A multi-objective memetic algorithm for integrated process planning and scheduling
Process planning and scheduling are two crucial components in a manufacturing system. The integration of the two functions has an important significance on improving the performance of the manufacturing system. However, integrated process planning and scheduling is an intractable non-deterministic p...
Uloženo v:
| Vydáno v: | International journal of advanced manufacturing technology Ročník 85; číslo 5-8; s. 1513 - 1528 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Springer London
01.07.2016
Springer Nature B.V |
| Témata: | |
| ISSN: | 0268-3768, 1433-3015 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Process planning and scheduling are two crucial components in a manufacturing system. The integration of the two functions has an important significance on improving the performance of the manufacturing system. However, integrated process planning and scheduling is an intractable non-deterministic polynomial-time (NP)-hard problem, and the multiple objectives requirement widely exists in real-world production situations. In this paper, a multi-objective mathematical model of integrated process planning and scheduling is set up with three different objectives: the overall finishing time (makespan), the maximum machine workload (MMW), and the total workload of machines (TWM). A multi-objective memetic algorithm (MOMA) is proposed to solve this problem. In MOMA, all the possible schedules are improved by a problem-specific multi-objective local search method, which combines a variable neighborhood search (VNS) procedure and an effective objective-specific intensification search method. Moreover, we adopt the TOPSIS method to select a satisfactory schedule scheme from the optimal Pareto front. The proposed MOMA is tested on typical benchmark instances and the experimental results are compared with those obtained by the well-known NSGA-II. Computational results show that MOMA is a promising and very effective method for the multi-objective IPPS problem. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0268-3768 1433-3015 |
| DOI: | 10.1007/s00170-015-8037-7 |