An Efficient Hybrid Multi-Objective Optimization Method Coupling Global Evolutionary and Local Gradient Searches for Solving Aerodynamic Optimization Problems
Aerodynamic shape optimization is frequently complicated and challenging due to the involvement of multiple objectives, large-scale decision variables, and expensive cost function evaluation. This paper presents a bilayer parallel hybrid algorithm framework coupling multi-objective local search and...
Uložené v:
| Vydané v: | Mathematics (Basel) Ročník 11; číslo 18; s. 3844 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.09.2023
|
| Predmet: | |
| ISSN: | 2227-7390, 2227-7390 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Aerodynamic shape optimization is frequently complicated and challenging due to the involvement of multiple objectives, large-scale decision variables, and expensive cost function evaluation. This paper presents a bilayer parallel hybrid algorithm framework coupling multi-objective local search and global evolution mechanism to improve the optimization efficiency and convergence accuracy in high-dimensional design space. Specifically, an efficient multi-objective hybrid algorithm (MOHA) and a gradient-based surrogate-assisted multi-objective hybrid algorithm (GS-MOHA) are developed under this framework. In MOHA, a novel multi-objective gradient operator is proposed to accelerate the exploration of the Pareto front, and it introduces new individuals to enhance the diversity of the population. Afterward, MOHA achieves a trade-off between exploitation and exploration by selecting elite individuals in the local search space during the evolutionary process. Furthermore, a surrogate-assisted hybrid algorithm based on the gradient-enhanced Kriging with the partial least squares(GEKPLS) approach is established to improve the engineering applicability of MOHA. The optimization results of benchmark functions demonstrate that MOHA is less constrained by dimensionality and can solve multi-objective optimization problems (MOPs) with up to 1000 decision variables. Compared to existing MOEAs, MOHA demonstrates notable enhancements in optimization efficiency and convergence accuracy, specifically achieving a remarkable 5–10 times increase in efficiency. In addition, the optimization efficiency of GS-MOHA is approximately five times that of MOEA/D-EGO and twice that of K-RVEA in the 30-dimensional test functions. Finally, the multi-objective optimization results of the airfoil shape design validate the effectiveness of the proposed algorithms and their potential for engineering applications. |
|---|---|
| AbstractList | Aerodynamic shape optimization is frequently complicated and challenging due to the involvement of multiple objectives, large-scale decision variables, and expensive cost function evaluation. This paper presents a bilayer parallel hybrid algorithm framework coupling multi-objective local search and global evolution mechanism to improve the optimization efficiency and convergence accuracy in high-dimensional design space. Specifically, an efficient multi-objective hybrid algorithm (MOHA) and a gradient-based surrogate-assisted multi-objective hybrid algorithm (GS-MOHA) are developed under this framework. In MOHA, a novel multi-objective gradient operator is proposed to accelerate the exploration of the Pareto front, and it introduces new individuals to enhance the diversity of the population. Afterward, MOHA achieves a trade-off between exploitation and exploration by selecting elite individuals in the local search space during the evolutionary process. Furthermore, a surrogate-assisted hybrid algorithm based on the gradient-enhanced Kriging with the partial least squares(GEKPLS) approach is established to improve the engineering applicability of MOHA. The optimization results of benchmark functions demonstrate that MOHA is less constrained by dimensionality and can solve multi-objective optimization problems (MOPs) with up to 1000 decision variables. Compared to existing MOEAs, MOHA demonstrates notable enhancements in optimization efficiency and convergence accuracy, specifically achieving a remarkable 5–10 times increase in efficiency. In addition, the optimization efficiency of GS-MOHA is approximately five times that of MOEA/D-EGO and twice that of K-RVEA in the 30-dimensional test functions. Finally, the multi-objective optimization results of the airfoil shape design validate the effectiveness of the proposed algorithms and their potential for engineering applications. |
| Audience | Academic |
| Author | Zhu, Caicheng Zhao, Xin Cao, Fan Tang, Zhili |
| Author_xml | – sequence: 1 givenname: Fan surname: Cao fullname: Cao, Fan – sequence: 2 givenname: Zhili surname: Tang fullname: Tang, Zhili – sequence: 3 givenname: Caicheng surname: Zhu fullname: Zhu, Caicheng – sequence: 4 givenname: Xin surname: Zhao fullname: Zhao, Xin |
| BookMark | eNptUttqGzEQXUoCTZO89QMEfe2mK2l3JT0a4zoBBxfSPi-jmy2jXblarcH9mH5rZbuUtFQjkJg558xoNO-KqyEMpije4-qBUlF96iFtMcac8rp-U9wQQljJcuDq1f1tcT-OuyovgTNO3BQ_ZwNaWOuUM0NCj0cZnUbPk0-uXMudUckdDFrvk-vdD0guDOjZpG3QaB6mvXfDBi19kODR4hD8dAJAPCIYNFoFld3LCPos_WIgqq0ZkQ0RvQR_OHFnJgZ9HKB36u8kX2KQ3vTjXXFtwY_m_vd5W3z7vPg6fyxX6-XTfLYqFW1FKjWWtG0MMZoaogATLlQNsmkoSCqFINxCLblgBoOSEucI06SuGo4x0YLT2-LpoqsD7Lp9dH1-RhfAdWdHiJsOYnLKmw6bxiqWjTNbm0bwvAmIhnAgmDOctT5ctPYxfJ_MmLpdmOKQy-8Ib0VNOGUiox4uqA1kUTfYkCKobNrkbuSvtS77Z4xhXrWibTLh44WgYhjHaOyfMnHVnSagez0BGU7-gSuXzs3NeZz_P-kX4nO4Ww |
| CitedBy_id | crossref_primary_10_1016_j_ast_2024_109206 crossref_primary_10_3390_aerospace12070644 crossref_primary_10_3390_math12040554 crossref_primary_10_1007_s40430_025_05603_z crossref_primary_10_1016_j_ast_2024_109063 crossref_primary_10_3390_math11214533 crossref_primary_10_3390_math12162572 crossref_primary_10_3390_math12081178 crossref_primary_10_1109_ACCESS_2025_3560292 |
| Cites_doi | 10.1007/978-3-642-11339-0 10.1016/j.eswa.2022.119495 10.3390/aerospace10060558 10.1007/s00366-018-0590-x 10.3390/math11102340 10.1109/4235.996017 10.1109/TEVC.2016.2519378 10.1109/TEVC.2007.892759 10.3390/app12073482 10.1109/TEVC.2003.810758 10.2514/1.C032491 10.1109/TEVC.2013.2281535 10.2514/1.J053318 10.1002/wics.73 10.1016/j.ast.2019.105555 10.1109/TEVC.2016.2600642 10.1109/TEVC.2005.861417 10.1016/j.paerosci.2008.11.001 10.1137/S1052623401383455 10.1016/j.ins.2021.07.051 10.2514/1.C036708 10.2514/1.J058853 10.1109/TEVC.2005.851274 10.2514/1.J055842 10.1016/j.apm.2018.11.034 10.3390/math11143210 10.1007/s00158-018-2073-5 10.2514/1.8650 10.1016/j.ins.2023.03.005 10.3390/app13074643 10.2514/6.2010-9231 10.1017/S0962492900000015 10.1016/j.swevo.2019.100626 10.1016/j.ins.2023.119016 10.1186/s13660-018-1703-1 10.2514/6.1995-1729 10.3390/aerospace10070638 10.1016/j.swevo.2021.100864 10.1109/TEVC.2016.2587808 10.1007/s11831-019-09336-w 10.1016/j.ast.2018.01.016 10.1016/j.neucom.2011.08.043 10.1007/s11831-023-09914-z 10.1016/j.asoc.2023.110095 10.1109/TEVC.2009.2033671 10.1007/3-540-44719-9_27 10.1007/s11633-020-1253-0 10.1016/j.cor.2022.106069 10.1080/0305215X.2011.637556 10.3390/math11081911 10.1109/TEVC.2016.2622301 10.1007/s00158-015-1395-9 10.1007/s00158-009-0460-7 10.1007/s11047-022-09907-0 10.1145/279232.279236 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
| DOI | 10.3390/math11183844 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (ProQuest) Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Engineering |
| EISSN | 2227-7390 |
| ExternalDocumentID | oai_doaj_org_article_1e5fc7c7c87f4e5985982a9528a21871 A771806965 10_3390_math11183844 |
| GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS RNS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c369t-d1b365e2ed3e2ca1289c4ab553ab3b9928fa4b897e1acbb1b557d24058112d983 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001079207800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2227-7390 |
| IngestDate | Tue Oct 14 19:04:17 EDT 2025 Fri Jul 25 10:36:15 EDT 2025 Tue Nov 04 18:39:48 EST 2025 Sat Nov 29 07:11:12 EST 2025 Tue Nov 18 21:55:55 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c369t-d1b365e2ed3e2ca1289c4ab553ab3b9928fa4b897e1acbb1b557d24058112d983 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://doaj.org/article/1e5fc7c7c87f4e5985982a9528a21871 |
| PQID | 2869428379 |
| PQPubID | 2032364 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_1e5fc7c7c87f4e5985982a9528a21871 proquest_journals_2869428379 gale_infotracacademiconefile_A771806965 crossref_primary_10_3390_math11183844 crossref_citationtrail_10_3390_math11183844 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-09-01 |
| PublicationDateYYYYMMDD | 2023-09-01 |
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Mathematics (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Dai (ref_5) 2002; 13 Cheng (ref_53) 2016; 20 ref_14 ref_58 Gao (ref_13) 2021; 578 ref_56 Marler (ref_35) 2010; 41 ref_10 Liu (ref_40) 2022; 22 ref_51 Bouhlel (ref_41) 2016; 53 Cao (ref_46) 2021; 63 Tang (ref_42) 2020; 27 Xiang (ref_54) 2017; 21 ref_15 He (ref_57) 2020; 58 Yuan (ref_7) 2018; 2018 Yang (ref_19) 2023; 639 Hong (ref_30) 2021; 18 Zhang (ref_55) 2018; 22 Anosri (ref_3) 2023; 30 ref_24 Bouhlel (ref_29) 2019; 35 Deb (ref_36) 2014; 18 Han (ref_39) 2017; 55 Martin (ref_21) 2005; 43 Knowles (ref_25) 2006; 10 Lyu (ref_11) 2014; 51 Deb (ref_34) 2002; 6 He (ref_18) 2020; 96 Jing (ref_2) 2023; 60 He (ref_16) 2023; 217 Parr (ref_50) 2012; 44 Lyu (ref_12) 2015; 53 Zhang (ref_52) 2007; 11 Xu (ref_31) 2023; 136 Tang (ref_1) 2019; 68 Buhmann (ref_23) 2000; 9 Yu (ref_4) 2018; 75 Zuhal (ref_38) 2021; 59 Dongare (ref_22) 2012; 2 Zhang (ref_26) 2009; 14 Sun (ref_48) 2012; 98 Zhu (ref_6) 1997; 23 Cao (ref_32) 2020; 53 ref_47 ref_45 Cai (ref_28) 2023; 632 ref_43 Bouaziz (ref_44) 2023; 150 Li (ref_17) 2019; 59 Khuri (ref_20) 2010; 2 Forrester (ref_49) 2009; 45 ref_9 ref_8 Chugh (ref_27) 2016; 22 Zitzler (ref_37) 2003; 7 Huband (ref_33) 2006; 10 |
| References_xml | – ident: ref_8 doi: 10.1007/978-3-642-11339-0 – volume: 217 start-page: 119495 year: 2023 ident: ref_16 article-title: A review of surrogate-assisted evolutionary algorithms for expensive optimization problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.119495 – ident: ref_24 doi: 10.3390/aerospace10060558 – volume: 35 start-page: 157 year: 2019 ident: ref_29 article-title: Gradient-enhanced Kriging for high-dimensional problems publication-title: Eng. Comput. doi: 10.1007/s00366-018-0590-x – ident: ref_51 – ident: ref_15 doi: 10.3390/math11102340 – volume: 6 start-page: 182 year: 2002 ident: ref_34 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – volume: 20 start-page: 773 year: 2016 ident: ref_53 article-title: A Reference Vector Guided Evolutionary Algorithm for Many-Objective Optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2016.2519378 – volume: 11 start-page: 712 year: 2007 ident: ref_52 article-title: MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2007.892759 – ident: ref_14 doi: 10.3390/app12073482 – volume: 7 start-page: 117 year: 2003 ident: ref_37 article-title: Performance assessment of multiobjective optimizers: An analysis and review publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2003.810758 – volume: 51 start-page: 1604 year: 2014 ident: ref_11 article-title: Aerodynamic design optimization studies of a blended-wing-body aircraft publication-title: J. Aircr. doi: 10.2514/1.C032491 – volume: 18 start-page: 577 year: 2014 ident: ref_36 article-title: An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2281535 – volume: 53 start-page: 968 year: 2015 ident: ref_12 article-title: Aerodynamic shape optimization investigations of the common research model wing benchmark publication-title: AIAA J. doi: 10.2514/1.J053318 – volume: 2 start-page: 128 year: 2010 ident: ref_20 article-title: Response surface methodology publication-title: Wiley Interdiscip. Rev. Comput. Stat. doi: 10.1002/wics.73 – volume: 96 start-page: 105555 year: 2020 ident: ref_18 article-title: Preference-driven Kriging-based multiobjective optimization method with a novel multipoint infill criterion and application to airfoil shape design publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2019.105555 – volume: 2 start-page: 189 year: 2012 ident: ref_22 article-title: Introduction to artificial neural network publication-title: Int. J. Eng. Innov. Technol. (IJEIT) – volume: 22 start-page: 97 year: 2018 ident: ref_55 article-title: A Decision Variable Clustering-Based Evolutionary Algorithm for Large-Scale Many-Objective Optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2016.2600642 – volume: 10 start-page: 477 year: 2006 ident: ref_33 article-title: A review of multiobjective test problems and a scalable test problem toolkit publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2005.861417 – volume: 45 start-page: 50 year: 2009 ident: ref_49 article-title: Recent advances in surrogate-based optimization publication-title: Prog. Aerosp. Sci. doi: 10.1016/j.paerosci.2008.11.001 – volume: 13 start-page: 693 year: 2002 ident: ref_5 article-title: Convergence properties of the BFGS algoritm publication-title: Siam J. Optim. doi: 10.1137/S1052623401383455 – volume: 578 start-page: 129 year: 2021 ident: ref_13 article-title: A gradient-based search method for multi-objective optimization problems publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.07.051 – volume: 60 start-page: 293 year: 2023 ident: ref_2 article-title: Multi-Objective Airfoil Optimization Under Unsteady-Freestream Dynamic Stall Conditions publication-title: J. Aircr. doi: 10.2514/1.C036708 – volume: 58 start-page: 1304 year: 2020 ident: ref_57 article-title: Dafoam: An open-source adjoint framework for multidisciplinary design optimization with openfoam publication-title: AIAA J. doi: 10.2514/1.J058853 – volume: 10 start-page: 50 year: 2006 ident: ref_25 article-title: ParEGO: A hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2005.851274 – volume: 55 start-page: 4330 year: 2017 ident: ref_39 article-title: Weighted gradient-enhanced Kriging for high-dimensional surrogate modeling and design optimization publication-title: Aiaa J. doi: 10.2514/1.J055842 – volume: 68 start-page: 244 year: 2019 ident: ref_1 article-title: A new Nash optimization method based on alternate elitist information exchange for multi-objective aerodynamic shape design publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2018.11.034 – ident: ref_45 doi: 10.3390/math11143210 – volume: 59 start-page: 403 year: 2019 ident: ref_17 article-title: Surrogate-based aerodynamic shape optimization with the active subspace method publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-018-2073-5 – volume: 43 start-page: 853 year: 2005 ident: ref_21 article-title: Use of Kriging models to approximate deterministic computer models publication-title: AIAA J. doi: 10.2514/1.8650 – volume: 632 start-page: 791 year: 2023 ident: ref_28 article-title: Complementary surrogate-assisted differential evolution algorithm for expensive multi-objective problems under a limited computational budget publication-title: Inf. Sci. doi: 10.1016/j.ins.2023.03.005 – ident: ref_10 doi: 10.3390/app13074643 – ident: ref_58 doi: 10.2514/6.2010-9231 – volume: 9 start-page: 1 year: 2000 ident: ref_23 article-title: Radial basis functions publication-title: Acta Numer. doi: 10.1017/S0962492900000015 – volume: 59 start-page: 2950 year: 2021 ident: ref_38 article-title: Polynomial-chaos–Kriging with gradient information for surrogate modeling in aerodynamic design publication-title: AIAA J. – volume: 53 start-page: 100626 year: 2020 ident: ref_32 article-title: Applying graph-based differential grouping for multiobjective large-scale optimization publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2019.100626 – volume: 639 start-page: 119016 year: 2023 ident: ref_19 article-title: Surrogate-assisted MOEA/D for expensive constrained multi-objective optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2023.119016 – volume: 2018 start-page: 1 year: 2018 ident: ref_7 article-title: A conjugate gradient algorithm for large-scale unconstrained optimization problems and nonlinear equations publication-title: J. Inequal. Appl. doi: 10.1186/s13660-018-1703-1 – ident: ref_9 doi: 10.2514/6.1995-1729 – ident: ref_56 doi: 10.3390/aerospace10070638 – volume: 63 start-page: 100864 year: 2021 ident: ref_46 article-title: A memetic algorithm based on two_Arch2 for multi-depot heterogeneous-vehicle capacitated arc routing problem publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2021.100864 – volume: 21 start-page: 131 year: 2017 ident: ref_54 article-title: A Vector Angle-Based Evolutionary Algorithm for Unconstrained Many-Objective Optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2016.2587808 – volume: 27 start-page: 939 year: 2020 ident: ref_42 article-title: Multi-level Hybridized Optimization Methods Coupling Local Search Deterministic and Global Search Evolutionary Algorithms publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-019-09336-w – volume: 75 start-page: 183 year: 2018 ident: ref_4 article-title: On the influence of optimization algorithm and initial design on wing aerodynamic shape optimization publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2018.01.016 – volume: 98 start-page: 76 year: 2012 ident: ref_48 article-title: A hybrid co-evolutionary cultural algorithm based on particle swarm optimization for solving global optimization problems publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.08.043 – volume: 30 start-page: 3657 year: 2023 ident: ref_3 article-title: A Comparative Study of State-of-the-art Metaheuristics for Solving Many-objective Optimization Problems of Fixed Wing Unmanned Aerial Vehicle Conceptual Design publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-023-09914-z – volume: 136 start-page: 110095 year: 2023 ident: ref_31 article-title: A Pareto Front grid guided multi-objective evolutionary algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2023.110095 – volume: 14 start-page: 456 year: 2009 ident: ref_26 article-title: Expensive multiobjective optimization by MOEA/D with Gaussian process model publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2009.2033671 – ident: ref_47 doi: 10.1007/3-540-44719-9_27 – volume: 18 start-page: 155 year: 2021 ident: ref_30 article-title: Evolutionary Computation for Large-scale Multi-objective Optimization: A Decade of Progresses publication-title: Int. J. Autom. Comput. doi: 10.1007/s11633-020-1253-0 – volume: 150 start-page: 106069 year: 2023 ident: ref_44 article-title: A novel hybrid multi-objective algorithm to solve the generalized cubic cell formation problem publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2022.106069 – volume: 44 start-page: 1147 year: 2012 ident: ref_50 article-title: Infill sampling criteria for surrogate-based optimization with constraint handling publication-title: Eng. Optim. doi: 10.1080/0305215X.2011.637556 – ident: ref_43 doi: 10.3390/math11081911 – volume: 22 start-page: 129 year: 2016 ident: ref_27 article-title: A surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive many-objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2016.2622301 – volume: 53 start-page: 935 year: 2016 ident: ref_41 article-title: Improving Kriging surrogates of high-dimensional design models by Partial Least Squares dimension reduction publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-015-1395-9 – volume: 41 start-page: 853 year: 2010 ident: ref_35 article-title: The weighted sum method for multi-objective optimization: New insights publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-009-0460-7 – volume: 22 start-page: 329 year: 2022 ident: ref_40 article-title: MOEA/D with gradient-enhanced Kriging for expensive multiobjective optimization publication-title: Nat. Comput. doi: 10.1007/s11047-022-09907-0 – volume: 23 start-page: 550 year: 1997 ident: ref_6 article-title: Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization publication-title: ACM Trans. Math. Softw. (TOMS) doi: 10.1145/279232.279236 |
| SSID | ssj0000913849 |
| Score | 2.2895558 |
| Snippet | Aerodynamic shape optimization is frequently complicated and challenging due to the involvement of multiple objectives, large-scale decision variables, and... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 3844 |
| SubjectTerms | Accuracy aerodynamic shape optimization Algorithms Convergence Cost function Coupling Design optimization Efficiency Engineering Food science Genetic algorithms global evolutionary hybrid algorithm local gradient search Mathematical analysis Methods multi-objective optimization Multiple objective analysis Operators (mathematics) Optimization algorithms Optimization techniques Pareto optimization Shape optimization Variables |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELVa6KE99LvqUlr50KqHKoLEdmyfqgUt5VCWVT8kbpHtTIAKEkgWpP0z_a2dSbxbONBLldMmlpKVx29enJn3GHsfRBVKL7cTqMo8kSm4xMgKEnK51cIGKWEwm9DTqTk6srO44dbFssolJvZAXTaB9si3MpNbEgfT9vPFZUKuUfR1NVpo3GfrpFSGcb6-M5nOvq12WUj10kg7VLwLfL_fQh54guvb4Gl5Kxf1kv13AXOfbfae_O9zPmWPI8_k4yEwnrF7UD9nj26oD-Kvg5Vka_eC_R7XfNLrSWAa4vsL6uTifXtucuh_DbDIDxFgzmPnJj_ozaf5bnNFXb3HfLAP4JPrGM2uXXBXl_wrpUv-pe2Ly-Z8KHCGjiNd5t-bM9rR4GNAIF_U7vw03L7JbDC86V6yn3uTH7v7STRvSILI7TwpUy9yBRmUArLgMA3ixDuvlHBeeGszUznpjdWQuuB9ild0ifRCGWSApTXiFVurmxpeM67AKQsgtLe5BAgeccZXyKMAbFal1Yh9Wk5jEaKyORlsnBX4hkOTXtyc9BH7sBp9MSh63DFuhyJiNYZ0uPsTTXtcxGVdpKCqoPEwupKgrCE9RGdVZhxyJ52O2EeKp4LQAh8puNj0gH-MdLeKsUZusJ3bXI3Y5jKeiggjXfE3mDb-ffkNe5gh-xqK3zbZ2ry9grfsQbien3btu7gq_gBwLBto priority: 102 providerName: ProQuest |
| Title | An Efficient Hybrid Multi-Objective Optimization Method Coupling Global Evolutionary and Local Gradient Searches for Solving Aerodynamic Optimization Problems |
| URI | https://www.proquest.com/docview/2869428379 https://doaj.org/article/1e5fc7c7c87f4e5985982a9528a21871 |
| Volume | 11 |
| WOSCitedRecordID | wos001079207800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: K7- dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: M7S dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: PIMPY dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQ4QCHik-xpax8AHFAUTexHdvHbZVSBLuNKEjlFNnOuIBKFm22lXrhp_BbGdvpanuouKBIPtiW4njGM-No5j1CXjnmXWv5JAPflhnPwWSKe8gCy61k2nEOiWxCzufq9FTXG1RfIScswQOnjdvLQXgn8VHScxBaBcQ5o0WhDHqnWD1eTKTeuExFG6xzprhOme4M7_V7GP99w3OtsJvf8EERqv82gxy9zOFDsj2Eh3SalvWI3IHuMXkwW2Or9k_In2lHqwj8gP6CHl2Fkisa62izY_sj2S96jJbg51BiSWeRJZoeLC5C-e0ZTTj_tLoc1M4sr6jpWvox-DX6bhmzwFY0ZSJDTzGupSeL8_DrgU4BLW5isb_5kjox0_RPyZfD6vPBUTawLGSOlXqVtbllpYACWgaFM-ivUELGCsGMZVbrQnnDrdIScuOszXFEthgHCIWhWqsVe0a2ukUHzwkVYIQGYNLqkgM4iwbBegx4AHThcz8ib6_3vXEDBHlgwjhv8CoSpNRsSmlEXq9n_0rQG7fM2w8iXM8JgNmxA9WoGdSo-ZcajciboABNONa4JGeG6gT8sACQ1UwlOvFJqUsxIrvXOtIM571vClXqAF0n9c7_WM0Lcj_Q2qdctl2ytVpewEtyz12uvvfLMbm7X83rT-Oo8th-kNk45KyehPZ3heP1-1n99S9X6AzL |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFAk48I0aKLAHKg7Iauxd27sHhEJJSdQkjUSR2pPZXY_botYpdlqUP8NP4DcyazuhPZRbDygn2yvHcZ7fzK5n3gN4Y3lmUyM6HmZp5AkftSdFhp5zuY25skJgbTYRj8dyf19NVuD3ohfGlVUuOLEi6nRq3Rr5ZiAj5cTBYvXh7IfnXKPc29WFhUYNix2c_6QpW_l-8In-340g2O7tbfW9xlXAszxSMy_1DY9CDDDlGFhN_ExXpE0Ycm24USqQmRZGqhh9bY3x6UicUtwLJaUmqZKcznsLVgWBvdOC1clgNDlYruo4lU0pVF1hz7nqbFLeeUR8Imm3uBL7KouA6wJBFd22H_xv9-Uh3G_yaNatgf8IVjB_DPcuqSvS1mgpSVs-gV_dnPUqvQwKs6w_d51qrGo_9nbN95r22S4R6GnTmcpGlbk225qeu67lQ1bbI7DeRfO06mLOdJ6yoUsH2OeiKp6bsbqAG0tG0wH2ZXriVmxYFylQzXN9emyvfsmkNvQpn8LXG7ldz6CVT3NcAxaiDhUij42KBKI1BC2TUZ6IqILMz9rwbgGbxDbK7c5A5CShGZwDWXIZZG3YWI4-qxVLrhn30SFwOcbpjFc7psVh0tBW4mOY2Zg-Ms4Ehko6vUetwkBqyg1jvw1vHX4Tx4Z0SVY3TR30w5yuWNKNKffpRCoK27C-wG_S0GSZ_AXv838ffg13-nujYTIcjHdewN2AMs260G8dWrPiHF_CbXsxOy6LV80TyeDbTYP9D--2eK4 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFLXGhhA88I0oDPADEw8oahPbif2AULe1bNrWVXxIezO2czOGtmQk3VD_DD-EX8d1Psr2MN72gPrUxGqT9Pjca_fecwh57VjmUssHAWRpHPAQTCB5BoF3uU2YcpxDYzaRTCby4EBNl8jvrhfGl1V2nFgTdVo4v0fej2SsvDhYovpZWxYx3Ry_P_0ReAcp_09rZ6fRQGQH5j9x-Va9297E33otisajzxtbQeswEDgWq1mQhpbFAiJIGUTOIFfj1RkrBDOWWaUimRlupUogNM7aEM8kKcZAITFNSZVk-Lk3yAreVIgLv5X10WT6cbHD4xU3JVdNtT1jatDHHPQbcovEw_xSHKztAq4KCnWkG9_7n5_RfXK3za_psJkQD8gS5A_JnQuqi_hubyFVWz0iv4Y5HdU6Ghh-6dbcd7DRui052Lffm3BA95FYT9qOVbpXm27TjeLMdzMf0sY2gY7O21lsyjk1eUp3fZpAP5R1Ud2MNoXdUFFcJtBPxbHfyaFDwAA2z83Jkbv8JdPG6Kd6TL5cy-N6QpbzIoenhAowQgGwxKqYAziL_GozzB8BVJSFWY-87SCkXavo7o1FjjWu7Dzg9EXA9cjaYvRpo2Ryxbh1j8bFGK8_Xh8oykPd0pkOQWQuwZdMMg5CSa8DaZSIpMGcMQl75I3HsvYsiZfkTNvsgTfm9cb0MMGcaBCrWPTIaodl3dJnpf8C-dm_T78itxDhend7svOc3I4wAW3q_1bJ8qw8gxfkpjufHVXly3ZyUvL1urH-ByWRgUg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+Hybrid+Multi-Objective+Optimization+Method+Coupling+Global+Evolutionary+and+Local+Gradient+Searches+for+Solving+Aerodynamic+Optimization+Problems&rft.jtitle=Mathematics+%28Basel%29&rft.au=Cao%2C+Fan&rft.au=Tang%2C+Zhili&rft.au=Zhu%2C+Caicheng&rft.au=Zhao%2C+Xin&rft.date=2023-09-01&rft.pub=MDPI+AG&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=11&rft.issue=18&rft_id=info:doi/10.3390%2Fmath11183844&rft.externalDocID=A771806965 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |