Unsupervised mining of long time series based on latent topic model

This paper presents a novel unsupervised method for mining time series based on two generative topic models, i.e., probabilistic Latent Semantic Analysis (pLSA) and Latent Dirichlet Allocation (LDA). The proposed method treats each time series as a text document, and extracts a set of local patterns...

Full description

Saved in:
Bibliographic Details
Published in:Neurocomputing (Amsterdam) Vol. 103; pp. 93 - 103
Main Authors: Wang, Jin, Sun, Xiangping, She, Mary F.H., Kouzani, Abbas, Nahavandi, Saeid
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 01.03.2013
Elsevier
Subjects:
ISSN:0925-2312, 1872-8286
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper presents a novel unsupervised method for mining time series based on two generative topic models, i.e., probabilistic Latent Semantic Analysis (pLSA) and Latent Dirichlet Allocation (LDA). The proposed method treats each time series as a text document, and extracts a set of local patterns from the sequence as words by sliding a short temporal window along the sequence. Motivated by the success of latent topic models in text document analysis, latent topic models are extended to find the underlying structure of time series in an unsupervised manner. The clusters or categories of unlabeled time series are automatically discovered by the latent topic models using bag-of-patterns representation. The proposed method was experimentally validated using two sets of time series data extracted from a public Electrocardiography (ECG) database through comparison with the baseline k-means and the Normalized Cuts approaches. In addition, the impact of the bag-of-patterns' parameters was investigated. Experimental results demonstrate that the proposed unsupervised method not only outperforms the baseline k-means and the Normalized Cuts in learning semantic categories of the unlabeled time series, but also is relatively stable with respect to the bag-of-patterns' parameters. To the best of our knowledge, this work is the first attempt to explore latent topic models for unsupervised mining of time series data. ► A novel unsupervised method based on latent topic modelis proposedfor mining time series. ► The proposed method processes time series as text documents. ► The topic model based method is able to effectively capture structural similarity information. ► The proposed method can be potentially used for time series segmentation.
AbstractList This paper presents a novel unsupervised method for mining time series based on two generative topic models, i.e., probabilistic Latent Semantic Analysis (pLSA) and Latent Dirichlet Allocation (LDA). The proposed method treats each time series as a text document, and extracts a set of local patterns from the sequence as words by sliding a short temporal window along the sequence. Motivated by the success of latent topic models in text document analysis, latent topic models are extended to find the underlying structure of time series in an unsupervised manner. The clusters or categories of unlabeled time series are automatically discovered by the latent topic models using bag-of-patterns representation. The proposed method was experimentally validated using two sets of time series data extracted from a public Electrocardiography (ECG) database through comparison with the baseline k-means and the Normalized Cuts approaches. In addition, the impact of the bag-of-patterns' parameters was investigated. Experimental results demonstrate that the proposed unsupervised method not only outperforms the baseline k-means and the Normalized Cuts in learning semantic categories of the unlabeled time series, but also is relatively stable with respect to the bag-of-patterns' parameters. To the best of our knowledge, this work is the first attempt to explore latent topic models for unsupervised mining of time series data.
This paper presents a novel unsupervised method for mining time series based on two generative topic models, i.e., probabilistic Latent Semantic Analysis (pLSA) and Latent Dirichlet Allocation (LDA). The proposed method treats each time series as a text document, and extracts a set of local patterns from the sequence as words by sliding a short temporal window along the sequence. Motivated by the success of latent topic models in text document analysis, latent topic models are extended to find the underlying structure of time series in an unsupervised manner. The clusters or categories of unlabeled time series are automatically discovered by the latent topic models using bag-of-patterns representation. The proposed method was experimentally validated using two sets of time series data extracted from a public Electrocardiography (ECG) database through comparison with the baseline k-means and the Normalized Cuts approaches. In addition, the impact of the bag-of-patterns' parameters was investigated. Experimental results demonstrate that the proposed unsupervised method not only outperforms the baseline k-means and the Normalized Cuts in learning semantic categories of the unlabeled time series, but also is relatively stable with respect to the bag-of-patterns' parameters. To the best of our knowledge, this work is the first attempt to explore latent topic models for unsupervised mining of time series data. ► A novel unsupervised method based on latent topic modelis proposedfor mining time series. ► The proposed method processes time series as text documents. ► The topic model based method is able to effectively capture structural similarity information. ► The proposed method can be potentially used for time series segmentation.
Author Wang, Jin
Kouzani, Abbas
Nahavandi, Saeid
Sun, Xiangping
She, Mary F.H.
Author_xml – sequence: 1
  givenname: Jin
  surname: Wang
  fullname: Wang, Jin
  email: jay.wangjin@gmail.com
  organization: Institute for Technology Research and Innovation, Deakin University, Geelong, VIC 3217, Australia
– sequence: 2
  givenname: Xiangping
  surname: Sun
  fullname: Sun, Xiangping
  organization: Institute for Technology Research and Innovation, Deakin University, Geelong, VIC 3217, Australia
– sequence: 3
  givenname: Mary F.H.
  surname: She
  fullname: She, Mary F.H.
  organization: Institute for Technology Research and Innovation, Deakin University, Geelong, VIC 3217, Australia
– sequence: 4
  givenname: Abbas
  surname: Kouzani
  fullname: Kouzani, Abbas
  organization: School of Engineering, Deakin University, Geelong, VIC 3217, Australia
– sequence: 5
  givenname: Saeid
  surname: Nahavandi
  fullname: Nahavandi, Saeid
  organization: Center for Intelligent Systems Research, Deakin University, Geelong, VIC 3217, Australia
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27090906$$DView record in Pascal Francis
BookMark eNqFkE1LxDAURYOM4Dj6D1x0I7hpfUmbtHUhyOAXDLhx1iGTvkqGNhmTdMB_b4cOLlwob3E3594H55zMrLNIyBWFjAIVt9vM4qBdnzGgLIM6A6hOyJxWJUsrVokZmUPNeMpyys7IeQhbAFpSVs_Jcm3DsEO_NwGbpDfW2I_EtUnnxoymxySgNxiSjToAziadimhjEt3O6KR3DXYX5LRVXcDLYy7I-unxffmSrt6eX5cPq1Tnoo6pRsGx2pRMCdaM71uhmIA8F7TGnHOuGso4E1VZ6AJagEYVnLKKbepWNUVR5AtyM-3uvPscMETZm6Cx65RFNwRJRUm5KHgOI3p9RFXQqmu9stoEufOmV_5LshLq8cTIFROnvQvBY_uDUJAHt3IrJ7fy4FZCLUe3Y-3uV02bqKJxNnpluv_K91MZR1d7g14GbdBqbIxHHWXjzN8D303ymCg
CitedBy_id crossref_primary_10_1016_j_eswa_2016_01_031
crossref_primary_10_1016_j_physa_2019_04_208
crossref_primary_10_1007_s00163_021_00367_8
crossref_primary_10_1016_j_cmpb_2014_06_014
crossref_primary_10_1109_LSP_2016_2623801
crossref_primary_10_1145_3462478
crossref_primary_10_1016_j_cmpb_2013_05_022
crossref_primary_10_3758_s13428_016_0839_5
crossref_primary_10_1016_j_joi_2014_07_005
crossref_primary_10_1109_ACCESS_2023_3309671
crossref_primary_10_1016_j_bspc_2016_10_012
crossref_primary_10_1080_23311916_2020_1865598
Cites_doi 10.1023/A:1007617005950
10.1109/34.868688
10.1198/016214506000000302
10.1007/978-3-642-02279-1_33
10.1073/pnas.0307752101
10.1145/1014052.1014077
10.1109/TPAMI.2008.87
10.1155/2008/148658
10.1007/s10618-007-0064-z
10.1016/B978-155860869-6/50043-3
10.1161/01.CIR.101.23.e215
10.1080/01969727308546046
10.1016/S0925-2312(01)00706-8
10.1145/1015706.1015760
10.1016/j.engappai.2010.09.007
10.1093/bioinformatics/bti515
10.1186/1471-2105-12-141
10.1016/S0031-3203(04)00276-6
10.1007/s10844-012-0196-5
10.1016/j.patcog.2008.11.020
10.1109/19.930458
10.1145/1401890.1401966
10.1109/69.877502
10.1109/TPAMI.2009.43
10.1007/978-3-540-74958-5_5
10.1109/ICDE.1999.754915
10.1109/TITB.2008.2003323
10.1109/ICCV.2009.5459342
10.1109/CVPR.2005.16
10.7551/mitpress/7503.003.0196
10.1109/ICCV.2005.77
10.1145/568518.568520
10.1016/j.patcog.2005.01.025
10.1007/s11263-007-0122-4
ContentType Journal Article
Copyright 2012 Elsevier B.V.
2014 INIST-CNRS
Copyright_xml – notice: 2012 Elsevier B.V.
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.neucom.2012.09.008
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Mathematics
Applied Sciences
Statistics
EISSN 1872-8286
EndPage 103
ExternalDocumentID 27090906
10_1016_j_neucom_2012_09_008
S0925231212007527
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
AGCQF
AGRNS
BNPGV
IQODW
SSH
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c369t-ce65e8b72a62d171f6a26033619e3555ad12526874c40f00da451282b9fad4443
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000313374500010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sun Nov 09 11:21:00 EST 2025
Mon Jul 21 09:12:06 EDT 2025
Tue Nov 18 22:18:31 EST 2025
Sat Nov 29 08:03:12 EST 2025
Fri Feb 23 02:27:18 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords LDA
ECG signals
Bag-of-patterns
Unsupervised learning
pLSA
Text analysis
K means algorithm
Algebraic semantic
Data mining
Modeling
Document processing
Business process
Graph decomposition
Bag of words
Classification
Sliding window
Database
Electrocardiography
Linguistics
Natural language
Categorization
Document analysis
Generative model
Concept learning
Probabilistic approach
Time series
Text
Experimental result
Document structure
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c369t-ce65e8b72a62d171f6a26033619e3555ad12526874c40f00da451282b9fad4443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1671564530
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_1671564530
pascalfrancis_primary_27090906
crossref_primary_10_1016_j_neucom_2012_09_008
crossref_citationtrail_10_1016_j_neucom_2012_09_008
elsevier_sciencedirect_doi_10_1016_j_neucom_2012_09_008
PublicationCentury 2000
PublicationDate 2013-03-01
PublicationDateYYYYMMDD 2013-03-01
PublicationDate_xml – month: 03
  year: 2013
  text: 2013-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2013
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Güler, Übeyli (bib6) 2005; 38
Dunn (bib20) 1973; 3
B.K. Yi, C. Faloutsos, Fast time sequence indexing for arbitrary Lp norms, in: VLDB '00: Proceedings of the Twenty-sixth International Conference on Very Large Data Bases, 2000, pp. 385–394.
Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng, Stanley (bib1) 2000; 101
Grifths, Steyvers (bib32) 2004; 101
Kampouraki, Manis, Nikou (bib7) 2009; 13
Liao (bib8) 2005; 38
Chung Fu (bib9) 2011; 24
T. Hospedales, S. Gong, T. Xiang, A Markov clustering topic model for mining behaviour in video, in: 2009 IEEE Twelfth International Conference on Computer Vision, 2009, pp. 1165–1172.
Kovar, Gleicher (bib2) 2004; 23
Thomas (bib11) 2001; 42
T. Minka, J. Lafferty, Expectation-propagation for the generative aspect model, in: Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence, 2002.
J. Lin, Y. Li, Finding structural similarity in time series data using bag-of-patterns representation, in: Proceedings of the Twenty-first International Conference on Scientific and Statistical Database Management, 2009, pp. 461–477.
D. Andrzejewski, A. Mulhern, B. Liblit, X. Zhu, Statistical debugging using latent topic models, in: Proceedings of the Eighteenth European Conference on Machine Learning, 2007, pp. 6–17.
Fang, Chan (bib35) 2009; 42
Niebles, Wang, Fei-Fei (bib23) 2008; 79
M. Wu, B. Schölkopf, A local learning approach for clustering, in: Proceedings of the Conference on Advances Neural Information Processing Systems, 2007, pp. 1529–1537.
Papadimitriou, Steiglitz (bib37) 1998
E. Keogh, S. Lonardi, C.A. Ratanamahatana, Towards parameter-free data mining, in: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '04, ACM, New York, NY, USA, 2004, pp. 206–215.
J. Shieh, E. Keogh, Isax: indexing and mining terabyte sized time series, in: Proceeding of the Fourteenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '08, 2008, pp. 623–631.
Wang, Agrafioti, Hatzinakos, Plataniotis (bib34) 2008
K.-P. Chan, A.W.-C. Fu, Efficient time series matching by wavelets, in: Proceedings of the Fifteenth International Conference on Data Engineering, 1999, pp. 126–133.
Flaherty, Giaever, Kumm, Jordan, Arkin (bib29) 2005; 21
Teh, Jordan, Beal, Blei (bib39) 2006; 101
Blei, Ng, Jordan (bib12) 2003; 3
J. Sivic, B. Russell, A. Efros, A. Zisserman, W. Freeman, Discovering objects and their location in images, in: Tenth IEEE International Conference on Computer Vision, vol. 1, 2005, pp. 370–377.
L. Fei-Fei, P. Perona, A Bayesian hierarchical model for learning natural scene categories, in: IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, 2005, pp. 524–531.
Rafiei, Mendelzon (bib38) 2000; 12
Lin, Keogh, Wei, Lonardi (bib15) 2007; 15
Wang, Ma, Grimson (bib25) 2009; 31
Konietzny, Dietz, McHardy (bib28) 2011; 12
Biel, Pettersson, Philipson, Wide (bib33) 2001; 50
Wang, Mori (bib24) 2009; 31
E. Keogh, Exact indexing of dynamic time warping, in: Proceedings of the Twenty-eighth International Conference on Very Large Data Bases (VLDB '02), 2002, pp. 406–417.
Huken, Stagge (bib5) 2003; 50
Shi, Malik (bib14) 2000; 22
L. Wei, E. Keogh, H. Van Herle, A. Mafra-Neto, Atomic wedgie: efficient query filtering for streaming time series, in: Fifth IEEE International Conference on Data Mining, 2005, p. 8.
Lin, Khade, Li (bib10) 2012; 39
Chakrabarti, Keogh, Mehrotra, Pazzani (bib30) 2002; 27
Blei (10.1016/j.neucom.2012.09.008_bib12) 2003; 3
Flaherty (10.1016/j.neucom.2012.09.008_bib29) 2005; 21
10.1016/j.neucom.2012.09.008_bib4
10.1016/j.neucom.2012.09.008_bib3
Chakrabarti (10.1016/j.neucom.2012.09.008_bib30) 2002; 27
Niebles (10.1016/j.neucom.2012.09.008_bib23) 2008; 79
Konietzny (10.1016/j.neucom.2012.09.008_bib28) 2011; 12
Papadimitriou (10.1016/j.neucom.2012.09.008_bib37) 1998
Thomas (10.1016/j.neucom.2012.09.008_bib11) 2001; 42
Goldberger (10.1016/j.neucom.2012.09.008_bib1) 2000; 101
10.1016/j.neucom.2012.09.008_bib17
Lin (10.1016/j.neucom.2012.09.008_bib10) 2012; 39
10.1016/j.neucom.2012.09.008_bib16
Chung Fu (10.1016/j.neucom.2012.09.008_bib9) 2011; 24
10.1016/j.neucom.2012.09.008_bib19
Lin (10.1016/j.neucom.2012.09.008_bib15) 2007; 15
10.1016/j.neucom.2012.09.008_bib18
10.1016/j.neucom.2012.09.008_bib13
Wang (10.1016/j.neucom.2012.09.008_bib24) 2009; 31
Wang (10.1016/j.neucom.2012.09.008_bib34) 2008
10.1016/j.neucom.2012.09.008_bib36
10.1016/j.neucom.2012.09.008_bib31
Grifths (10.1016/j.neucom.2012.09.008_bib32) 2004; 101
Shi (10.1016/j.neucom.2012.09.008_bib14) 2000; 22
Fang (10.1016/j.neucom.2012.09.008_bib35) 2009; 42
Dunn (10.1016/j.neucom.2012.09.008_bib20) 1973; 3
Biel (10.1016/j.neucom.2012.09.008_bib33) 2001; 50
Güler (10.1016/j.neucom.2012.09.008_bib6) 2005; 38
Huken (10.1016/j.neucom.2012.09.008_bib5) 2003; 50
Teh (10.1016/j.neucom.2012.09.008_bib39) 2006; 101
Kampouraki (10.1016/j.neucom.2012.09.008_bib7) 2009; 13
Liao (10.1016/j.neucom.2012.09.008_bib8) 2005; 38
10.1016/j.neucom.2012.09.008_bib27
10.1016/j.neucom.2012.09.008_bib26
Rafiei (10.1016/j.neucom.2012.09.008_bib38) 2000; 12
Kovar (10.1016/j.neucom.2012.09.008_bib2) 2004; 23
Wang (10.1016/j.neucom.2012.09.008_bib25) 2009; 31
10.1016/j.neucom.2012.09.008_bib22
10.1016/j.neucom.2012.09.008_bib21
References_xml – volume: 79
  start-page: 299
  year: 2008
  end-page: 318
  ident: bib23
  article-title: Unsupervised learning of human action categories using spatial-temporal words
  publication-title: Int. J. Comput. Vis.
– volume: 38
  start-page: 199
  year: 2005
  end-page: 208
  ident: bib6
  article-title: ECG beat classifier designed by combined neural network model
  publication-title: Pattern Recognition
– reference: J. Sivic, B. Russell, A. Efros, A. Zisserman, W. Freeman, Discovering objects and their location in images, in: Tenth IEEE International Conference on Computer Vision, vol. 1, 2005, pp. 370–377.
– volume: 50
  start-page: 223
  year: 2003
  end-page: 235
  ident: bib5
  article-title: Recurrent neural networks for time series classification
  publication-title: Neurocomputing
– volume: 24
  start-page: 164
  year: 2011
  end-page: 181
  ident: bib9
  article-title: A review on time series data mining
  publication-title: Eng. Appl. Artif. Intell.
– volume: 42
  start-page: 1824
  year: 2009
  end-page: 1831
  ident: bib35
  article-title: Human identification by quantifying similarity and dissimilarity in electrocardiogram phase space
  publication-title: Pattern Recognition
– reference: T. Minka, J. Lafferty, Expectation-propagation for the generative aspect model, in: Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence, 2002.
– volume: 13
  start-page: 512
  year: 2009
  end-page: 518
  ident: bib7
  article-title: Heartbeat time series classification with support vector machines
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– reference: J. Lin, Y. Li, Finding structural similarity in time series data using bag-of-patterns representation, in: Proceedings of the Twenty-first International Conference on Scientific and Statistical Database Management, 2009, pp. 461–477.
– volume: 22
  start-page: 888
  year: 2000
  end-page: 905
  ident: bib14
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (PAMI)
– reference: E. Keogh, S. Lonardi, C.A. Ratanamahatana, Towards parameter-free data mining, in: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '04, ACM, New York, NY, USA, 2004, pp. 206–215.
– volume: 12
  start-page: 675
  year: 2000
  end-page: 693
  ident: bib38
  article-title: Querying time series data based on similarity
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 3
  start-page: 32
  year: 1973
  end-page: 57
  ident: bib20
  article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters
  publication-title: J. Cybern.
– reference: E. Keogh, Exact indexing of dynamic time warping, in: Proceedings of the Twenty-eighth International Conference on Very Large Data Bases (VLDB '02), 2002, pp. 406–417.
– reference: L. Wei, E. Keogh, H. Van Herle, A. Mafra-Neto, Atomic wedgie: efficient query filtering for streaming time series, in: Fifth IEEE International Conference on Data Mining, 2005, p. 8.
– volume: 101
  start-page: 1566
  year: 2006
  end-page: 1581
  ident: bib39
  article-title: Hierarchical Dirichlet processes
  publication-title: J. Am. Stat. Assoc.
– volume: 101
  start-page: 5228
  year: 2004
  end-page: 5235
  ident: bib32
  article-title: Finding scientific topics
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– reference: M. Wu, B. Schölkopf, A local learning approach for clustering, in: Proceedings of the Conference on Advances Neural Information Processing Systems, 2007, pp. 1529–1537.
– reference: L. Fei-Fei, P. Perona, A Bayesian hierarchical model for learning natural scene categories, in: IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, 2005, pp. 524–531.
– volume: 27
  start-page: 188
  year: 2002
  end-page: 228
  ident: bib30
  article-title: Locally adaptive dimensionality reduction for indexing large time series databases
  publication-title: ACM Trans. Database Syst.
– volume: 23
  start-page: 559
  year: 2004
  end-page: 568
  ident: bib2
  article-title: Automated extraction and parameterization of motions in large data sets
  publication-title: ACM Trans. Graph.
– reference: B.K. Yi, C. Faloutsos, Fast time sequence indexing for arbitrary Lp norms, in: VLDB '00: Proceedings of the Twenty-sixth International Conference on Very Large Data Bases, 2000, pp. 385–394.
– volume: 101
  start-page: 215
  year: 2000
  end-page: 220
  ident: bib1
  article-title: PhysioBank, PhysioToolkit, and PhysioNet
  publication-title: Circulation
– volume: 39
  start-page: 287
  year: 2012
  end-page: 315
  ident: bib10
  article-title: Rotation-invariant similarity in time series using bag-of-patterns representation
  publication-title: J. Intell. Inf. Syst.
– volume: 31
  start-page: 1762
  year: 2009
  end-page: 1774
  ident: bib24
  article-title: Human action recognition by semilatent topic models
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: K.-P. Chan, A.W.-C. Fu, Efficient time series matching by wavelets, in: Proceedings of the Fifteenth International Conference on Data Engineering, 1999, pp. 126–133.
– volume: 21
  start-page: 3286
  year: 2005
  end-page: 3293
  ident: bib29
  article-title: A latent variable model for chemogenomic profiling
  publication-title: Bioinformatics
– year: 2008
  ident: bib34
  article-title: Analysis of human electrocardiogram for biometric recognition
  publication-title: EURASIP J. Adv. Signal Process.
– volume: 42
  start-page: 177
  year: 2001
  end-page: 196
  ident: bib11
  article-title: Unsupervised learning by probabilistic latent semantic analysis
  publication-title: Mach. Learn.
– year: 1998
  ident: bib37
  article-title: Combinatorial Optimization
– reference: D. Andrzejewski, A. Mulhern, B. Liblit, X. Zhu, Statistical debugging using latent topic models, in: Proceedings of the Eighteenth European Conference on Machine Learning, 2007, pp. 6–17.
– volume: 3
  start-page: 993
  year: 2003
  end-page: 1022
  ident: bib12
  article-title: Latent Dirichlet allocation
  publication-title: J. Mach. Learn. Res.
– volume: 12
  start-page: 1471
  year: 2011
  end-page: 2105
  ident: bib28
  article-title: Inferring functional modules of protein families with probabilistic topic models
  publication-title: BMC Bioinformatics
– volume: 38
  start-page: 1857
  year: 2005
  end-page: 1874
  ident: bib8
  article-title: Clustering of time series data—a survey
  publication-title: Pattern Recognition
– volume: 50
  start-page: 808
  year: 2001
  end-page: 812
  ident: bib33
  article-title: ECG analysis
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 15
  start-page: 107
  year: 2007
  end-page: 144
  ident: bib15
  article-title: Experiencing sax
  publication-title: Data Min. Knowl. Discovery
– reference: T. Hospedales, S. Gong, T. Xiang, A Markov clustering topic model for mining behaviour in video, in: 2009 IEEE Twelfth International Conference on Computer Vision, 2009, pp. 1165–1172.
– reference: J. Shieh, E. Keogh, Isax: indexing and mining terabyte sized time series, in: Proceeding of the Fourteenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '08, 2008, pp. 623–631.
– volume: 31
  start-page: 539
  year: 2009
  end-page: 555
  ident: bib25
  article-title: Unsupervised activity perception in crowded and complicated scenes using hierarchical Bayesian models
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 42
  start-page: 177
  year: 2001
  ident: 10.1016/j.neucom.2012.09.008_bib11
  article-title: Unsupervised learning by probabilistic latent semantic analysis
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007617005950
– volume: 22
  start-page: 888
  issue: 8
  year: 2000
  ident: 10.1016/j.neucom.2012.09.008_bib14
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (PAMI)
  doi: 10.1109/34.868688
– volume: 101
  start-page: 1566
  issue: 476
  year: 2006
  ident: 10.1016/j.neucom.2012.09.008_bib39
  article-title: Hierarchical Dirichlet processes
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214506000000302
– ident: 10.1016/j.neucom.2012.09.008_bib13
  doi: 10.1007/978-3-642-02279-1_33
– volume: 101
  start-page: 5228
  issue: Suppl. 1
  year: 2004
  ident: 10.1016/j.neucom.2012.09.008_bib32
  article-title: Finding scientific topics
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0307752101
– ident: 10.1016/j.neucom.2012.09.008_bib17
  doi: 10.1145/1014052.1014077
– ident: 10.1016/j.neucom.2012.09.008_bib3
– volume: 31
  start-page: 539
  issue: 3
  year: 2009
  ident: 10.1016/j.neucom.2012.09.008_bib25
  article-title: Unsupervised activity perception in crowded and complicated scenes using hierarchical Bayesian models
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.87
– year: 2008
  ident: 10.1016/j.neucom.2012.09.008_bib34
  article-title: Analysis of human electrocardiogram for biometric recognition
  publication-title: EURASIP J. Adv. Signal Process.
  doi: 10.1155/2008/148658
– volume: 15
  start-page: 107
  issue: 2
  year: 2007
  ident: 10.1016/j.neucom.2012.09.008_bib15
  article-title: Experiencing sax
  publication-title: Data Min. Knowl. Discovery
  doi: 10.1007/s10618-007-0064-z
– ident: 10.1016/j.neucom.2012.09.008_bib18
  doi: 10.1016/B978-155860869-6/50043-3
– volume: 3
  start-page: 993
  year: 2003
  ident: 10.1016/j.neucom.2012.09.008_bib12
  article-title: Latent Dirichlet allocation
  publication-title: J. Mach. Learn. Res.
– volume: 101
  start-page: 215
  issue: 23
  year: 2000
  ident: 10.1016/j.neucom.2012.09.008_bib1
  article-title: PhysioBank, PhysioToolkit, and PhysioNet
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– volume: 3
  start-page: 32
  issue: 3
  year: 1973
  ident: 10.1016/j.neucom.2012.09.008_bib20
  article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters
  publication-title: J. Cybern.
  doi: 10.1080/01969727308546046
– volume: 50
  start-page: 223
  year: 2003
  ident: 10.1016/j.neucom.2012.09.008_bib5
  article-title: Recurrent neural networks for time series classification
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(01)00706-8
– volume: 23
  start-page: 559
  year: 2004
  ident: 10.1016/j.neucom.2012.09.008_bib2
  article-title: Automated extraction and parameterization of motions in large data sets
  publication-title: ACM Trans. Graph.
  doi: 10.1145/1015706.1015760
– volume: 24
  start-page: 164
  issue: 1
  year: 2011
  ident: 10.1016/j.neucom.2012.09.008_bib9
  article-title: A review on time series data mining
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2010.09.007
– volume: 21
  start-page: 3286
  year: 2005
  ident: 10.1016/j.neucom.2012.09.008_bib29
  article-title: A latent variable model for chemogenomic profiling
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti515
– volume: 12
  start-page: 1471
  year: 2011
  ident: 10.1016/j.neucom.2012.09.008_bib28
  article-title: Inferring functional modules of protein families with probabilistic topic models
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-141
– volume: 38
  start-page: 199
  issue: 2
  year: 2005
  ident: 10.1016/j.neucom.2012.09.008_bib6
  article-title: ECG beat classifier designed by combined neural network model
  publication-title: Pattern Recognition
  doi: 10.1016/S0031-3203(04)00276-6
– volume: 39
  start-page: 287
  issue: 2
  year: 2012
  ident: 10.1016/j.neucom.2012.09.008_bib10
  article-title: Rotation-invariant similarity in time series using bag-of-patterns representation
  publication-title: J. Intell. Inf. Syst.
  doi: 10.1007/s10844-012-0196-5
– volume: 42
  start-page: 1824
  issue: 9
  year: 2009
  ident: 10.1016/j.neucom.2012.09.008_bib35
  article-title: Human identification by quantifying similarity and dissimilarity in electrocardiogram phase space
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2008.11.020
– volume: 50
  start-page: 808
  issue: 3
  year: 2001
  ident: 10.1016/j.neucom.2012.09.008_bib33
  article-title: ECG analysis
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/19.930458
– ident: 10.1016/j.neucom.2012.09.008_bib4
– ident: 10.1016/j.neucom.2012.09.008_bib31
– ident: 10.1016/j.neucom.2012.09.008_bib19
  doi: 10.1145/1401890.1401966
– volume: 12
  start-page: 675
  issue: 5
  year: 2000
  ident: 10.1016/j.neucom.2012.09.008_bib38
  article-title: Querying time series data based on similarity
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/69.877502
– volume: 31
  start-page: 1762
  issue: 10
  year: 2009
  ident: 10.1016/j.neucom.2012.09.008_bib24
  article-title: Human action recognition by semilatent topic models
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2009.43
– ident: 10.1016/j.neucom.2012.09.008_bib27
  doi: 10.1007/978-3-540-74958-5_5
– ident: 10.1016/j.neucom.2012.09.008_bib16
  doi: 10.1109/ICDE.1999.754915
– year: 1998
  ident: 10.1016/j.neucom.2012.09.008_bib37
– volume: 13
  start-page: 512
  issue: 4
  year: 2009
  ident: 10.1016/j.neucom.2012.09.008_bib7
  article-title: Heartbeat time series classification with support vector machines
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2008.2003323
– ident: 10.1016/j.neucom.2012.09.008_bib26
  doi: 10.1109/ICCV.2009.5459342
– ident: 10.1016/j.neucom.2012.09.008_bib22
  doi: 10.1109/CVPR.2005.16
– ident: 10.1016/j.neucom.2012.09.008_bib36
  doi: 10.7551/mitpress/7503.003.0196
– ident: 10.1016/j.neucom.2012.09.008_bib21
  doi: 10.1109/ICCV.2005.77
– volume: 27
  start-page: 188
  year: 2002
  ident: 10.1016/j.neucom.2012.09.008_bib30
  article-title: Locally adaptive dimensionality reduction for indexing large time series databases
  publication-title: ACM Trans. Database Syst.
  doi: 10.1145/568518.568520
– volume: 38
  start-page: 1857
  issue: 11
  year: 2005
  ident: 10.1016/j.neucom.2012.09.008_bib8
  article-title: Clustering of time series data—a survey
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2005.01.025
– volume: 79
  start-page: 299
  issue: 3
  year: 2008
  ident: 10.1016/j.neucom.2012.09.008_bib23
  article-title: Unsupervised learning of human action categories using spatial-temporal words
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-007-0122-4
SSID ssj0017129
Score 2.12661
Snippet This paper presents a novel unsupervised method for mining time series based on two generative topic models, i.e., probabilistic Latent Semantic Analysis...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 93
SubjectTerms Applied sciences
Artificial intelligence
Bag-of-patterns
Biological and medical sciences
Categories
Computer science; control theory; systems
Data processing. List processing. Character string processing
Dirichlet problem
ECG signals
Electrocardiography. Vectocardiography
Electrodiagnosis. Electric activity recording
Exact sciences and technology
Inference from stochastic processes; time series analysis
Investigative techniques, diagnostic techniques (general aspects)
LDA
Mathematical models
Mathematics
Medical sciences
Memory organisation. Data processing
Mining
pLSA
Probability and statistics
Sciences and techniques of general use
Semantics
Software
Speech and sound recognition and synthesis. Linguistics
Statistics
Texts
Time series
Unsupervised learning
Title Unsupervised mining of long time series based on latent topic model
URI https://dx.doi.org/10.1016/j.neucom.2012.09.008
https://www.proquest.com/docview/1671564530
Volume 103
WOSCitedRecordID wos000313374500010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZbu4fB2H0suxQNxl6Ch2LLlvwYSsLWlWywhOVNyLI8UlLbq-PR7dfv6GI3IYx2DyNggu_ofD7n05F0PoTeRtIs0JQkiPM8DKjiRZDFFJwhRHvOE5URLa3YBJvN-HKZfvHz5xsrJ8DKkl9epvV_NTXsA2ObpbP_YO7-prAD_oPRYQtmh-2NDL8om7Y2HqABLnlu9R8MI1wbUSGjJD80b6GboYlfuRkrWAPdLDdAQuuVcso424zVVu9QVvvBZxXG56a4Qm6Q1GcRvvm088mqB9vX1jq0JeDve90FSFcM0i8S-jWc9gNVn6r2t5OXGo6zTO5kI4wyRDcdq0srhnEAnHHXw5Joy0c6RUQfbf2hPUfucgpn70vdmlk98KjQ1qMl_CpwdYP1s89iujg9FfPJcv6u_hEYSTEz9O71VW6jw5DFKXjtw_HHyfKkH2Rio9CVYvSv3K2stNP_9h_8N-Zyr5YNfE-FE0LZi-mWqMwfovu-h4HHDhmP0C1dPkYPOvUO7J35E3S8DRTsgIKrAhugYAMU7ICCLVBwVWIHFGyBgi1QnqLFdDI__hB4SY1ARUm6CZROYs0zFsokzKEBikRChzaKoButgXnGMgfCGyacUUVJQUguKTBCHmZpIXNKafQMHZRVqZ8jrBV0dQuSqlHEqdJZmlCSF4wUFG7N03yAoq65hPL15o3syVp0EwvPhGtkYRpZkFRAIw9Q0F9Vu3or15zPOksIzxkdFxSApGuuPNoxXP-4kJEUfskAveksKcDnmoE0WeqqbcQoYabGUhyRFzc45yW6e_WlvEIHm4tWv0Z31M_Nqrk48qD8AzEcowU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+mining+of+long+time+series+based+on+latent+topic+model&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Wang%2C+Jin&rft.au=Sun%2C+Xiangping&rft.au=She%2C+Mary+FH&rft.au=Kouzani%2C+Abbas&rft.date=2013-03-01&rft.issn=0925-2312&rft.volume=103&rft.spage=93&rft.epage=103&rft_id=info:doi/10.1016%2Fj.neucom.2012.09.008&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon