An Efficient Hybrid Multi-Objective Optimization Method Coupling Global Evolutionary and Local Gradient Searches for Solving Aerodynamic Optimization Problems

Aerodynamic shape optimization is frequently complicated and challenging due to the involvement of multiple objectives, large-scale decision variables, and expensive cost function evaluation. This paper presents a bilayer parallel hybrid algorithm framework coupling multi-objective local search and...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematics (Basel) Ročník 11; číslo 18; s. 3844
Hlavní autori: Cao, Fan, Tang, Zhili, Zhu, Caicheng, Zhao, Xin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.09.2023
Predmet:
ISSN:2227-7390, 2227-7390
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Aerodynamic shape optimization is frequently complicated and challenging due to the involvement of multiple objectives, large-scale decision variables, and expensive cost function evaluation. This paper presents a bilayer parallel hybrid algorithm framework coupling multi-objective local search and global evolution mechanism to improve the optimization efficiency and convergence accuracy in high-dimensional design space. Specifically, an efficient multi-objective hybrid algorithm (MOHA) and a gradient-based surrogate-assisted multi-objective hybrid algorithm (GS-MOHA) are developed under this framework. In MOHA, a novel multi-objective gradient operator is proposed to accelerate the exploration of the Pareto front, and it introduces new individuals to enhance the diversity of the population. Afterward, MOHA achieves a trade-off between exploitation and exploration by selecting elite individuals in the local search space during the evolutionary process. Furthermore, a surrogate-assisted hybrid algorithm based on the gradient-enhanced Kriging with the partial least squares(GEKPLS) approach is established to improve the engineering applicability of MOHA. The optimization results of benchmark functions demonstrate that MOHA is less constrained by dimensionality and can solve multi-objective optimization problems (MOPs) with up to 1000 decision variables. Compared to existing MOEAs, MOHA demonstrates notable enhancements in optimization efficiency and convergence accuracy, specifically achieving a remarkable 5–10 times increase in efficiency. In addition, the optimization efficiency of GS-MOHA is approximately five times that of MOEA/D-EGO and twice that of K-RVEA in the 30-dimensional test functions. Finally, the multi-objective optimization results of the airfoil shape design validate the effectiveness of the proposed algorithms and their potential for engineering applications.
AbstractList Aerodynamic shape optimization is frequently complicated and challenging due to the involvement of multiple objectives, large-scale decision variables, and expensive cost function evaluation. This paper presents a bilayer parallel hybrid algorithm framework coupling multi-objective local search and global evolution mechanism to improve the optimization efficiency and convergence accuracy in high-dimensional design space. Specifically, an efficient multi-objective hybrid algorithm (MOHA) and a gradient-based surrogate-assisted multi-objective hybrid algorithm (GS-MOHA) are developed under this framework. In MOHA, a novel multi-objective gradient operator is proposed to accelerate the exploration of the Pareto front, and it introduces new individuals to enhance the diversity of the population. Afterward, MOHA achieves a trade-off between exploitation and exploration by selecting elite individuals in the local search space during the evolutionary process. Furthermore, a surrogate-assisted hybrid algorithm based on the gradient-enhanced Kriging with the partial least squares(GEKPLS) approach is established to improve the engineering applicability of MOHA. The optimization results of benchmark functions demonstrate that MOHA is less constrained by dimensionality and can solve multi-objective optimization problems (MOPs) with up to 1000 decision variables. Compared to existing MOEAs, MOHA demonstrates notable enhancements in optimization efficiency and convergence accuracy, specifically achieving a remarkable 5–10 times increase in efficiency. In addition, the optimization efficiency of GS-MOHA is approximately five times that of MOEA/D-EGO and twice that of K-RVEA in the 30-dimensional test functions. Finally, the multi-objective optimization results of the airfoil shape design validate the effectiveness of the proposed algorithms and their potential for engineering applications.
Audience Academic
Author Zhu, Caicheng
Zhao, Xin
Cao, Fan
Tang, Zhili
Author_xml – sequence: 1
  givenname: Fan
  surname: Cao
  fullname: Cao, Fan
– sequence: 2
  givenname: Zhili
  surname: Tang
  fullname: Tang, Zhili
– sequence: 3
  givenname: Caicheng
  surname: Zhu
  fullname: Zhu, Caicheng
– sequence: 4
  givenname: Xin
  surname: Zhao
  fullname: Zhao, Xin
BookMark eNptUttqGzEQXUoCTZO89QMEfe2mK2l3JT0a4zoBBxfSPi-jmy2jXblarcH9mH5rZbuUtFQjkJg558xoNO-KqyEMpije4-qBUlF96iFtMcac8rp-U9wQQljJcuDq1f1tcT-OuyovgTNO3BQ_ZwNaWOuUM0NCj0cZnUbPk0-uXMudUckdDFrvk-vdD0guDOjZpG3QaB6mvXfDBi19kODR4hD8dAJAPCIYNFoFld3LCPos_WIgqq0ZkQ0RvQR_OHFnJgZ9HKB36u8kX2KQ3vTjXXFtwY_m_vd5W3z7vPg6fyxX6-XTfLYqFW1FKjWWtG0MMZoaogATLlQNsmkoSCqFINxCLblgBoOSEucI06SuGo4x0YLT2-LpoqsD7Lp9dH1-RhfAdWdHiJsOYnLKmw6bxiqWjTNbm0bwvAmIhnAgmDOctT5ctPYxfJ_MmLpdmOKQy-8Ib0VNOGUiox4uqA1kUTfYkCKobNrkbuSvtS77Z4xhXrWibTLh44WgYhjHaOyfMnHVnSagez0BGU7-gSuXzs3NeZz_P-kX4nO4Ww
CitedBy_id crossref_primary_10_1016_j_ast_2024_109206
crossref_primary_10_3390_aerospace12070644
crossref_primary_10_3390_math12040554
crossref_primary_10_1007_s40430_025_05603_z
crossref_primary_10_1016_j_ast_2024_109063
crossref_primary_10_3390_math11214533
crossref_primary_10_3390_math12162572
crossref_primary_10_3390_math12081178
crossref_primary_10_1109_ACCESS_2025_3560292
Cites_doi 10.1007/978-3-642-11339-0
10.1016/j.eswa.2022.119495
10.3390/aerospace10060558
10.1007/s00366-018-0590-x
10.3390/math11102340
10.1109/4235.996017
10.1109/TEVC.2016.2519378
10.1109/TEVC.2007.892759
10.3390/app12073482
10.1109/TEVC.2003.810758
10.2514/1.C032491
10.1109/TEVC.2013.2281535
10.2514/1.J053318
10.1002/wics.73
10.1016/j.ast.2019.105555
10.1109/TEVC.2016.2600642
10.1109/TEVC.2005.861417
10.1016/j.paerosci.2008.11.001
10.1137/S1052623401383455
10.1016/j.ins.2021.07.051
10.2514/1.C036708
10.2514/1.J058853
10.1109/TEVC.2005.851274
10.2514/1.J055842
10.1016/j.apm.2018.11.034
10.3390/math11143210
10.1007/s00158-018-2073-5
10.2514/1.8650
10.1016/j.ins.2023.03.005
10.3390/app13074643
10.2514/6.2010-9231
10.1017/S0962492900000015
10.1016/j.swevo.2019.100626
10.1016/j.ins.2023.119016
10.1186/s13660-018-1703-1
10.2514/6.1995-1729
10.3390/aerospace10070638
10.1016/j.swevo.2021.100864
10.1109/TEVC.2016.2587808
10.1007/s11831-019-09336-w
10.1016/j.ast.2018.01.016
10.1016/j.neucom.2011.08.043
10.1007/s11831-023-09914-z
10.1016/j.asoc.2023.110095
10.1109/TEVC.2009.2033671
10.1007/3-540-44719-9_27
10.1007/s11633-020-1253-0
10.1016/j.cor.2022.106069
10.1080/0305215X.2011.637556
10.3390/math11081911
10.1109/TEVC.2016.2622301
10.1007/s00158-015-1395-9
10.1007/s00158-009-0460-7
10.1007/s11047-022-09907-0
10.1145/279232.279236
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/math11183844
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Engineering
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_1e5fc7c7c87f4e5985982a9528a21871
A771806965
10_3390_math11183844
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
RNS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c369t-d1b365e2ed3e2ca1289c4ab553ab3b9928fa4b897e1acbb1b557d24058112d983
IEDL.DBID DOA
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001079207800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2227-7390
IngestDate Tue Oct 14 19:04:17 EDT 2025
Fri Jul 25 10:36:15 EDT 2025
Tue Nov 04 18:39:48 EST 2025
Sat Nov 29 07:11:12 EST 2025
Tue Nov 18 21:55:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c369t-d1b365e2ed3e2ca1289c4ab553ab3b9928fa4b897e1acbb1b557d24058112d983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/1e5fc7c7c87f4e5985982a9528a21871
PQID 2869428379
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_1e5fc7c7c87f4e5985982a9528a21871
proquest_journals_2869428379
gale_infotracacademiconefile_A771806965
crossref_primary_10_3390_math11183844
crossref_citationtrail_10_3390_math11183844
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Dai (ref_5) 2002; 13
Cheng (ref_53) 2016; 20
ref_14
ref_58
Gao (ref_13) 2021; 578
ref_56
Marler (ref_35) 2010; 41
ref_10
Liu (ref_40) 2022; 22
ref_51
Bouhlel (ref_41) 2016; 53
Cao (ref_46) 2021; 63
Tang (ref_42) 2020; 27
Xiang (ref_54) 2017; 21
ref_15
He (ref_57) 2020; 58
Yuan (ref_7) 2018; 2018
Yang (ref_19) 2023; 639
Hong (ref_30) 2021; 18
Zhang (ref_55) 2018; 22
Anosri (ref_3) 2023; 30
ref_24
Bouhlel (ref_29) 2019; 35
Deb (ref_36) 2014; 18
Han (ref_39) 2017; 55
Martin (ref_21) 2005; 43
Knowles (ref_25) 2006; 10
Lyu (ref_11) 2014; 51
Deb (ref_34) 2002; 6
He (ref_18) 2020; 96
Jing (ref_2) 2023; 60
He (ref_16) 2023; 217
Parr (ref_50) 2012; 44
Lyu (ref_12) 2015; 53
Zhang (ref_52) 2007; 11
Xu (ref_31) 2023; 136
Tang (ref_1) 2019; 68
Buhmann (ref_23) 2000; 9
Yu (ref_4) 2018; 75
Zuhal (ref_38) 2021; 59
Dongare (ref_22) 2012; 2
Zhang (ref_26) 2009; 14
Sun (ref_48) 2012; 98
Zhu (ref_6) 1997; 23
Cao (ref_32) 2020; 53
ref_47
ref_45
Cai (ref_28) 2023; 632
ref_43
Bouaziz (ref_44) 2023; 150
Li (ref_17) 2019; 59
Khuri (ref_20) 2010; 2
Forrester (ref_49) 2009; 45
ref_9
ref_8
Chugh (ref_27) 2016; 22
Zitzler (ref_37) 2003; 7
Huband (ref_33) 2006; 10
References_xml – ident: ref_8
  doi: 10.1007/978-3-642-11339-0
– volume: 217
  start-page: 119495
  year: 2023
  ident: ref_16
  article-title: A review of surrogate-assisted evolutionary algorithms for expensive optimization problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.119495
– ident: ref_24
  doi: 10.3390/aerospace10060558
– volume: 35
  start-page: 157
  year: 2019
  ident: ref_29
  article-title: Gradient-enhanced Kriging for high-dimensional problems
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-018-0590-x
– ident: ref_51
– ident: ref_15
  doi: 10.3390/math11102340
– volume: 6
  start-page: 182
  year: 2002
  ident: ref_34
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 20
  start-page: 773
  year: 2016
  ident: ref_53
  article-title: A Reference Vector Guided Evolutionary Algorithm for Many-Objective Optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2519378
– volume: 11
  start-page: 712
  year: 2007
  ident: ref_52
  article-title: MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.892759
– ident: ref_14
  doi: 10.3390/app12073482
– volume: 7
  start-page: 117
  year: 2003
  ident: ref_37
  article-title: Performance assessment of multiobjective optimizers: An analysis and review
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2003.810758
– volume: 51
  start-page: 1604
  year: 2014
  ident: ref_11
  article-title: Aerodynamic design optimization studies of a blended-wing-body aircraft
  publication-title: J. Aircr.
  doi: 10.2514/1.C032491
– volume: 18
  start-page: 577
  year: 2014
  ident: ref_36
  article-title: An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281535
– volume: 53
  start-page: 968
  year: 2015
  ident: ref_12
  article-title: Aerodynamic shape optimization investigations of the common research model wing benchmark
  publication-title: AIAA J.
  doi: 10.2514/1.J053318
– volume: 2
  start-page: 128
  year: 2010
  ident: ref_20
  article-title: Response surface methodology
  publication-title: Wiley Interdiscip. Rev. Comput. Stat.
  doi: 10.1002/wics.73
– volume: 96
  start-page: 105555
  year: 2020
  ident: ref_18
  article-title: Preference-driven Kriging-based multiobjective optimization method with a novel multipoint infill criterion and application to airfoil shape design
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2019.105555
– volume: 2
  start-page: 189
  year: 2012
  ident: ref_22
  article-title: Introduction to artificial neural network
  publication-title: Int. J. Eng. Innov. Technol. (IJEIT)
– volume: 22
  start-page: 97
  year: 2018
  ident: ref_55
  article-title: A Decision Variable Clustering-Based Evolutionary Algorithm for Large-Scale Many-Objective Optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2600642
– volume: 10
  start-page: 477
  year: 2006
  ident: ref_33
  article-title: A review of multiobjective test problems and a scalable test problem toolkit
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.861417
– volume: 45
  start-page: 50
  year: 2009
  ident: ref_49
  article-title: Recent advances in surrogate-based optimization
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/j.paerosci.2008.11.001
– volume: 13
  start-page: 693
  year: 2002
  ident: ref_5
  article-title: Convergence properties of the BFGS algoritm
  publication-title: Siam J. Optim.
  doi: 10.1137/S1052623401383455
– volume: 578
  start-page: 129
  year: 2021
  ident: ref_13
  article-title: A gradient-based search method for multi-objective optimization problems
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.07.051
– volume: 60
  start-page: 293
  year: 2023
  ident: ref_2
  article-title: Multi-Objective Airfoil Optimization Under Unsteady-Freestream Dynamic Stall Conditions
  publication-title: J. Aircr.
  doi: 10.2514/1.C036708
– volume: 58
  start-page: 1304
  year: 2020
  ident: ref_57
  article-title: Dafoam: An open-source adjoint framework for multidisciplinary design optimization with openfoam
  publication-title: AIAA J.
  doi: 10.2514/1.J058853
– volume: 10
  start-page: 50
  year: 2006
  ident: ref_25
  article-title: ParEGO: A hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.851274
– volume: 55
  start-page: 4330
  year: 2017
  ident: ref_39
  article-title: Weighted gradient-enhanced Kriging for high-dimensional surrogate modeling and design optimization
  publication-title: Aiaa J.
  doi: 10.2514/1.J055842
– volume: 68
  start-page: 244
  year: 2019
  ident: ref_1
  article-title: A new Nash optimization method based on alternate elitist information exchange for multi-objective aerodynamic shape design
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2018.11.034
– ident: ref_45
  doi: 10.3390/math11143210
– volume: 59
  start-page: 403
  year: 2019
  ident: ref_17
  article-title: Surrogate-based aerodynamic shape optimization with the active subspace method
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-018-2073-5
– volume: 43
  start-page: 853
  year: 2005
  ident: ref_21
  article-title: Use of Kriging models to approximate deterministic computer models
  publication-title: AIAA J.
  doi: 10.2514/1.8650
– volume: 632
  start-page: 791
  year: 2023
  ident: ref_28
  article-title: Complementary surrogate-assisted differential evolution algorithm for expensive multi-objective problems under a limited computational budget
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2023.03.005
– ident: ref_10
  doi: 10.3390/app13074643
– ident: ref_58
  doi: 10.2514/6.2010-9231
– volume: 9
  start-page: 1
  year: 2000
  ident: ref_23
  article-title: Radial basis functions
  publication-title: Acta Numer.
  doi: 10.1017/S0962492900000015
– volume: 59
  start-page: 2950
  year: 2021
  ident: ref_38
  article-title: Polynomial-chaos–Kriging with gradient information for surrogate modeling in aerodynamic design
  publication-title: AIAA J.
– volume: 53
  start-page: 100626
  year: 2020
  ident: ref_32
  article-title: Applying graph-based differential grouping for multiobjective large-scale optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2019.100626
– volume: 639
  start-page: 119016
  year: 2023
  ident: ref_19
  article-title: Surrogate-assisted MOEA/D for expensive constrained multi-objective optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2023.119016
– volume: 2018
  start-page: 1
  year: 2018
  ident: ref_7
  article-title: A conjugate gradient algorithm for large-scale unconstrained optimization problems and nonlinear equations
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-018-1703-1
– ident: ref_9
  doi: 10.2514/6.1995-1729
– ident: ref_56
  doi: 10.3390/aerospace10070638
– volume: 63
  start-page: 100864
  year: 2021
  ident: ref_46
  article-title: A memetic algorithm based on two_Arch2 for multi-depot heterogeneous-vehicle capacitated arc routing problem
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2021.100864
– volume: 21
  start-page: 131
  year: 2017
  ident: ref_54
  article-title: A Vector Angle-Based Evolutionary Algorithm for Unconstrained Many-Objective Optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2587808
– volume: 27
  start-page: 939
  year: 2020
  ident: ref_42
  article-title: Multi-level Hybridized Optimization Methods Coupling Local Search Deterministic and Global Search Evolutionary Algorithms
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-019-09336-w
– volume: 75
  start-page: 183
  year: 2018
  ident: ref_4
  article-title: On the influence of optimization algorithm and initial design on wing aerodynamic shape optimization
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2018.01.016
– volume: 98
  start-page: 76
  year: 2012
  ident: ref_48
  article-title: A hybrid co-evolutionary cultural algorithm based on particle swarm optimization for solving global optimization problems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.08.043
– volume: 30
  start-page: 3657
  year: 2023
  ident: ref_3
  article-title: A Comparative Study of State-of-the-art Metaheuristics for Solving Many-objective Optimization Problems of Fixed Wing Unmanned Aerial Vehicle Conceptual Design
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-023-09914-z
– volume: 136
  start-page: 110095
  year: 2023
  ident: ref_31
  article-title: A Pareto Front grid guided multi-objective evolutionary algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2023.110095
– volume: 14
  start-page: 456
  year: 2009
  ident: ref_26
  article-title: Expensive multiobjective optimization by MOEA/D with Gaussian process model
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2033671
– ident: ref_47
  doi: 10.1007/3-540-44719-9_27
– volume: 18
  start-page: 155
  year: 2021
  ident: ref_30
  article-title: Evolutionary Computation for Large-scale Multi-objective Optimization: A Decade of Progresses
  publication-title: Int. J. Autom. Comput.
  doi: 10.1007/s11633-020-1253-0
– volume: 150
  start-page: 106069
  year: 2023
  ident: ref_44
  article-title: A novel hybrid multi-objective algorithm to solve the generalized cubic cell formation problem
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2022.106069
– volume: 44
  start-page: 1147
  year: 2012
  ident: ref_50
  article-title: Infill sampling criteria for surrogate-based optimization with constraint handling
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2011.637556
– ident: ref_43
  doi: 10.3390/math11081911
– volume: 22
  start-page: 129
  year: 2016
  ident: ref_27
  article-title: A surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2622301
– volume: 53
  start-page: 935
  year: 2016
  ident: ref_41
  article-title: Improving Kriging surrogates of high-dimensional design models by Partial Least Squares dimension reduction
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-015-1395-9
– volume: 41
  start-page: 853
  year: 2010
  ident: ref_35
  article-title: The weighted sum method for multi-objective optimization: New insights
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-009-0460-7
– volume: 22
  start-page: 329
  year: 2022
  ident: ref_40
  article-title: MOEA/D with gradient-enhanced Kriging for expensive multiobjective optimization
  publication-title: Nat. Comput.
  doi: 10.1007/s11047-022-09907-0
– volume: 23
  start-page: 550
  year: 1997
  ident: ref_6
  article-title: Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization
  publication-title: ACM Trans. Math. Softw. (TOMS)
  doi: 10.1145/279232.279236
SSID ssj0000913849
Score 2.2895558
Snippet Aerodynamic shape optimization is frequently complicated and challenging due to the involvement of multiple objectives, large-scale decision variables, and...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 3844
SubjectTerms Accuracy
aerodynamic shape optimization
Algorithms
Convergence
Cost function
Coupling
Design optimization
Efficiency
Engineering
Food science
Genetic algorithms
global evolutionary
hybrid algorithm
local gradient search
Mathematical analysis
Methods
multi-objective optimization
Multiple objective analysis
Operators (mathematics)
Optimization algorithms
Optimization techniques
Pareto optimization
Shape optimization
Variables
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELVa6KE99LvqUlr50KqHKoLEdmyfqgUt5VCWVT8kbpHtTIAKEkgWpP0z_a2dSbxbONBLldMmlpKVx29enJn3GHsfRBVKL7cTqMo8kSm4xMgKEnK51cIGKWEwm9DTqTk6srO44dbFssolJvZAXTaB9si3MpNbEgfT9vPFZUKuUfR1NVpo3GfrpFSGcb6-M5nOvq12WUj10kg7VLwLfL_fQh54guvb4Gl5Kxf1kv13AXOfbfae_O9zPmWPI8_k4yEwnrF7UD9nj26oD-Kvg5Vka_eC_R7XfNLrSWAa4vsL6uTifXtucuh_DbDIDxFgzmPnJj_ozaf5bnNFXb3HfLAP4JPrGM2uXXBXl_wrpUv-pe2Ly-Z8KHCGjiNd5t-bM9rR4GNAIF_U7vw03L7JbDC86V6yn3uTH7v7STRvSILI7TwpUy9yBRmUArLgMA3ixDuvlHBeeGszUznpjdWQuuB9ild0ifRCGWSApTXiFVurmxpeM67AKQsgtLe5BAgeccZXyKMAbFal1Yh9Wk5jEaKyORlsnBX4hkOTXtyc9BH7sBp9MSh63DFuhyJiNYZ0uPsTTXtcxGVdpKCqoPEwupKgrCE9RGdVZhxyJ52O2EeKp4LQAh8puNj0gH-MdLeKsUZusJ3bXI3Y5jKeiggjXfE3mDb-ffkNe5gh-xqK3zbZ2ry9grfsQbien3btu7gq_gBwLBto
  priority: 102
  providerName: ProQuest
Title An Efficient Hybrid Multi-Objective Optimization Method Coupling Global Evolutionary and Local Gradient Searches for Solving Aerodynamic Optimization Problems
URI https://www.proquest.com/docview/2869428379
https://doaj.org/article/1e5fc7c7c87f4e5985982a9528a21871
Volume 11
WOSCitedRecordID wos001079207800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: K7-
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M7S
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: PIMPY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQ4QCHik-xpax8AHFAUTexHdvHbZVSBLuNKEjlFNnOuIBKFm22lXrhp_BbGdvpanuouKBIPtiW4njGM-No5j1CXjnmXWv5JAPflhnPwWSKe8gCy61k2nEOiWxCzufq9FTXG1RfIScswQOnjdvLQXgn8VHScxBaBcQ5o0WhDHqnWD1eTKTeuExFG6xzprhOme4M7_V7GP99w3OtsJvf8EERqv82gxy9zOFDsj2Eh3SalvWI3IHuMXkwW2Or9k_In2lHqwj8gP6CHl2Fkisa62izY_sj2S96jJbg51BiSWeRJZoeLC5C-e0ZTTj_tLoc1M4sr6jpWvox-DX6bhmzwFY0ZSJDTzGupSeL8_DrgU4BLW5isb_5kjox0_RPyZfD6vPBUTawLGSOlXqVtbllpYACWgaFM-ivUELGCsGMZVbrQnnDrdIScuOszXFEthgHCIWhWqsVe0a2ukUHzwkVYIQGYNLqkgM4iwbBegx4AHThcz8ib6_3vXEDBHlgwjhv8CoSpNRsSmlEXq9n_0rQG7fM2w8iXM8JgNmxA9WoGdSo-ZcajciboABNONa4JGeG6gT8sACQ1UwlOvFJqUsxIrvXOtIM571vClXqAF0n9c7_WM0Lcj_Q2qdctl2ytVpewEtyz12uvvfLMbm7X83rT-Oo8th-kNk45KyehPZ3heP1-1n99S9X6AzL
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFAk48I0aKLAHKg7Iauxd27sHhEJJSdQkjUSR2pPZXY_botYpdlqUP8NP4DcyazuhPZRbDygn2yvHcZ7fzK5n3gN4Y3lmUyM6HmZp5AkftSdFhp5zuY25skJgbTYRj8dyf19NVuD3ohfGlVUuOLEi6nRq3Rr5ZiAj5cTBYvXh7IfnXKPc29WFhUYNix2c_6QpW_l-8In-340g2O7tbfW9xlXAszxSMy_1DY9CDDDlGFhN_ExXpE0Ycm24USqQmRZGqhh9bY3x6UicUtwLJaUmqZKcznsLVgWBvdOC1clgNDlYruo4lU0pVF1hz7nqbFLeeUR8Imm3uBL7KouA6wJBFd22H_xv9-Uh3G_yaNatgf8IVjB_DPcuqSvS1mgpSVs-gV_dnPUqvQwKs6w_d51qrGo_9nbN95r22S4R6GnTmcpGlbk225qeu67lQ1bbI7DeRfO06mLOdJ6yoUsH2OeiKp6bsbqAG0tG0wH2ZXriVmxYFylQzXN9emyvfsmkNvQpn8LXG7ldz6CVT3NcAxaiDhUij42KBKI1BC2TUZ6IqILMz9rwbgGbxDbK7c5A5CShGZwDWXIZZG3YWI4-qxVLrhn30SFwOcbpjFc7psVh0tBW4mOY2Zg-Ms4Ehko6vUetwkBqyg1jvw1vHX4Tx4Z0SVY3TR30w5yuWNKNKffpRCoK27C-wG_S0GSZ_AXv838ffg13-nujYTIcjHdewN2AMs260G8dWrPiHF_CbXsxOy6LV80TyeDbTYP9D--2eK4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFLXGhhA88I0oDPADEw8oahPbif2AULe1bNrWVXxIezO2czOGtmQk3VD_DD-EX8d1Psr2MN72gPrUxGqT9Pjca_fecwh57VjmUssHAWRpHPAQTCB5BoF3uU2YcpxDYzaRTCby4EBNl8jvrhfGl1V2nFgTdVo4v0fej2SsvDhYovpZWxYx3Ry_P_0ReAcp_09rZ6fRQGQH5j9x-Va9297E33otisajzxtbQeswEDgWq1mQhpbFAiJIGUTOIFfj1RkrBDOWWaUimRlupUogNM7aEM8kKcZAITFNSZVk-Lk3yAreVIgLv5X10WT6cbHD4xU3JVdNtT1jatDHHPQbcovEw_xSHKztAq4KCnWkG9_7n5_RfXK3za_psJkQD8gS5A_JnQuqi_hubyFVWz0iv4Y5HdU6Ghh-6dbcd7DRui052Lffm3BA95FYT9qOVbpXm27TjeLMdzMf0sY2gY7O21lsyjk1eUp3fZpAP5R1Ud2MNoXdUFFcJtBPxbHfyaFDwAA2z83Jkbv8JdPG6Kd6TL5cy-N6QpbzIoenhAowQgGwxKqYAziL_GozzB8BVJSFWY-87SCkXavo7o1FjjWu7Dzg9EXA9cjaYvRpo2Ryxbh1j8bFGK8_Xh8oykPd0pkOQWQuwZdMMg5CSa8DaZSIpMGcMQl75I3HsvYsiZfkTNvsgTfm9cb0MMGcaBCrWPTIaodl3dJnpf8C-dm_T78itxDhend7svOc3I4wAW3q_1bJ8qw8gxfkpjufHVXly3ZyUvL1urH-ByWRgUg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+Hybrid+Multi-Objective+Optimization+Method+Coupling+Global+Evolutionary+and+Local+Gradient+Searches+for+Solving+Aerodynamic+Optimization+Problems&rft.jtitle=Mathematics+%28Basel%29&rft.au=Cao%2C+Fan&rft.au=Tang%2C+Zhili&rft.au=Zhu%2C+Caicheng&rft.au=Zhao%2C+Xin&rft.date=2023-09-01&rft.pub=MDPI+AG&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=11&rft.issue=18&rft_id=info:doi/10.3390%2Fmath11183844&rft.externalDocID=A771806965
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon