purity, and had a spherical morphology and mean size of 28 nm. FTIR and HPLC studies confirmed the successful capping of bioactive compounds on the nanoparticles. The well-characterized NPs were evaluated for a number of biomedical applications, and their antimicrobial (antifungal, antibacterial, and antileishmanial), protein kinase inhibition, anticancer, antioxidant, anti-diabetic and biocompatibility properties were studied. Our results showed that the Aquilegia pubiflora mediated CeO2-NPs were highly active against fungal strains, compared to the tested bacterial strains, with Aspergillus niger resulting in the largest zone of inhibition (15.1 ± 0.27 mm). The particles also exhibited dose dependent leishmanicidal activity with significant LC50 values toward both the amastigote (114 μg mL-1) and promastigote (97 μg mL-1) forms of the parasite Leishmania tropica (KWH23). The NPs were found to be moderately active against the HepG2 cell line, showing 26.78% ± 1.16% inhibition at 200 μg mL-1. Last but not least, their highly biocompatible nature was observed with respect to freshly isolated human red blood cells (hRBCs), making the greenly synthesized CeO2-NPs a novel candidates for multidimensional medical applications. Herein, we report an eco-friendly, facile, one-pot, green synthesis of nanoceria for multiple biomedical applications. In the study, cerium oxide nanoparticles (CeO 2 -NPs) were synthesized using a simple aqueous extract of Aquilegia pubiflora as an effective reducing and capping agent. The biosynthesized nanoparticles were characterized via UV-vis spectroscopy, X-ray powder diffraction (XRD), high-performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. The NPs were highly stable, exhibited high purity, and had a spherical morphology and mean size of 28 nm. FTIR and HPLC studies confirmed the successful capping of bioactive compounds on the nanoparticles. The well-characterized NPs were evaluated for a number of biomedical applications, and their antimicrobial (antifungal, antibacterial, and antileishmanial), protein kinase inhibition, anticancer, antioxidant, anti-diabetic and biocompatibility properties were studied. Our results showed that the Aquilegia pubiflora mediated CeO 2 -NPs were highly active against fungal strains, compared to the tested bacterial strains, with Aspergillus niger resulting in the largest zone of inhibition (15.1 ± 0.27 mm). The particles also exhibited dose dependent leishmanicidal activity with significant LC 50 values toward both the amastigote (114 μg mL −1 ) and promastigote (97 μg mL −1 ) forms of the parasite Leishmania tropica (KWH23). The NPs were found to be moderately active against the HepG2 cell line, showing 26.78% ± 1.16% inhibition at 200 μg mL −1 . Last but not least, their highly biocompatible nature was observed with respect to freshly isolated human red blood cells (hRBCs), making the greenly synthesized CeO 2 -NPs a novel candidates for multidimensional medical applications. Herein, we report an eco-friendly, facile, one-pot, green synthesis of nanoceria for multiple biomedical applications. In the study, cerium oxide nanoparticles (CeO2-NPs) were synthesized using a simple aqueous extract of Aquilegia pubiflora as an effective reducing and capping agent. The biosynthesized nanoparticles were characterized via UV-vis spectroscopy, X-ray powder diffraction (XRD), high-performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. The NPs were highly stable, exhibited high purity, and had a spherical morphology and mean size of 28 nm. FTIR and HPLC studies confirmed the successful capping of bioactive compounds on the nanoparticles. The well-characterized NPs were evaluated for a number of biomedical applications, and their antimicrobial (antifungal, antibacterial, and antileishmanial), protein kinase inhibition, anticancer, antioxidant, anti-diabetic and biocompatibility properties were studied. Our results showed that the Aquilegia pubiflora mediated CeO2-NPs were highly active against fungal strains, compared to the tested bacterial strains, with Aspergillus niger resulting in the largest zone of inhibition (15.1 ± 0.27 mm). The particles also exhibited dose dependent leishmanicidal activity with significant LC50 values toward both the amastigote (114 μg mL−1) and promastigote (97 μg mL−1) forms of the parasite Leishmania tropica (KWH23). The NPs were found to be moderately active against the HepG2 cell line, showing 26.78% ± 1.16% inhibition at 200 μg mL−1. Last but not least, their highly biocompatible nature was observed with respect to freshly isolated human red blood cells (hRBCs), making the greenly synthesized CeO2-NPs a novel candidates for multidimensional medical applications. Graphical illustration of eco-friendly, facile, one-pot, green synthesis of nanoceria for multiple biomedical applications. Herein, we report an eco-friendly, facile, one-pot, green synthesis of nanoceria for multiple biomedical applications. In the study, cerium oxide nanoparticles (CeO -NPs) were synthesized using a simple aqueous extract of as an effective reducing and capping agent. The biosynthesized nanoparticles were characterized UV-vis spectroscopy, X-ray powder diffraction (XRD), high-performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. The NPs were highly stable, exhibited high purity, and had a spherical morphology and mean size of 28 nm. FTIR and HPLC studies confirmed the successful capping of bioactive compounds on the nanoparticles. The well-characterized NPs were evaluated for a number of biomedical applications, and their antimicrobial (antifungal, antibacterial, and antileishmanial), protein kinase inhibition, anticancer, antioxidant, anti-diabetic and biocompatibility properties were studied. Our results showed that the mediated CeO -NPs were highly active against fungal strains, compared to the tested bacterial strains, with resulting in the largest zone of inhibition (15.1 ± 0.27 mm). The particles also exhibited dose dependent leishmanicidal activity with significant LC values toward both the amastigote (114 μg mL ) and promastigote (97 μg mL ) forms of the parasite (KWH23). The NPs were found to be moderately active against the HepG2 cell line, showing 26.78% ± 1.16% inhibition at 200 μg mL . Last but not least, their highly biocompatible nature was observed with respect to freshly isolated human red blood cells (hRBCs), making the greenly synthesized CeO -NPs a novel candidates for multidimensional medical applications. Herein, we report an eco-friendly, facile, one-pot, green synthesis of nanoceria for multiple biomedical applications. In the study, cerium oxide nanoparticles (CeO2-NPs) were synthesized using a simple aqueous extract of Aquilegia pubiflora as an effective reducing and capping agent. The biosynthesized nanoparticles were characterized via UV-vis spectroscopy, X-ray powder diffraction (XRD), high-performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. The NPs were highly stable, exhibited high purity, and had a spherical morphology and mean size of 28 nm. FTIR and HPLC studies confirmed the successful capping of bioactive compounds on the nanoparticles. The well-characterized NPs were evaluated for a number of biomedical applications, and their antimicrobial (antifungal, antibacterial, and antileishmanial), protein kinase inhibition, anticancer, antioxidant, anti-diabetic and biocompatibility properties were studied. Our results showed that the Aquilegia pubiflora mediated CeO2-NPs were highly active against fungal strains, compared to the tested bacterial strains, with Aspergillus niger resulting in the largest zone of inhibition (15.1 ± 0.27 mm). The particles also exhibited dose dependent leishmanicidal activity with significant LC50 values toward both the amastigote (114 μg mL−1) and promastigote (97 μg mL−1) forms of the parasite Leishmania tropica (KWH23). The NPs were found to be moderately active against the HepG2 cell line, showing 26.78% ± 1.16% inhibition at 200 μg mL−1. Last but not least, their highly biocompatible nature was observed with respect to freshly isolated human red blood cells (hRBCs), making the greenly synthesized CeO2-NPs a novel candidates for multidimensional medical applications. |
| Author | Jan, Hasnain Rahman, Lubna Ullah, Niamat Ansir, Rotaba Khan, Muhammad Aslam Usman, Hazrat Shah, Muzamil Faisal, Shah |
| Author_xml | – sequence: 1 givenname: Hasnain orcidid: 0000-0002-7225-2595 surname: Jan fullname: Jan, Hasnain organization: Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan, Department of Biotechnology – sequence: 2 givenname: Muhammad Aslam surname: Khan fullname: Khan, Muhammad Aslam organization: Department of Biotechnology, International Islamic University, Islamabad, Pakistan – sequence: 3 givenname: Hazrat surname: Usman fullname: Usman, Hazrat organization: Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan – sequence: 4 givenname: Muzamil surname: Shah fullname: Shah, Muzamil organization: Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan – sequence: 5 givenname: Rotaba orcidid: 0000-0002-0767-5161 surname: Ansir fullname: Ansir, Rotaba organization: Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan – sequence: 6 givenname: Shah surname: Faisal fullname: Faisal, Shah organization: Department of Biotechnology, Bacha Khan University, Pakistan – sequence: 7 givenname: Niamat surname: Ullah fullname: Ullah, Niamat organization: Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan – sequence: 8 givenname: Lubna surname: Rahman fullname: Rahman, Lubna organization: Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35515478$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkl1LHDEUhoNY6ke98QdIwBstbJuPSWbmRtjaDwtCodjrkElO3Eg22U1mhP33jVVbK4LJRQ7kOS_ve5I9tB1TBIQOKflACe8_fiY_54T2Lf20hXYZaeSMEdlvP6l30EEpN6QuKSiT9C3a4UJQ0bTdLlpfLQDP15MPcO01Xk2DdyFljU8u_FIHvdERmxSm5eAjnOIlWK9HsLhs4riA4gtODkcdk4Fc-13K2PpbyAXw4NMdbnTAerUKtRh9iuUdeuN0KHDwcO6jX1-_XJ1fzC5_fPt-Pr-cGS77cWbbar03YKQ0VDvqZMeYaYi0lg2StI0VdOi0M0RYEHUTRztDJQhuLXDK99HZvW7NVH0YiGPWQa1yzZU3Kmmv_r-JfqGu063qiWhI11eBkweBnNYTlFEtfTEQgo6QpqKYlJR0rM7ydVS0DZe8Ebyix8_QmzTlWCehWE3Xs5YzVqmjp-b_un58uAqQe8DkVEoGp4wf_wy4ZvFBUaLuvof69z1qy_tnLY-qL8C_ATWJuy4 |
| CitedBy_id | crossref_primary_10_1016_j_jelechem_2021_115401 crossref_primary_10_1016_j_mtchem_2023_101894 crossref_primary_10_1016_j_rechem_2022_100591 crossref_primary_10_1371_journal_pone_0310997 crossref_primary_10_1016_j_jksus_2024_103256 crossref_primary_10_1016_j_jece_2023_111328 crossref_primary_10_1016_j_jpcs_2023_111748 crossref_primary_10_1016_j_heliyon_2024_e25285 crossref_primary_10_1016_j_molstruc_2024_141017 crossref_primary_10_1007_s11468_023_02142_y crossref_primary_10_1016_j_bse_2022_104462 crossref_primary_10_1016_j_rsurfi_2025_100562 crossref_primary_10_1007_s12668_023_01114_0 crossref_primary_10_1007_s42247_024_00651_y crossref_primary_10_1016_j_sjbs_2021_05_035 crossref_primary_10_1016_j_sjbs_2021_02_044 crossref_primary_10_1080_10667857_2024_2334515 crossref_primary_10_3390_coatings11070849 crossref_primary_10_1016_j_envres_2023_116148 crossref_primary_10_3390_molecules27196207 crossref_primary_10_1016_j_bcab_2021_102176 crossref_primary_10_1016_j_envres_2023_118001 crossref_primary_10_1186_s12906_021_03333_y crossref_primary_10_1002_jmr_3015 crossref_primary_10_1016_j_jics_2024_101302 crossref_primary_10_1002_slct_202502134 crossref_primary_10_1016_j_ceramint_2020_11_230 crossref_primary_10_1088_2053_1591_ad68cf crossref_primary_10_3390_mi13050668 crossref_primary_10_1007_s10904_023_02751_4 crossref_primary_10_1016_j_ijbiomac_2022_03_162 crossref_primary_10_1016_j_inoche_2025_114576 crossref_primary_10_1038_s41598_025_14654_0 crossref_primary_10_1051_e3sconf_202345301018 crossref_primary_10_1016_j_heliyon_2024_e40818 crossref_primary_10_1002_jemt_23726 crossref_primary_10_1007_s00449_025_03176_8 crossref_primary_10_3390_mi13081259 crossref_primary_10_1007_s10653_024_02104_1 crossref_primary_10_1016_j_ijbiomac_2024_136704 crossref_primary_10_1038_s41598_024_68272_3 crossref_primary_10_1016_j_colsurfb_2025_114798 crossref_primary_10_1155_2022_5994033 crossref_primary_10_1038_s41598_024_52217_x crossref_primary_10_3390_ijms25010681 crossref_primary_10_3390_catal11070780 crossref_primary_10_1038_s41598_024_76475_x crossref_primary_10_1016_j_ceramint_2022_09_087 crossref_primary_10_1007_s10876_023_02512_w crossref_primary_10_1080_23311932_2023_2293332 crossref_primary_10_1007_s42452_025_06915_4 crossref_primary_10_1088_1361_6528_abc2eb crossref_primary_10_1016_j_bcdf_2023_100368 crossref_primary_10_1016_j_jscs_2021_101297 |
| Cites_doi | 10.1016/j.btre.2017.11.008 10.1016/j.procbio.2013.10.007 10.1016/j.cossms.2014.11.005 10.1021/nn300934k 10.1038/s41598-017-04098-6 10.1002/adma.201901556 10.1039/C2TB00132B 10.1111/j.1151-2916.2000.tb01371.x 10.1088/2053-1591/aaee44 10.1084/jem.153.5.1302 10.1128/AEM.63.8.2971-2976.1997 10.1016/j.jphotobiol.2016.07.029 10.2147/IJN.S113508 10.1016/j.jep.2014.11.016 10.1021/mp300382n 10.1016/j.bmcl.2013.03.029 10.1038/ja.2017.30 10.1016/j.ceramint.2013.10.026 10.1016/j.actatropica.2017.04.029 10.1016/j.jphotobiol.2016.05.003 10.1186/s12906-017-1951-5 10.1016/j.jallcom.2017.07.054 10.1002/jcp.27303 10.1021/nn800511k 10.3109/17435390.2012.739665 10.1021/jf803011r 10.1016/j.bios.2017.04.037 10.1080/09637480601093269 10.1021/nl052326h 10.1063/1.5032379 10.5588/pha.13.0037 10.1021/nn100816s 10.1002/jps.20627 10.1093/jn/133.9.2812 10.1016/S0254-6272(17)30017-1 10.1111/j.1472-765X.2004.01553.x 10.1016/j.ceramint.2011.05.063 10.1039/C5RA13206A 10.1016/j.jphotobiol.2016.05.019 10.1016/j.apsusc.2017.01.219 10.9767/bcrec.5.1.7125.7-30 10.18632/oncotarget.9969 10.1016/j.apsusc.2016.02.161 10.1038/s41598-018-25390-z 10.1016/j.msec.2015.01.042 10.1016/j.jep.2015.11.039 10.1186/s12951-017-0308-z 10.1016/j.tiv.2013.06.002 10.1016/j.foodchem.2009.10.030 10.1016/j.msec.2020.110889 10.1016/j.jiec.2016.03.032 10.1093/mnrasl/slt106 10.1021/es103309n 10.1038/nrendo.2016.105 |
| ContentType | Journal Article |
| Copyright | This journal is © The Royal Society of Chemistry. Copyright Royal Society of Chemistry 2020 This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry |
| Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: Copyright Royal Society of Chemistry 2020 – notice: This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry |
| DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7S9 L.6 7X8 5PM |
| DOI | 10.1039/D0RA01971B |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE - Academic CrossRef PubMed Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 2046-2069 |
| EndPage | 19231 |
| ExternalDocumentID | PMC9054089 35515478 10_1039_D0RA01971B |
| Genre | Journal Article |
| GroupedDBID | 0-7 0R~ 53G AAFWJ AAHBH AAIWI AAJAE AARTK AAWGC AAXHV AAYXX ABEMK ABIQK ABPDG ABXOH ACGFS ADBBV ADMRA AEFDR AENEX AESAV AFLYV AFPKN AFVBQ AGMRB AGRSR AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BCNDV BLAPV BSQNT C6K CITATION EBS EE0 EF- GROUPED_DOAJ H13 HZ~ H~N J3I M~E O9- OK1 PGMZT R7C R7G RCNCU RPM RPMJG RRC RSCEA RVUXY SLH ZCN -JG ABGFH AGEGJ AGSTE NPM SMJ 7SR 8BQ 8FD JG9 7S9 L.6 7X8 5PM |
| ID | FETCH-LOGICAL-c369t-d70699cec66c1af1f6822c406dd2b6074d51b8afc05de5e5e0f18c16e53dde313 |
| ISICitedReferencesCount | 74 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000537781700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2046-2069 |
| IngestDate | Tue Nov 04 01:54:34 EST 2025 Thu Sep 04 20:22:26 EDT 2025 Thu Oct 02 07:45:09 EDT 2025 Fri Sep 12 10:30:35 EDT 2025 Thu Jan 02 22:54:22 EST 2025 Tue Nov 18 22:35:30 EST 2025 Sat Nov 29 06:11:58 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 33 |
| Language | English |
| License | This journal is © The Royal Society of Chemistry. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c369t-d70699cec66c1af1f6822c406dd2b6074d51b8afc05de5e5e0f18c16e53dde313 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-7225-2595 0000-0002-0767-5161 |
| OpenAccessLink | http://dx.doi.org/10.1039/d0ra01971b |
| PMID | 35515478 |
| PQID | 2406927322 |
| PQPubID | 2047525 |
| PageCount | 13 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9054089 proquest_miscellaneous_2661082355 proquest_miscellaneous_2574363453 proquest_journals_2406927322 pubmed_primary_35515478 crossref_citationtrail_10_1039_D0RA01971B crossref_primary_10_1039_D0RA01971B |
| PublicationCentury | 2000 |
| PublicationDate | 20200520 |
| PublicationDateYYYYMMDD | 2020-05-20 |
| PublicationDate_xml | – month: 5 year: 2020 text: 20200520 day: 20 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Cambridge |
| PublicationTitle | RSC advances |
| PublicationTitleAlternate | RSC Adv |
| PublicationYear | 2020 |
| Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
| Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
| References | Zimmet (D0RA01971B-(cit55)/*[position()=1]) 2016; 12 Thatoi (D0RA01971B-(cit12)/*[position()=1]) 2016; 163 Xia (D0RA01971B-(cit42)/*[position()=1]) 2008; 2 Li (D0RA01971B-(cit49)/*[position()=1]) 2012; 6 Morais (D0RA01971B-(cit16)/*[position()=1]) 2013; 436 Pellegrini (D0RA01971B-(cit57)/*[position()=1]) 2003; 133 Ahmad (D0RA01971B-(cit18)/*[position()=1]) 2016; 36 Hano (D0RA01971B-(cit21)/*[position()=1]) 2013; 23 Howlett (D0RA01971B-(cit43)/*[position()=1]) 1997; 63 Ahmad (D0RA01971B-(cit47)/*[position()=1]) 2016; 161 Lu (D0RA01971B-(cit51)/*[position()=1]) 2016; 7 Ahmad (D0RA01971B-(cit19)/*[position()=1]) 2015; 5 Matinise (D0RA01971B-(cit24)/*[position()=1]) 2017; 406 Asati (D0RA01971B-(cit54)/*[position()=1]) 2010; 4 Maqbool (D0RA01971B-(cit31)/*[position()=1]) 2016; 11 Adnan (D0RA01971B-(cit15)/*[position()=1]) 2012; 6 Nair (D0RA01971B-(cit56)/*[position()=1]) 2013; 3 Yang (D0RA01971B-(cit52)/*[position()=1]) 2019 Slavin (D0RA01971B-(cit39)/*[position()=1]) 2017; 15 Prakash (D0RA01971B-(cit58)/*[position()=1]) 2007; 58 Charbgoo (D0RA01971B-(cit2)/*[position()=1]) 2017; 96 Martens (D0RA01971B-(cit38)/*[position()=1]) 2017; 70 Arumugam (D0RA01971B-(cit34)/*[position()=1]) 2015; 49 Prasad (D0RA01971B-(cit40)/*[position()=1]) 2010; 5 Surendra (D0RA01971B-(cit32)/*[position()=1]) 2016; 161 Bylka (D0RA01971B-(cit25)/*[position()=1]) 2004; 39 Amin (D0RA01971B-(cit61)/*[position()=1]) 2006; 95 Mushtaq (D0RA01971B-(cit26)/*[position()=1]) 2016; 178 Evans (D0RA01971B-(cit60)/*[position()=1]) 2013 Hussain (D0RA01971B-(cit14)/*[position()=1]) 2011; 43 Mushtaq (D0RA01971B-(cit20)/*[position()=1]) 2019 Zhang (D0RA01971B-(cit7)/*[position()=1]) 2011; 45 Caputo (D0RA01971B-(cit5)/*[position()=1]) 2017; 7 Ahmed (D0RA01971B-(cit13)/*[position()=1]) 2015; 159 Castano (D0RA01971B-(cit4)/*[position()=1]) 2015; 19 Kumar (D0RA01971B-(cit48)/*[position()=1]) 2016; 37 Zahra (D0RA01971B-(cit22)/*[position()=1]) 2017; 17 Munusamy (D0RA01971B-(cit35)/*[position()=1]) 2014; 2 Demokritou (D0RA01971B-(cit8)/*[position()=1]) 2013; 7 Tagliazucchi (D0RA01971B-(cit23)/*[position()=1]) 2010; 120 Akbari (D0RA01971B-(cit45)/*[position()=1]) 2017; 172 Walkey (D0RA01971B-(cit1)/*[position()=1]) 2015; 2 Modena (D0RA01971B-(cit36)/*[position()=1]) 2019; 31 Jebali (D0RA01971B-(cit46)/*[position()=1]) 2013; 27 Ali (D0RA01971B-(cit30)/*[position()=1]) 2018; 6 Ali (D0RA01971B-(cit27)/*[position()=1]) 2018; 1953 Tong (D0RA01971B-(cit44)/*[position()=1]) 2013; 1 Murray (D0RA01971B-(cit50)/*[position()=1]) 1981; 153 Rohini (D0RA01971B-(cit29)/*[position()=1]) 2017; 724 Nourmohammadi (D0RA01971B-(cit53)/*[position()=1]) 2019; 234 Wang (D0RA01971B-(cit28)/*[position()=1]) 2016; 370 Rajeshkumar (D0RA01971B-(cit3)/*[position()=1]) 2018; 17 Vimala (D0RA01971B-(cit37)/*[position()=1]) 2014; 49 He (D0RA01971B-(cit10)/*[position()=1]) 2012; 38 Darroudi (D0RA01971B-(cit11)/*[position()=1]) 2014; 40 Brayner (D0RA01971B-(cit41)/*[position()=1]) 2006; 6 Rojas (D0RA01971B-(cit6)/*[position()=1]) 2012; 9 Hirano (D0RA01971B-(cit9)/*[position()=1]) 2000; 83 Shah (D0RA01971B-(cit17)/*[position()=1]) 2020 Eriksson (D0RA01971B-(cit33)/*[position()=1]) 2018; 8 Dudonne (D0RA01971B-(cit59)/*[position()=1]) 2009; 57 |
| References_xml | – volume: 17 start-page: 1 year: 2018 ident: D0RA01971B-(cit3)/*[position()=1] publication-title: Biotechnol. Rep. doi: 10.1016/j.btre.2017.11.008 – volume: 2 start-page: 33 year: 2015 ident: D0RA01971B-(cit1)/*[position()=1] publication-title: Environ. Sci.: Nano – volume: 49 start-page: 160 year: 2014 ident: D0RA01971B-(cit37)/*[position()=1] publication-title: Process Biochem. doi: 10.1016/j.procbio.2013.10.007 – volume: 19 start-page: 69 year: 2015 ident: D0RA01971B-(cit4)/*[position()=1] publication-title: Curr. Opin. Solid State Mater. Sci. doi: 10.1016/j.cossms.2014.11.005 – volume: 6 start-page: 5164 year: 2012 ident: D0RA01971B-(cit49)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn300934k – volume: 7 start-page: 4636 year: 2017 ident: D0RA01971B-(cit5)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/s41598-017-04098-6 – volume: 31 start-page: 1901556 year: 2019 ident: D0RA01971B-(cit36)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201901556 – volume: 2 start-page: 318 year: 2014 ident: D0RA01971B-(cit35)/*[position()=1] publication-title: International Journal of Innovative Research in Science, Engineering and Technology – volume: 1 start-page: 454 year: 2013 ident: D0RA01971B-(cit44)/*[position()=1] publication-title: J. Mater. Chem. B doi: 10.1039/C2TB00132B – volume: 83 start-page: 1287 year: 2000 ident: D0RA01971B-(cit9)/*[position()=1] publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.2000.tb01371.x – volume: 6 start-page: 025513 year: 2018 ident: D0RA01971B-(cit30)/*[position()=1] publication-title: Mater. Res. Express doi: 10.1088/2053-1591/aaee44 – volume: 153 start-page: 1302 year: 1981 ident: D0RA01971B-(cit50)/*[position()=1] publication-title: J. Exp. Med. doi: 10.1084/jem.153.5.1302 – volume: 43 start-page: 79 year: 2011 ident: D0RA01971B-(cit14)/*[position()=1] publication-title: Pak. J. Bot. – volume: 63 start-page: 2971 year: 1997 ident: D0RA01971B-(cit43)/*[position()=1] publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.63.8.2971-2976.1997 – start-page: e50166 year: 2013 ident: D0RA01971B-(cit60)/*[position()=1] publication-title: J. Visualized Exp. – volume: 163 start-page: 311 year: 2016 ident: D0RA01971B-(cit12)/*[position()=1] publication-title: J. Photochem. Photobiol. B Biol. doi: 10.1016/j.jphotobiol.2016.07.029 – volume: 11 start-page: 5015 year: 2016 ident: D0RA01971B-(cit31)/*[position()=1] publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S113508 – volume: 159 start-page: 209 year: 2015 ident: D0RA01971B-(cit13)/*[position()=1] publication-title: J. Ethnopharmacol. doi: 10.1016/j.jep.2014.11.016 – volume: 9 start-page: 3543 year: 2012 ident: D0RA01971B-(cit6)/*[position()=1] publication-title: Mol. Pharm. doi: 10.1021/mp300382n – volume: 23 start-page: 3007 year: 2013 ident: D0RA01971B-(cit21)/*[position()=1] publication-title: Bioorg. Med. Chem. Lett doi: 10.1016/j.bmcl.2013.03.029 – volume: 70 start-page: 520 year: 2017 ident: D0RA01971B-(cit38)/*[position()=1] publication-title: J. Antibiot. doi: 10.1038/ja.2017.30 – volume: 40 start-page: 2863 year: 2014 ident: D0RA01971B-(cit11)/*[position()=1] publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2013.10.026 – volume: 172 start-page: 86 year: 2017 ident: D0RA01971B-(cit45)/*[position()=1] publication-title: Acta Trop. doi: 10.1016/j.actatropica.2017.04.029 – volume: 161 start-page: 17 year: 2016 ident: D0RA01971B-(cit47)/*[position()=1] publication-title: J. Photochem. Photobiol. B Biol. doi: 10.1016/j.jphotobiol.2016.05.003 – volume: 17 start-page: 443 year: 2017 ident: D0RA01971B-(cit22)/*[position()=1] publication-title: BMC Compl. Alternative Med. doi: 10.1186/s12906-017-1951-5 – volume: 724 start-page: 897 year: 2017 ident: D0RA01971B-(cit29)/*[position()=1] publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.07.054 – volume: 234 start-page: 4987 year: 2019 ident: D0RA01971B-(cit53)/*[position()=1] publication-title: J. Cell. Physiol. doi: 10.1002/jcp.27303 – volume: 2 start-page: 2121 year: 2008 ident: D0RA01971B-(cit42)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn800511k – volume: 7 start-page: 1338 year: 2013 ident: D0RA01971B-(cit8)/*[position()=1] publication-title: Nanotoxicology doi: 10.3109/17435390.2012.739665 – volume: 57 start-page: 1768 year: 2009 ident: D0RA01971B-(cit59)/*[position()=1] publication-title: J. Agric. Food Chem. doi: 10.1021/jf803011r – volume: 96 start-page: 33 year: 2017 ident: D0RA01971B-(cit2)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2017.04.037 – volume: 58 start-page: 18 year: 2007 ident: D0RA01971B-(cit58)/*[position()=1] publication-title: Int. J. Nutr. Food Sci. doi: 10.1080/09637480601093269 – volume: 6 start-page: 866 year: 2006 ident: D0RA01971B-(cit41)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl052326h – volume: 1953 start-page: 030044 year: 2018 ident: D0RA01971B-(cit27)/*[position()=1] publication-title: AIP Conf. Proc. doi: 10.1063/1.5032379 – volume: 3 start-page: 38 year: 2013 ident: D0RA01971B-(cit56)/*[position()=1] publication-title: Public Health Action doi: 10.5588/pha.13.0037 – volume: 6 start-page: 4113 year: 2012 ident: D0RA01971B-(cit15)/*[position()=1] publication-title: J. Med. Plants Res. – volume: 4 start-page: 5321 year: 2010 ident: D0RA01971B-(cit54)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn100816s – volume: 95 start-page: 1173 year: 2006 ident: D0RA01971B-(cit61)/*[position()=1] publication-title: J. Pharmaceut. Sci. doi: 10.1002/jps.20627 – volume: 133 start-page: 2812 year: 2003 ident: D0RA01971B-(cit57)/*[position()=1] publication-title: J. Nutr. doi: 10.1093/jn/133.9.2812 – start-page: 1 year: 2019 ident: D0RA01971B-(cit20)/*[position()=1] publication-title: Arabian J. Sci. Eng. – volume: 36 start-page: 794 year: 2016 ident: D0RA01971B-(cit18)/*[position()=1] publication-title: J. Tradit. Chin. Med. doi: 10.1016/S0254-6272(17)30017-1 – volume: 39 start-page: 93 year: 2004 ident: D0RA01971B-(cit25)/*[position()=1] publication-title: Lett. Appl. Microbiol. doi: 10.1111/j.1472-765X.2004.01553.x – volume: 38 start-page: S501 year: 2012 ident: D0RA01971B-(cit10)/*[position()=1] publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2011.05.063 – volume: 5 start-page: 73793 year: 2015 ident: D0RA01971B-(cit19)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C5RA13206A – volume: 161 start-page: 122 year: 2016 ident: D0RA01971B-(cit32)/*[position()=1] publication-title: J. Photochem. Photobiol. B Biol. doi: 10.1016/j.jphotobiol.2016.05.019 – volume: 406 start-page: 339 year: 2017 ident: D0RA01971B-(cit24)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.01.219 – volume: 5 start-page: 7 year: 2010 ident: D0RA01971B-(cit40)/*[position()=1] publication-title: Bull. Chem. React. Eng. Catal. doi: 10.9767/bcrec.5.1.7125.7-30 – volume: 7 start-page: 45889 year: 2016 ident: D0RA01971B-(cit51)/*[position()=1] publication-title: Oncotarget doi: 10.18632/oncotarget.9969 – volume: 370 start-page: 83 year: 2016 ident: D0RA01971B-(cit28)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.02.161 – volume: 8 start-page: 6999 year: 2018 ident: D0RA01971B-(cit33)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/s41598-018-25390-z – volume: 49 start-page: 408 year: 2015 ident: D0RA01971B-(cit34)/*[position()=1] publication-title: Mater. Sci. Eng., C doi: 10.1016/j.msec.2015.01.042 – volume: 178 start-page: 9 year: 2016 ident: D0RA01971B-(cit26)/*[position()=1] publication-title: J. Ethnopharmacol. doi: 10.1016/j.jep.2015.11.039 – volume: 15 start-page: 65 year: 2017 ident: D0RA01971B-(cit39)/*[position()=1] publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-017-0308-z – volume: 27 start-page: 1896 year: 2013 ident: D0RA01971B-(cit46)/*[position()=1] publication-title: Toxicol In Vitro doi: 10.1016/j.tiv.2013.06.002 – volume: 120 start-page: 599 year: 2010 ident: D0RA01971B-(cit23)/*[position()=1] publication-title: Food Chem. doi: 10.1016/j.foodchem.2009.10.030 – start-page: 110889 year: 2020 ident: D0RA01971B-(cit17)/*[position()=1] publication-title: Mater. Sci. Eng., C doi: 10.1016/j.msec.2020.110889 – volume: 37 start-page: 224 year: 2016 ident: D0RA01971B-(cit48)/*[position()=1] publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2016.03.032 – volume: 436 start-page: L30 year: 2013 ident: D0RA01971B-(cit16)/*[position()=1] publication-title: Mon. Not. Roy. Astron. Soc. Lett. doi: 10.1093/mnrasl/slt106 – volume: 45 start-page: 3725 year: 2011 ident: D0RA01971B-(cit7)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es103309n – volume: 12 start-page: 616 year: 2016 ident: D0RA01971B-(cit55)/*[position()=1] publication-title: Nat. Rev. Endocrinol. doi: 10.1038/nrendo.2016.105 – start-page: 1 year: 2019 ident: D0RA01971B-(cit52)/*[position()=1] publication-title: Nat. Rev. Gastroenterol. Hepatol. |
| SSID | ssj0000651261 |
| Score | 2.5305264 |
| Snippet | Herein, we report an eco-friendly, facile, one-pot, green synthesis of nanoceria for multiple biomedical applications. In the study, cerium oxide nanoparticles... |
| SourceID | pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 19219 |
| SubjectTerms | antileishmanial properties Antioxidants Aquilegia Aspergillus niger Biocompatibility Biomedical materials biosynthesis Capping Cerium oxides Chemistry dose response Electron microscopy Erythrocytes Fourier transform infrared spectroscopy Fourier transforms fungi Fungicides High-performance liquid chromatography human cell lines humans Infrared spectroscopy Kinases Leishmania tropica Microscopy Morphology nanoceria Nanoparticles parasites protein kinases Raman spectroscopy Spectrum analysis Synthesis transmission electron microscopy ultraviolet-visible spectroscopy X ray powder diffraction X-ray diffraction |
| Title | The Aquilegia pubiflora (Himalayan columbine) mediated synthesis of nanoceria for diverse biomedical applications |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35515478 https://www.proquest.com/docview/2406927322 https://www.proquest.com/docview/2574363453 https://www.proquest.com/docview/2661082355 https://pubmed.ncbi.nlm.nih.gov/PMC9054089 |
| Volume | 10 |
| WOSCitedRecordID | wos000537781700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 2046-2069 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000651261 issn: 2046-2069 databaseCode: DOA dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2046-2069 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000651261 issn: 2046-2069 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe6gQQviG8KozICIaYqmhPXSfxYxqZKtAVtLepb5DgJrdSm39O2B_4f_kvOTuKkME3wgCpFle2mlu9n3-_s8x1C79zII6DlwEwlLLFaTEQW92NiMUmES1XIKp0z8lvX6_f90Yh_rdV-FndhLqZemvqXl3zxX0UNZSBsdXX2H8RtXgoF8B2EDk8QOzz_WvDt5RZm-_eJUGGsJwnY5EJRyc5kJqbiSijXc1iUwizIaHZ7RDHP9VUKfDAPUZKKFHQbdFh7IkbafyNuZtf1sxADlbPvKsc9Oz8uXAvW5QK3TkWe-KvEY287FrOZiAAkAMzm53FZ1RHXgM3mcD0ry87HQm8C9bbXalumumHh6LN2hxiIZdsihU-q9jnJM9tlKkmvfQ6Y7fCjLIuLWahJBZCUVpZdFdSNV3S4pq03KghCVXzViKwEcFvPDks1WBz9978Ep8NuNxicjAbvF0tLJShTB_l5tpY9dMfxGFfeg70f5XYeMDkbjNEiAC7lR-V_7FKeP-yY391xK_xm8BA9yA0T3M4A9QjV4vQxumdG7QlaArCwARY2wMIfDKywgdUhLkCFDajwPMEGVBhAhXNQ4RJUuAqqp2h4ejI47lh5wg5LUpdvLJj3Lucylq4rbZHYiQv0UwJljCIndIGsRswOfZFIwqKYwYckti9tN2YUtCy16TO0n87T-AXCXmJLR7CQ05C3ZCvhSYskocMk2C_Uo3YdHRZjGsg8mr1KqjINtFcF5cEnctbW4_-xjt6atosshsuNrQ4K0QT5dF4H-mI4MHzHqaM3phoGXh2riTSeb6ENAxbu0hajt7QBGqzOtBmro-eZtE1XoNBWUfXqyNvBgWmgIsDv1qSTsY4Ez5XB5fOXt3f9FbpfzsMDtL9ZbePX6K682EzWqwba80Z-Q-9FNTSmfwGOSdkf |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Aquilegia+pubiflora+%28Himalayan+columbine%29+mediated+synthesis+of+nanoceria+for+diverse+biomedical+applications&rft.jtitle=RSC+advances&rft.au=Hasnain%2C+Jan&rft.au=Muhammad+Aslam+Khan&rft.au=Hazrat+Usman&rft.au=Shah%2C+Muzamil&rft.date=2020-05-20&rft.pub=Royal+Society+of+Chemistry&rft.eissn=2046-2069&rft.volume=10&rft.issue=33&rft.spage=19219&rft.epage=19231&rft_id=info:doi/10.1039%2Fd0ra01971b&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon |